Por favor, use este identificador para citar o enlazar este ítem: http://dspace.espoch.edu.ec/handle/123456789/19833
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorPozo Valdiviezo, Alex Eduardo-
dc.contributor.authorAndrade Andrade, Daniela Sofia-
dc.contributor.authorRuiz Luna, Delia Estefania-
dc.date.accessioned2023-10-04T21:02:44Z-
dc.date.available2023-10-04T21:02:44Z-
dc.date.issued2023-04-28-
dc.identifier.citationAndrade Andrade, Daniela Sofia; Ruiz Luna, Delia Estefania. (2023). Simulación numérica de la ecuación de Nagumo por el método de diferencias finitas. Escuela Superior Politécnica de Chimborazo. Riobambaes_ES
dc.identifier.urihttp://dspace.espoch.edu.ec/handle/123456789/19833-
dc.descriptionEl presente trabajo de titulación tuvo como objetivo describir la ecuacion de Nagumo, sus fundamentos teóricos y su resolución numérica mediante esquemas de diferencias finitas que fueron implementados en Python para identificar el método que aproxima de mejor manera la solución. La investigación documental fue de caracter teorico-práctico debido a que se realizó un análisis sobre: la existencia y unicidad de las soluciones de la ecuación de Nagumo, presentamos dos soluciones reales; los esquemas implicito, explícito, esquema-theta, Cranck-Nicolson, su consistencia, estabilidad y convergencia, a su vez, se hizo la simulación numérica en Python que permitió llevar a cabo la comparación de las soluciones reales con las soluciones numéricas. Se obtuvo como resultados que el esquema implícito, explicito y esquema theta tienen un orden de convergencia lineal en el tiempo y cuadrático en el espacio, mientras que, el esquema Cranck-Nicolson es cuadrático en tiempo y espacio. Gracias al estudio teórico se concluye que las soluciones de la Ecuación de Nagumo existen y son únicas, y a partir de las simulaciones se conoce que cuando la variable α se aproxima a 0 el esquema que más se acerca a la solución real es el de Cranck-Nicolson pero cuando α se aproxima a 0.5 no se puede asegurar que un mismo esquema sea el que converga la solucion exacta, en cualquier intervalo temporal o espacial. Recomendamos realizar la lectura completa del capítulo II, puesto que este sentará las bases para el tema principal que son los método de diferencias finitas.es_ES
dc.description.abstractThe aim of this work was to describe the Nagumo equation, its theoretical foundations and its numerical resolution through finite difference schemes that were implemented in Python to identify the method that best approximates the solution. The documentary research was of a theoretical-practical nature because an analysis was carried out on: the existence and uniqueness of the solutions of the Nagumo equation, it was presented two real solutions; the implicit, explicit, theta-scheme, Cranck-Nicolson schemes, their consistency, stability and convergence; at the same time the numerical simulation in Python was carried out, which allowed the comparison of the real solutions with the numerical solutions. It was obtained as results that the implicit, explicit and theta schemes have a linear order of convergence in time and quadratic in space, while the Cranck-Nicolson scheme is quadratic in time and space. Thanks to the study, it is concluded that the solutions of the Nagumo Equation exist and are unique, and from the simulations it is known that when the variable “α” approaches 0 the scheme that is closest to the real solution is that of Cranck - Nicolson, but when “α” approaches 0.5 it cannot be assured that the same scheme is the one that converges to the exact solution, in any temporal or spatial interval. It is recommended to read Chapter II in its entirety, since it will lay the foundations for the main topic of finite difference methods.es_ES
dc.language.isospaes_ES
dc.publisherEscuela Superior Politécnica de Chimborazoes_ES
dc.relation.ispartofseriesUDCTFC;76T00064-
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectECUACIÓN DE NAGUMOes_ES
dc.subjectESQUEMA IMPLICITOes_ES
dc.subjectESQUEMA EXPLÍCITOes_ES
dc.subjectESQUEMA-THETAes_ES
dc.subjectESQUEMA CRANCK-NICOLSONes_ES
dc.titleSimulación numérica de la ecuación de Nagumo por el método de diferencias finitases_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
dc.contributor.miembrotribunalCoronel Maji, Franklin Marcelo-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/ec/es_ES
Aparece en las colecciones: Matemático

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
76T00064.pdf1,12 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons