

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS

ESCUELA DE INGENIERÍA QUÍMICA

"DISEÑO DE LA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES DE LA PARROQUIA SANTA FE DE GALÁN DEL CANTÓN GUANO"

TRABAJO DE TITULACIÓN TIPO: PROYECTO TÉCNICO

Presentado para optar al grado académico de:

INGENIERA QUÍMICA

AUTORA: YAJAIRA NATALIA RAMIREZ TIERRA

TUTOR: ING. MARCO CHUIZA

Riobamba - Ecuador 2017

©2017 Yajaira Natalia Ramírez Tierra

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier medio o procedimiento, incluyendo la cita bibliográfica del documento, siempre y cuando se reconozca el Derecho de Autor.

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS ESCUELA DE INGENIERÍA QUÍMICA

El Tribunal de Trabajo de titulación certifica que: el presente trabajo técnico de "DISEÑO DE LA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES DE LA PARROQUIA SANTA FE DE GÁLAN DEL CANTÓN GUANO" de responsabilidad de la señorita Yajaira Natalia Ramírez Tierra ha sido revisado por los Miembros del Tribunal de titulación, quedando autorizada así su presentación.

Ing. Marco Chuiza		
DIRECTOR DEL TRAF	BAJO	
DE TITULACIÓN		
Ing. Diego Burbano		
MIEMBRO DEL TRIBU	UNAL	

DECLARACIÓN DE AUTENTICIDAD

Yo, Yajaira Natalia Ramírez Tierra, declaro que el presente trabajo de titulación es de mi

autoría y que los resultados del mismo son auténticos y originales. Los textos constantes en el

documento que provienen de otra fuente están debidamente citados y referenciados.

Como autor, asumo la responsabilidad legal y académica de los contenidos de este trabajo de

titulación.

Riobamba, 8 de diciembre del 2017

Yajaira Natalia Ramírez Tierra

0605331594

iii

"Yo, Yajaira Natalia Ramírez Tierra, declaro que soy responsable de las ideas, doctrinas y resultados expuestos en este trabajo de titulación, y el patrimonio intelectual del mismo pertenece a la Escuela Superior Politécnica de Chimborazo"

YAJAIRA NATALIA RAMIREZ TIERRA

DEDICATORIA

El presente trabajo se la dedico a mi madre y a mi padre ya que ellos han sido mi fortaleza para seguir adelante, mi guía en cada paso que doy, es gracias a los dos que culmino esta etapa en mi vida.

De igual manera este trabajo se la dedico a mi abuelita, por el apoyo incondicional que me brindo en todo este camino recorrido, que con sus consejos y valores he logrado cumplir este sueño.

De igual manera agradecer a mi tía Vilma que desde el dia que me quede si mi madre nos ha cuidado con todo su amor, gracias de todo corazón por todo su cariño, los consejos y los valores inculcados hacia mis hermanas (os)

A mis hermanas Paola, Dayanara y mi hermano Geraldy que han sido mi gran apoyo, y mis sobrinos que son mi inspiración para seguir avanzando Zair, Jesús y el más pequeño Noé.

A mi familia gracias por estar siempre pendiente de mí, por sus sabios consejos, fueron ustedes mi motivación para no darme por vencida en este camino que recorrido, gracias por ser una familia unida y aguerrida, me han dado principios para poner empeño en mi meta y sueño.

YAJAIRA

AGRADECIMIENTO

En primer lugar agradezco a Dios por permitirme cumplir este sueño, de igual manera a mi madre pues con su bendición desde el cielo ha sido esto posible.

Agradezco a mi padre, mis hermanas y hermanos y mis abuelitos por el apoyo que me han brindado y por el esfuerzo para darme y sacarme adelante, y mis sobrinos quienes han sido mi compañía y mi inspiración todo este tiempo.

Agradezco a toda mi familia por estar siempre pendientes de mí, por su compresión y su apoyo incondicional que me brindaron este sueño.

Al Ing. Marco Chuiza y al Ing. Diego Burbano por su enriquecedora contribución para la culminación de este trabajo.

A mis amigas (os) quienes me han apoyado con sus palabras de aliento para seguir adelante con la ejecución de este trabajo y de esta manera alcanzar una de mis metas.

ABREVIATURAS

Área libre Al

 C_L

Carga de superficie As

В Base del canal

Concentración óptima del químico Cop C_1 Concentración del químico (ppm) Concentración del químico (ppm) $\boldsymbol{\mathcal{C}}_2$ Concentración de oxígeno disuelto

C'swConcentración de saturación de oxígeno disuelto

Concentración de saturación de oxígeno en el agua C_{ST}

dmax Longitud de la barra Diámetro del tanque Dta Dr Diámetro de la rejilla di Diámetro del impulsor

DQO Demanda Química de Oxigeno

BDO Demanda Bioquímica de Oxigeno

 \mathbf{E} Eficiencia G Gradiente

Tirante del agua Η Ha Altura del tirante Hc Pérdida de carga Altura del tanque Hta

Hi Altura del impulsor al fondo

I Aporte de infiltración

Coeficiente de consumo diario K_1

Coeficiente de degradación endógena K_d

Longitud de las paletas montadas al impulsor Lp

Longitud de las paletas Lpi

Lb Longitud de barras

N Velocidad de rotación

P Potencia del difusor

Pa Población actual

Peso requerido Pd

Ps Fracción de sólidos

Anchura de las palas del impulsor q

Q prom Caudal promedio

Q medio Caudal medio

Qmax Caudal máximo horario

RH Radio hidráulico
R Remoción del SST

S Diámetro central del difusor

So Concentración de DBO en el afluente
 S Concentración de DBO en el efluente

Sst Peso específico relativo del fango

T Temperatura de funcionamiento (°C)

Thr Tiempo de retención

TULSMA Texto unificado de legislación secundaria de medio ambiente

V Volumen del tanque de decantación

V₂ Volumen consumido de la solución patrón para el tratamiento

V₁ Volumen consumido de la solución patrón para cada litro de agua

Ws Peso de los sólidos secos Kg/día

ρw Densidad del agua

A Ángulo de inclinación

Ø Diámetro del sedimentador

β Factor de corrección para la salinidad

TABLA DE CONTENIDO

RESU	J MEN	xvi
CAPÍ	TULO I	1
1.	DIAGNÓSTICO Y DEFINICIÓN DEL PROBLEMA	1
1.1	Identificación del problema	1
1.2	Justificación del proyecto	2
1.3	Línea base del Proyecto	2
1.3.1	Reconocimiento del lugar de la investigación	2
1.3.2	Métodos y Técnicas	3
1.3.3	Determinación del Caudal	4
1.3.4	Determinación de la temperatura IN SITU	10
1.3.5	Método de muestreo	10
1.3.6	Características del agua residuales	11
1.3.7	Pruebas de tratabilidad	15
1.4	Beneficiarios directos e indirectos	19
1.4.1	Directos	19
1.4.2	Indirectos	19
CAPÍ	TULO II	20
2.	OBJETIVOS DEL PROYECTO	20
2.1	Objetivo general	20
2.2	Objetivos específicos	20
CAPI	TULO III	21
3.	ESTUDIO TÉCNICO.	21
3.1	Localización del proyecto	21
3.1.1	Localización geográfica	21
3.1.2	Clima de la Zona	22
3.1.3	Características geomorfológicas de la zona	22
3.1.4	Hidrología	23
3.2	Ingeniería de proyecto	23
3.2.1	Dimensionamiento de la planta de tratamiento de las aguas residuales	23
3.2.2	Resultados:	58
3.3	Sistema de tratamiento de las aguas residuales propuesto	65
3.4	Requerimientos de tecnología, equipos y maquinaria	66
3.4.1 y <i>bact</i>	Requerimiento de equipos y métodos para realizar la caracterización físio	-

	Requerimientos de materiales y equipos para el muestreo y medición de cauda esidual.	
3.5	Análisis de costo/beneficio del proyecto	68
3.6	Análisis	70
CONC	LUSIONES	72
RECO	MENDACIONES	73
BIBLIC	OGRAFÍA	74

ÍNDICE DE TABLAS

Tabla 1-1: Métodos utilizados en la caracterización del agua residual.	4
Tabla 2-1: Aforo de caudal de agua residual semana 1	6
Tabla 3-1: Aforo de caudal de agua residual semana 2	7
Tabla 4-1: Aforo de caudal del agua residual semana 3	8
Tabla 5-1: Aforo de caudal del agua residual semana 4	9
Tabla 6-1: Promedio general del caudal durante 4 semanas:	10
Tabla 7-1: Medición de la temperatura IN SITU	10
Tabla 8-1: Recolección de muestras compuestas de agua residual.	11
Tabla 9-1: Características físicas, químicas y microbiológicas del agua residual	12
Tabla 10-1: Caracterización físico-química y microbiológica de agua residual.	13
Tabla 11-1: Relación entre parámetros DBO ₅ y DQO	15
Tabla 12-1: Parámetros para analizar el índice de biodegradabilidad DQO.	15
Tabla 13-1: Parámetros para analizar el índice de biodegradabilidad DBO5.	16
Tabla 14-1: Índice de biodegradabilidad relación DQO/DBO.	16
Tabla 15-1: Pruebas de tratabilidad mediante el test de jarras, (sulfato de aluminio)	17
Tabla 16-1: Pruebas de tratabilidad mediante el test de jarras, (policloruro de aluminio)	17
Tabla 17-1: Pruebas de tratabilidad mediante el test de jarras, (policloruro de aluminio con	l
sulfato de aluminio)	18
Tabla 18-3: Características de la localización de la parroquia Santa Fe de Galán de cantón	
Guano.	21
Tabla 19-3: El sistema de coordenadas UTM WGS84 Zona.	23
Tabla 20-3: Información típica de rejas de barras de limpieza manual y mecánica	26
Tabla 21-3: Información típica para el diseño del canal.	30
Tabla 22.3 Coeficiente de rugosidad de Manning	31
Tabla 23-3: Criterios para el diseño de sedimentador circular.	33
Tabla 24-3: Criterios para el diseño de un sedimentador circular	33
Tabla 25-3: Valores de las constantes empíricas a y b	36
Tabla 26-3: Propiedades de los coagulantes y floculantes	37
Tabla 27-3: Parámetros de diseño del tanque de coagulación	37
Tabla 28-3: Valores del gradiente de velocidad del fluido para el diseño de las paletas	41
Tabla 29-3: Valores de K para las necesidades de energía de mezclado.	44
Tabla 30-3: Parámetros de diseño del floculador	45
Tabla 31-3: Valores recomendados de carga superficial de acuerdo a la suspención química	a46
Tabla 32-3: Criterios para el diseño del sedimentador de flujo horizontal	49

Tabla 33-3: Parámetros de diseño de placas planas de asbestos – cemento	50
Tabla 34-3: Parámetros que no cumplen con la Norma TULSMA	58
Tabla 35-3: Resultados de la tratabilidad de agua tratada dentro de la norma vigente	58
Tabla 36-3: Resultados de la validación de la caracterización físicos - químicos y	
microbiológicas del agua tratada	59
Tabla 37-3: Resultados de la caracterización y pruebas de tratabilidad representado en	
porcentaje de remoción.	60
Tabla 38-3: Determinación del caudal máximo horario.	60
Tabla 39-3: Dimensionamiento de sistema de rejillas.	61
Tabla 40-3: Dimensionamiento del canal.	61
Tabla 41-3: Dimensionamiento del tanque de sedimentación primaria	61
Tabla 42-3: Dimensionamiento del tanque de coagulación	62
Tabla 43-3: Dimensionamiento de las paletas.	62
Tabla 44-3: Dimensionamiento del tanque floculador	62
Tabla 45-3: Dimensionamiento del sedimentador de flujo horizontal	63
Tabla 46-3: Dimensionamiento de las eras de secado	63
Tabla 47-3: Dosificación de los químicos.	64
Tabla 48-3: Equipos, materiales y reactivos para realizar la caracterización físico – quím	ico y
microbiológico	66
Tabla 49-3: Parámetro, unidad y método de la caracterización físico del agua	66
Tabla 50-3: Parámetro, unidad y método de la caracterización química del agua	67
Tabla 51-3: Parámetro, unidad y método de la caracterización microbiológico del agua	67
Tabla 52-3: Materiales de muestreo y recolección de Información	67
Tabla 53-3: Los equipos y materiales utilizados para la determinación del caudal se detal	la a
continuación:	68
Tabla 54-3: Determinación de los costos del sistema.	68
Tabla 55-3: Determinación del costo anual de sulfato de aluminio.	70
Tabla 56-3: Presunuesto referencial (costo de mantenimiento mensual)	70

ÍNDICE DE ECUACIONES

Ecuación 1-3 Cálculo del caudal doméstico (Metcalf&Eddy, 1995)	23
Ecuación 2-3 Cálculo del caudal Doméstico (Metcalf&Eddy, 1995)	24
Ecuación 3-3 Cálculo del caudal medio diario (RAS, 2000)	24
Ecuación 4-3 Cálculo del caudal máximo horario (RAS, 2000)	25
Ecuación 5-3 Cálculo del Factor de mayoración (Adimencional) (RAS, 2000)	25
Ecuación 6-3 Cálculo del área libre a partir del caudal de diseño y la velocidad mínima.	
(Crites&Tchobanoglous, 2014)	27
Ecuación 7-3 Cálculo del tirante del agua del canal (Allende, 1994)	27
Ecuación 8-3 Cálculo de la altura del canal (Crites&Tchobanoglous, 2014)	27
Ecuación 9-3 Cálculo de la longitud de barras (Crites&Tchobanoglous, 2014)	28
Ecuación 10-3 Cálculo del número de barras (Crites&Tchobanoglous, 2014)	28
Ecuación 11-3 Cálculo de la longitud sumergida de la barra (Crites&Tchobanoglous, 2014)2	29
Ecuación 12-3 Cálculo Pérdida de carga (Metcalf&Eddy, 1995)	29
Ecuación 13-3 Cálculo de radio hidráulico para un canal rectangular (Metcalf&Eddy, 1995)3	31
Ecuación 14-3 Cálculo de la velocidad del tratamiento (Ecuación de Manning)	31
Ecuación 15-3 Cálculo de la carga de superficie (Crites&Tchobanoglous, 2014)	33
Ecuación 16-3 Cálculo del diámetro del sedimentador (Allende, 1994)	34
Ecuación 17-3 Cálculo del radio del sedimentador (Metcalf&Eddy, 1995)	34
Ecuación 18-3 Cálculo del volumen de sedimentador (Crites&Tchobanoglous, 2014)	34
Ecuación 19-3 Cálculo del tiempo de retención hidráulica (Crites&Tchobanoglous, 2014)3	35
Ecuación 20-3 Tasa de remoción de DBO5, es realiza mediante la siguiente ecuación:	
(Crites&Tchobanoglous, 2014)	36
Ecuación 21-3 Tasa de remoción de SST, es realiza mediante la siguiente ecuación	
(Metcalf&Eddy, 1995)	36
Ecuación 22-3 Cálculo del volumen del tanque de coagulación (Allende, 1994)	38
Ecuación 23-3 Cálculo del diámetro de la cámara de coagulación (Rojas, 2014)	38
Ecuación 24-3 Cálculo de la profundidad de la cámara de mezcla (Metcalf&Eddy, 1995)3	38
Ecuación 25-3 Cálculo del diámetro de la turbina (Crites&Tchobanoglous, 2014)	39
Ecuación 26-3 Cálculo de la anchura de los deflectores (Metcalf&Eddy, 1995)	39
Ecuación 27-3 Gradiente de velocidad del fluido (Metcalf&Eddy, 1995)	11
Ecuación 28-3 Potencia disipada de la mezcla (Metcalf&Eddy, 1995)	11
Ecuación 29-3 Cálculo del diámetro del impulsor (Metcalf&Eddy, 1995)	12
Ecuación 30-3 Cálculo de la altura del impulsor respecto al fondo (Metcalf&Eddy, 1995)4	12
Founción 31-3 Cálculo de la anchura de las nalas del impulsor (Metcalf&Eddy, 1995)	13

Ecuación 32-3 Cálculo de la longitud de las paletas del impulsor montadas en el disco central
(Metcalf&Eddy, 1995)
Ecuación 33-3 Cálculo de la longitud de las paletas del impulsor (Metcalf&Eddy, 1995)43
Ecuación 34-3 Cálculo del diámetro del disco central (Metcalf&Eddy, 1995)43
Ecuación 35-3 Cálculo de la velocidad de rotación, N (Metcalf&Eddy, 1995)44
Ecuación 36-3: Cálculo del área superficial (Allende, 1994)
Ecuación 37-3: Cálculo del diámetro del floculador (Metcalf&Eddy, 1995)46
Ecuación 38-3: Cálculo del radio del floculador (Metcalf&Eddy, 1995)
Ecuación 39-3: Cálculo del volumen de floculador (Crites&Tchobanoglous, 2014)47
Ecuación 40-3 Gradiente de velocidad del fluido k (Crites&Tchobanoglous, 2014)47
Ecuación 41-3 Potencia disipada de la mezcla (Crites&Tchobanoglous, 2014)48
Ecuación 42-3 Cálculo del área del sedimentador As (Metcalf&Eddy, 1995)49
Ecuación 43-3 Cálculo de la velocidad promedio de flujo (Metcalf&Eddy, 1995)49
Ecuación 44-3 Cálculo de la longitud del sedimentador (Crites&Tchobanoglous, 2014)50
Ecuación 45-3 Cálculo de la longitud relativa del sedimentador (Crites&Tchobanoglous,
2014)
Ecuación 46-3 Cálculo del tiempo de retención en las placas (Crites&Tchobanoglous, 2014).5
Ecuación 47-3 Cálculo del tiempo de retención en el tanque sedimentador (Metcalf&Eddy,
1995)
Ecuación 48-3 Cálculo del Número de Reynolds (Crites&Tchobanoglous, 2014)5
Ecuación 49-3 Cálculo de la longitud de transición (Crites&Tchobanoglous, 2014)52
Ecuación 50-3 Longitud relativa del sedimentador de flujo horizontal en la longitud de
transición (Metcalf&Eddy, 1995)52
Ecuación 51-3: Cálculo de la velocidad de sedimentación crítica (Allende, 1994)53
Ecuación 52-3 Cálculo del número de placas por módulo (Crites&Tchobanoglous, 2014)53
Ecuación 53-3 Cálculo del volumen del sedimentador (Crites&Tchobanoglous, 2014)53
Ecuación 54-3 Cálculo de la volumen de lodos producidos (Crites&Tchobanoglous, 2014)54
Ecuación 55-3 Cálculo del área del lecho de secado (Crites&Tchobanoglous, 2014)54
Ecuación 56-3 Cálculo de la longitud del lecho de secado (Metcalf&Eddy, 1995)55
Ecuación 57-3 Cálculo del volumen del tanque para lodos (Metcalf&Eddy, 1995)55
Ecuación 58-3 Cálculo de la concentración del sulfato de aluminio (Rojas, 2014)56
Ecuación 59-3 Cálculo del peso de sulfato de aluminio (Rojas, 2014)56
Ecuación 60-3 Cálculo de la concentración del policloruro de aluminio PAC (Rojas, 2014)56
Ecuación 61-3 Cálculo del peso de PAC (Rojas, 2014)

ÍNDICE DE ILUSTRACIONES

Figura 1-1: Geográfica de la parroquia Santa Fe de Galán	22
Figura 2-3: Rejillas de limpieza manual	26
Figura 3-3: Factor de forma de barras para rejas	30
Figura 4-3: Tanque de decantación circular	32
Figura 5-3: Tanque de coagulación	37
Figura 6-3: Turbina de hojas planas	40
Figura 7-3: Tanque floculador	45
Figura 8-3: Sistema de tratamiento	65

RESUMEN

El presente proyecto técnico tiene como objetivo el diseño de la planta de tratamiento de aguas residuales para la parroquia Santa Fe de Galán del Cantón Guano, ya que dicha agua es descargada directamente al riachuelo (SN) y a los terrenos cultivables que se encuentran alrededor de la población, siendo un problema que debe ser atendido por la contaminación que provoca, mediante la caracterización físico - químico y microbiológico del agua residual donde se determinó: sulfuro, nitrógeno total, Demanda Bioquímica de Oxigeno (DBO), Demanda Química de Oxigeno (DQO), coliformes fecales, coliformes totales, sólidos suspendidos totales, aceites y grasas y tensoactivos son parámetros que se encontraban fuera de los límites que se tomó como referencia al permisibles de la norma, de tal manera biodegradabilidad que es el resultado de la caracterización de DBQ y la DQO que da como resultado un valor de 1,71 esto indica que la materia orgánica es moderadamente biodegradable permitiendo la selección de un tratamiento físico - químico, se empezó con pruebas de tratabilidad mediante test de jarras determinando los reactivos químicos que serán utilizados para tratar el agua, en este caso el sulfato de aluminio y Policloruro de Aluminio (PAC) fueron óptimos, de tal manera que la concentración del sulfato de aluminio es de 30,2 kg/dia y la concentración del PAC es de 50,4 kg/dia. La validación de parámetros físicos - químicos y microbiológicos del agua tratada dan como resultado: sulfuro 0,3 mg/l, nitrógeno total 40 mg/l, DBO 38 mg/l, DQO 90 mg/l, coliformes fecales ausencia, sólidos suspendidos totales 86 mg/l, aceites y grasas 24 mg/l y tensoactivos 0,46 mg/l, el sistema se establece de la siguiente manera: rejillas, canal de entrada rectangular, tanque de sedimentación, tanque de coagulación, tanque floculador, tanque de sedimentación secundario, paletas de agitación tipo turbina de 6 palas y eras de secado

Palabras claves: <INGENIERÍA Y TECNOLOGÍA QUÍMICA>, < TRATAMIENTO DE AGUAS RESIDUALES >; < TEXTO UNIFICADO LEGISLACIÓN SECUNDARIA DEL MINISTERIO DEL AMBIENTE >; < DEMANDA BIOQUÍMICA DE OXÍGENO (DBQ)> ; < DEMANDA QUÍMICA DE OXÍGENO (DBO)>

SUMMARY

The objective of this research was the design of the sewage treatment plant for the Santa Fe de Galán Parish, Guano Canton, since this water is discharged directly to the stream (SN) and to the cultivable land that is around the population, being a problem that must be addressed because of the pollution that it causes, by means of the physical - chemical and micro - logical characterization of the residual water where it was determined: sulfur, total nitrogen, Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), fecal coliforms, total coliforms, total suspended solids, oils and fats and surfactants are parameters that are outside the norm's permissible limits; in such a way that, the biodegradability index was taken as reference which is the result of the characterization of DBQ and the COD resulting in a value of 1.71, this indicates that the organic matter is moderately biodegradable allowing the selection of a treatment physical - chemical, it was started with treatability tests through jug test determining the chemical reagents that will be used to treat the water, in this case aluminum sulfate and aluminum polychloride (APC) were optimal. So that, the concentration of aluminum sulfate is of 30.2 kg / day, and the concentration of Aluminum Polychloride (APC) is 50.4 kg / day. Validation of physical - chemical and microbiological parameters of the treated water results in: sulfur 0.3 mg/1, total nitrogen 40 mg/1, BOD 38 mg/1, COD 90 mg/1, absence fecal coliforms, total suspended solids 86 mg/1, oils and fats 24 mg/1, and surfactants 0.46 mg/1, the system is established as follows: gratings, rectangular input channel, sedimentation tank, coagulation tank, floculator tank, secondary sedimentation tank, agitation blades type turbine of 6 blades and times of drying.

KEY WORDS: <CHEMICAL ENGINEERING AND TECHNOLOGY>, <SEWAGE TREATMENT>, < BIOCHEMICAL OXYGEN DEMAND (BOD) >, <CHEMICAL OXYGEN DEMAND (COD)>.

CAPÍTULO I

1. DIAGNÓSTICO Y DEFINICIÓN DEL PROBLEMA

1.1 Identificación del problema

Santa Fe de Galán es una parroquia rural perteneciente al Cantón Guano, situada en la provincia Chimborazo, según datos proporcionados por el Instituto Nacional de Estadísticas y Censos (INEC) en el año 2010 la parroquia se encuentra habitada por 1 673 familias siendo en el centro de la parroquia donde se localiza la población más extensa y además cuenta con 7 comunidades.

El cantón Guano cuenta con 11 parroquias 2 parroquias urbanas y 9 parroquias rurales donde se puede decir que la mayor parte las cabeceras parroquiales urbanas cuentan con el servicio de alcantarillado, este proyecto será de gran beneficio para la parroquia rural Santa Fe de Galán (Centro) ya que este sistema en la actualidad da un servicio a un 55% de las familias quedando afuera el 45% en especial las familias que se encuentran en los sectores dispersos, la información recopilada fue gracias al Plan de desarrollo y ordenamiento territorial Santa de Galán (Galán, 2016)

La Parroquia Santa Fe de Galán cuenta con un alcantarillado combinado con tubería de hormigón de 25 mm-km para todo el sistema, por donde las aguas pluviales y domésticas son captadas en un volumen aproximado diario de 0,54l/s, las mismas que son desembocadas a un riachuelo y a los terrenos cultivables que se encuentran en sus alrededores sin un previo tratamiento, razón por la cual durante varios años ha causado molestia por los olores que provienen de la degradación de materia orgánica, enfermedades de la piel, diarrea, entre otras, exponiendo a la población. La utilización inadecuada de estas aguas domésticas con lleva a que el recurso hídrico que beben cientos de personas se vea peligrosamente contaminada disminuyendo así su calidad del agua.

El Gobierno autónomo descentralizado del Cantón Guano a más de ser responsable de la administración, planificación, diseño, construcción, control, operación y mantenimiento de los sistemas de producción, distribución y comercialización de agua potable, es responsable de la conducción, regulación y disposición final de las aguas residuales y sus implicaciones en posibles contaminantes que pudieren presentarse en el trayecto del cuerpo receptor, por lo que el

GAD del Cantón Guano, vio la necesidad de dar solución a estos problemas, mediante la ejecución del presente trabajo técnico.

1.2 Justificación del proyecto

Debido que la parroquia Santa Fe de Galán no cuenta con tratamiento de aguas residuales y éstas se descargan directamente al riachuelo (SN) contaminando así a los drenajes menores del Rio Guano y a los terrenos cultivables tienen la necesidad de encontrar una solución para disminuir los contaminantes que se encuentran en el recurso hídrico.

Este problema puede ocasionar enfermedades como parasitosis y diarrea, la parroquia cuenta con un Sub Centro de Salud en la Cabecera Parroquial, donde me facilitaron información sobre las enfermedades más frecuentes, en los niños son problemas de desnutrición, diarrea y parásitosis, en los adultos debido a los cambios climáticos presentan gripe, desnutrición y parásitosis y en los adultos mayores se ha identificado problemas de infección respiratoria, parásitosis y reumatismo. (Galán, 2016)

Por este motivo se propone diseñar un sistema de tratamiento de aguas residuales para controlar el agua tratada que cumpla con la norma vigente del TULSMA, Acuerdo Ministerial Nº. 097 refórmese el Texto Unificado de Legislación Secundaria fue publicado el 30 de Julio del 2015 el proyecto trabajara con el ANEXO 1, Referente a la Norma de Calidad Ambiental y de las descargas de Efluentes de Recurso Agua, Tabla 10. Límites de descarga a un cuerpo de agua dulce; el cual beneficiará a los pobladores de la parroquia Santa Fe de Galán quienes se verán beneficiados al tener la seguridad de que el agua que estarán usando para los sectores de la agricultura se encontrará dentro de los estándares establecidos.

Siendo un proyecto totalmente viable cuenta con el Aval de la Empresa GAD Municipal del cantón Guano, la misma que apoya la investigación con recursos económicos, técnicos y humanos, desde el inicio hasta el final del mismo.

1.3 Línea base del Provecto

1.3.1 Reconocimiento del lugar de la investigación

Para efectuar este tipo de trabajo técnico se realizó un recorrido previo por la parroquia donde el objetivo era la identificación del lugar donde se realizó la toma de muestras y el monitoreo del caudal para trabajar, las autoridades de esta parroquia dieron a conocer que el sistema de

alcantarillado no abastece para toda la población y a la vez que se encuentra taponados algunas tuberías, por lo cual las aguas residuales domésticas y las pluviales recogidas en el transcurso del son descargadas directamente al riachuelo (SN) contaminando así a los drenajes menores del Rio Guano y a los terrenos cultivables que se encuentran a su alrededor, además se efectuó la identificación a la hora de hacer la evaluación que existen problemas para la recolección de residuos sólidos y líquidos ya que se encuentran desechados directamente sin ningún tipo de tratamiento previo.

1.3.2 Métodos y Técnicas

Para el desarrollo de este proyecto se va a considerar tres tipos de métodos; deductivo, inductivo y experimental, de tal manera que nos facilitará los conocimientos del estudio y desarrollo para el diseño de la planta de tratamientos de aguas.

1.3.2.1 Métodos

> Método deductivo

En el presente trabajo técnico, este método se enfoca en conocer el lugar de la investigación para realizar las diferentes mediciones de los caudales, caracterización del agua residual, con el propósito de diseñar un sistema de tratamiento de manera que nos facilite el analisis y las posibles soluciones a los problemas de aguas residuales generadas en la parroquia. (Alasino, 2014)

Método cuasi-experimental

El método cuasi-experimental es empleado para la toma de muestras representativas y llevándoles al laboratorio para la caracterización físico – químico y microbiológico del agua residual recogidas de la descarga para alcanzar nuestros objetivos y poder determinar que tratamiento es adecuado para la descontaminación de dichas aguas y luego que el agua pase por todo el sistema cumpla Norma del Texto Unificado Legislación Secundaria del Ministerio del Ambiente (REGISTRO OFICIAL, ACUERDO MINISTERIAL N. 097 TABLA 10): Limites de descarga a un cuerpo de agua dulce. (Alasino, 2014)

1.3.2.2 Técnicas

Para la ejecución de este proyecto se basaron en las normas y técnicas que se encuentran establecidas en el manual de procedimientos técnicos del laboratorio de calidad del agua de la

facultad de Ciencias a cargo de la Dra. Gina Álvarez, fundamentados en los Métodos Estandarizados APHA – 2005(American Public Health Association) y Standard Methods for de Examination of Water and Wastewater, especificados en la última edición y el manual de Análisis de Agua, Métodos HACH.

Tabla 1-1: Métodos utilizados en la caracterización del agua residual.

Parámetro	Método
Conductividad eléctrica	2510-B
Ph	4500-B
Solidos totales disueltos	2540-C
Turbiedad	2130-В
Nitritos	4500-NO2-B
Nitratos	4500-NO3-C
Fosfatos	4500-P-D
Sulfatos	4500-SO4-B
Sulfuro	4500-S2—E
Nitrógeno Amoniacal	4500-NN03-C
Nitrógeno Total Kjedahl	HACH 10072
Demanda Bioquímica de Oxigeno	5210-В
Demanda Química de Oxigeno	5220-C
Solidos totales	2540-A
Aceites y Grasas	5540- C
Tensoactivos	EPA 418 1
Coliformes Fecales	Microfiltración
Coliformes Totales	Microfiltración

Realizado por: Ramírez Yajaira, 2017

1.3.3 Determinación del Caudal

Para la determinación del caudal se utilizó el método volumétrico debido a que la parroquia no produce gran cantidad de agua residual, por esta razón se estableció dicho método lo cual seguimos los siguientes pasos: (Instituto de Hidrologia, 2007)

➤ Se realizó las respectivas aforaciones directas del agua residual en la parte de la descarga con la ayuda de un balde graduado de 10 litros de capacidad teniendo en cuenta el tiempo de llenado con el cronómetro.

- ➤ Las aforaciones se realizaron durante 4 semanas, se ejecutaron los días lunes, martes, miércoles, jueves en horas planificadas de 08H00 hasta 17H00 en un intervalo de una hora.
- ➤ Para determinar el caudal general se realizó la tabulación del promedio total de los caudales de las 4 semanas.

A continuación se presenta los datos obtenidos de los caudales durante las 4 semanas:

Tabla 2-1: Aforo de caudal de agua residual semana 1

				idai semana .								
		LUNES MARTES			MIERCOLES			JUEVES				
HORA	VOLUMEN(I)	TIEMPO (s)	CAUDAL(l/s)	VOLUMEN(I)	TIEMPO (s)	CAUDAL(1/s)	VOLUMEN(1)	TIEMPO (s)	CAUDAL(l/s)	VOLUMEN(l)	TIEMPO (s)	CAUDAL(l/s)
8:00	9,8	14,3	0,685	9,1	10,8	0,843	9,9	10,2	0,971	8,7	8,7	1,000
9:00	8,5	20,7	0,411	8,5	13,3	0,639	9,3	12,4	0,750	9,6	10,9	0,881
10:00	9,3	15,0	0,620	8,3	14,3	0,580	8,8	14,2	0,620	9,0	13,9	0,647
11:00	9,0	13,9	0,647	9,4	12,1	0,777	9,1	11,5	0,791	8,5	11,2	0,759
12:00	8,9	10,6	0,840	9,6	7,8	1,231	9,5	9,5	1,000	9,4	9,8	0,959
13:00	9,0	12,9	0,698	8,7	17,4	0,500	9,2	13,9	0,662	8,9	18,7	0,476
14:00	7,9	23,5	0,336	8,3	19,1	0,435	8,9	21,9	0,406	9,5	13,2	0,720
15:00	9,8	15,8	0,620	8,9	13,6	0,654	8,4	9,8	0,857	9,8	15,1	0,649
16:00	8,7	12,1	0,719	9,0	21,5	0,419	9,0	7,6	1,184	8,6	10,4	0,827
17:00	9,5	9,4	1,011	9,4	11,3	0,832	9,5	5,9	1,610	9,1	7,3	1,247
		Promedio	0,659		Promedio	0,691			0,885		promedio	0,816
		Máximo	1,011			1,231			1,610			1,247
		Minimo	0,336			0,419			0,406			0,476
	9,0	14,8		8,9	14,12		9,2	11,69		9,1	11,92	
						promedio de	la semana					
						0,763						

Tabla 3-1: Aforo de caudal de agua residual semana 2

HORA				MARTES			MIERCOLES			JUEVES		
	VOLUMEN(I)	TIEMPO (s)	CAUDAL(l/s)	VOLUMEN(1)	TIEMPO (s)	CAUDAL(l/s)	VOLUMEN(l)	TIEMPO		VOLUMEN(l)	TIEMPO (s)	CAUDAL(l/s)
8:00	8,5	10,3	0,825	8,0	9,3	0,860	9,0	8,9	1,011	9,9	9,1	1,088
9:00	9,0	6,7	1,343	8,8	12,8	0,688	9,3	12,4	0,750	9,4	18,3	0,514
10:00	9,1	9,8	0,929	8,3	13,3	0,624	8,5	10	0,850	8,3	15,8	0,525
11:00	9,8	12,3	0,797	8,6	10,1	0,851	8,9	9,7	0,918	8,1	12,7	0,638
12:00	8,7	7,6	1,145	8,5	8,5	1,000	9,9	6	1,650	9,3	6,9	1,348
13:00	9,3	15,4	0,604	9,7	15,2	0,638	9,5	14,2	0,669	9,9	18,4	0,538
14:00	9,6	12,0	0,800	9,3	11,6	0,802	8,6	18,6	0,460	9,0	14,4	0,625
15:00	8,7	11,2	0,777	8,5	19,1	0,445	8,9	10,5	0,848	8,5	11,5	0,739
16:00	9,9	10,7	0,925	9,8	9,8	1,000	8,0	9,9	0,808	8,0	9,8	0,816
17:00	8,8	7,8	1,128	9,0	5,7	1,579	9,3	7,8	1,192	8,6	6,7	1,284
		Promedio	0,927		promedio	0,849			0,916		promedio	0,811
		Máximo	1,343			1,579			1,650			1,348
		Minimo	0,604			0,445			0,460			0,514
	9,1	10,4		8,9	11,54		9,0	10,8		8,9	12,36	
					promedio de la semana							
	a nam Damíroz V					0,876						

Tabla 4-1: Aforo de caudal del agua residual semana 3

	TITTION GO CACAGA COT AGUAL TESTAGA A TITTION GO CACAGA COT AGUAL TESTAGA COT AGUA											
HORA		LUNES			MARTES]	MIERCOLES	3		JUEVES	
	VOLUMEN(1)	TIEMPO (s)	CAUDAL(1/s)	VOLUMEN(1)	TIEMPO (s)	CAUDAL(l/s)	VOLUMEN(1)	TIEMPO (s)	CAUDAL(1/s)	VOLUMEN(1)	TIEMPO (s)	CAUDAL(l/s)
	(i)	(S)	01102112(10)	(i)	1123111 0 (6)	CTCDTE(i, b)	, ozemz. (i)		CITO DI IL(II 0)	(i)	(5)	0.102.12(2.0)
8:00	9,5	12,5	0,760	9,4	8,6	1,093	9,9	9,8	1,010	8,6	10,9	0,789
9:00	8,3	12,0	0,692	8,5	9,8	0,867	9,3	13,5	0,689	8,9	9,8	0,908
10:00	9,5	10,8	0,880	9,4	11	0,855	8,5	11,9	0,714	8,0	6,7	1,194
11:00	10,0	9,6	1,042	8,9	10,8	0,824	8,9	10,3	0,864	9,0	8,9	1,011
12:00	9,2	8,0	1,150	9,0	9,4	0,957	9,5	5,8	1,638	9,5	7,6	1,250
13:00	9,5	12,7	0,748	10,0	11,5	0,870	9,9	9,8	1,010	8,5	12,8	0,664
14:00	8,3	11,8	0,703	8,5	13	0,654	8,4	12,1	0,694	8,0	12	0,667
15:00	9,0	12,9	0,698	9,6	12,2	0,787	9,3	14,5	0,641	8,4	15,6	0,538
16:00	9,4	15,5	0,606	8,3	13,8	0,601	8,7	8,7	1,000	9,3	11,5	0,809
17:00	8,5	9,1	0,934	9,0	5,6	1,607	9,0	5,6	1,607	9,5	8,1	1,173
		Promedio	0,821		Promedio	0,912			0,987		promedio	0,900
		maximo	1,2			1,607			1,638			1,250
		Minimo	0,606			0,601			0,641			0,538
	9,1	11,5		9,1	10,57		9,1	10,2		8,8	10,39	
						promedio de	la semana					
						0,905						

Tabla 5-1: Aforo de caudal del agua residual semana 4

HORA		LUNES	I		MARTES	I]	MIERCOLES	3		JUEVES	I
	VOLUMEN(1)	TIEMPO (s)	CAUDAL(1//s)	VOLUMEN(1)	TIEMPO (s)	CAUDAL(1/s)	VOLUMEN(1)	TIEMPO (s)	CAUDAL(1/s)	VOLUMEN(1)	TIEMPO (s)	CAUDAL(l/s)
8:00	8,9	9,8	0,908	8,7	10,2	0,853	8,8	10,1	0,871	8,8	5,9	1,492
9:00	9,9	10,6	0,934	8,2	11,9	0,689	8,5	15,1	0,563	8,4	9,8	0,857
10:00	9,5	8,7	1,092	8,9	12,8	0,695	8,0	11,4	0,702	8,0	10,6	0,755
11:00	9,9	9,1	1,088	9,6	9,8	0,980	9,8	12,8	0,766	8,3	12,3	0,675
12:00	9,6	7,8	1,231	8,0	9,5	0,842	9,3	4,7	1,979	9,9	9,7	1,021
13:00	8,7	9,9	0,879	9,5	10,8	0,880	9,5	10	0,950	9,5	9,4	1,011
14:00	9,3	8,7	1,069	9,3	12,3	0,756	9,8	13,3	0,737	9,3	10,5	0,886
15:00	8,4	9,7	0,866	9,0	15,4	0,584	8,3	9,8	0,847	8,9	14,3	0,622
16:00	9,1	5,6	1,625	9,3	10,9	0,853	9,0	8,7	1,034	9,0	10,4	0,865
17:00	9,8	5,1	1,922	8,5	9,6	0,885	9,9	10,7	0,925	9,5	8,7	1,092
		Promedio	1,161		promedio	0,802		promedio	0,937		promedio	0,927
		Máximo	1,922			0,980			1,979			1,492
		9	0,866			0,584			0,563			0,622
	9,3	8,5		8,9	11,32		9,1	10,66		9,0	10,16	
						promedio de	la semana					
	nam Damíraz V	2015				0,957						

Tabla 6-1: Promedio general del caudal durante 4 semanas:

PROMEDIO GENERAL (1/s)		
SEMANA 1	0,763	
SEMANA 2	0,876	
SEMANA 3	0,905	
SEMANA 4	0,957	
Promedio.	0,875	

1.3.4 Determinación de la temperatura IN SITU

Para la medición de la temperatura de las muestran fueron tomadas por una semana con un termómetro de mercurio de 50 ° C

Tabla 7-1: Medición de la temperatura IN SITU

Muestra	1	2	3	4	5	6	7
Temperatura	14,1	15,3	14	13,6	15,1	14,7	15,3
°C							

Realizado por: Ramírez Yajaira, 2017

1.3.5 Método de muestreo

La ejecución del muestreo del agua residual es una actividad que se realiza con el propósito de identificar la composición de dicha agua, por tal motivo es necesario que la muestra tomada sea realmente representativa. (RAS, 2000)

1.3.5.1 Procedimiento de la recolección de muestras

- ✓ El método de la recolección de muestras es manual debido a que la descarga es pequeña.
- ✓ Para la caracterización del agua residual se debe realizar por lo menos cinco jornadas de medición y muestreo por día, el muestreo debe realizar en diferentes días por lo menos unos 3 días como mínimo, para conocer en qué días existe más contaminación.
- ✓ Las recolección de muestras son compuestas ya que una solo muestra simple puede ser insuficiente cuando se desea un cierto nivel de confianza
- ✓ Para los análisis físico químico deben recolectarse 2 litros de agua para los ensayos del laboratorio, no se debe utilizar la misma muestra para los análisis microbiológicos ya que los método de muestreo y manipulación son diferentes, por lo que necesario recolectar dos muestras diarias.

- ✓ Las muestras son recolectadas en recipientes de vidrio de ámbar para realizar la caracterización físico y química del agua residual.
- ✓ Recipientes de ámbar resistentes al calor para la caracterización microbiológica.

Antes de empezar el plan de muestreo se realizó el reconocimiento del lugar de la descarga, se lo realiza durante todo el día desde las 08H00 hasta 17H00 durante 4 días, que son descritas a continuación:

Tabla 8-1: Recolección de muestras compuestas de agua residual.

DIAS	MUESTRAS COMPUESTA	HORA	LUGAR
20/02/2017	2	8:00 A 17:00	Descarga al riachuelo
22/02/2017	2	8:00 A 17:00	Descarga al riachuelo
02/03/2017	2	8:00 A 17:00	Descarga al riachuelo
07/03/2017	2	8:00 A 17:00	Descarga al riachuelo
Total de muestras	8		

Realizado por: Ramírez Yajaira, 2017

1.3.6 Características del agua residuales

1.3.6.1 Agua residual

En la Norma de Calidad Ambiental y Descarga de Efluentes: describe a las aguas residuales como aguas de composición variada provenientes de uso doméstico, de locales públicos, institucionales, industriales agrícolas, pecuarios o de otra índole y por tal motivo ha sufrido una degradación en su calidad original.

1.3.6.2 Características físico- químico y microbiológico de las aguas residuales

Las aguas residuales presentan características únicas por lo que es necesario realizar la evaluación de cada parámetro en el laboratorio de esta manera conoceremos los parámetros físicos - químicos y microbiológicos que se encuentran están presentes en el agua.

Tabla 9-1: Características físicas, químicas y microbiológicas del agua residual.

1 abla 9-1: Cara	Tabla 9-1: Características físicas, químicas y microbiológicas del agua residual. CARACTERISTICAS FÍSICAS					
DDIJEDA						
PRUEBA	ABREVIAUTUR	A	USO O SIGNIFICADO DEL RESULTADO			
Turbiedad	UNT		Evaluar la calidad del agua residual tratada			
Temperatura	°C		Importante en el diseño y operación de			
			instalaciones de tratamiento con procesos			
			biológico.			
Sólidos totales	SDT(ST-SST)		Estimar la reutilización potencial del agua			
disueltos			residual			
Sólidos			Determinar aquellos solidos que se sedimentan			
sedimentables	;		por gravedad en un tiempo especifico			
Sólidos	SST		Determinar la clase de proceso u operación más			
suspendidos			apropiada para su tratamiento			
totales						
Sólidos totales	S ST		Determinar la clase de proceso u operación más			
			apropiada para su tratamiento			
Conductividad	l CE		Estimar si el efluente tratado es apto para uso			
eléctrica			agrícola			
Olor	NUO		Determina si el olor es un problema			
	CARACTERISTIC	CAS (QUÍMICAS INORGÁNICAS			
Amonio libre						
	NH_4^+					
Nitrógeno	N-org					
orgánico						
Nitrógeno	$NTK(N \text{ org}+NH_4^+)$					
total Kjeldahl		Us	ado como medida de nutrientes y para establecer			
Nitritos	NO ₂	el	grado de descomposición del agua residual, las			
Nitratos	NO ₃	for	rmas oxidadas pueden tomarse como una medida			
Fosforo	P inorg	d	el grado de oxidación. Usando como medida de			
inorgánico			nutrientes			
Fosforo total	FT	1				
Fosforo	P org	1				
organico						
Ph	pH=log 1/(H ⁺)	1				
Sulfatos	SO ₄ ²⁻		Estimar la formación potencial de olores y de			
	<u> </u>					

		tratamiento apropiado de lodos residuales				
	CARACTERISTICAS QUÍMICAS ORGÁNICAS					
Demanda	DBO_5	Medida de la cantidad de oxigeno requerido para				
biológica de		estabilizar biológicamente un residuo				
oxígeno						
Demanda	DQO	Usada con frecuencia como sustituto de la prueba de				
química de		DBO				
oxígeno						
	CARACTERISTICAS BIOLOGICAS					
Organismos	NMP(número más	Estimar la presencia de bacterias patógenas y la				
coliformes	probable)	eficiencia del proceso de desinfección.				

FUENTE: (Crites&Tchobanoglous, 2014) **Realizado por:** Ramírez Yajaira, 2017

1.3.6.3 Caracterización Físico - Químico y Microbiológico del agua residual

La caracterización físico – químico y microbiológico del agua residual se lo realizaron en base a las muestras compuestas obtenidas durante el transcurso del día, fueron analizadas en el Laboratorio de control de agua de la Facultad de Ciencias de la ESPOCH y en el Laboratorio de la UNACH, para asegurar que los parámetros cumplan con la norma del Texto Unificado Legislación Secundaria del Ministerio del Ambiente (REGISTRO OFICIAL, ACUERDO MINISTERIAL N. 097 TABLA 10): Limites de descarga a un cuerpo de agua dulce.

Tabla 10-1: Caracterización físico-química y microbiológica de agua residual.

Tabla 10-1: Carac	DIAS DE MONITOREO							
Parámetro	Símbolo	Unidad	limite permisible	20/02/17	22/02/17	01/03/17		
Temperatura	Т	°C	condición natural ± 3	19	17,2	18		
Potencial de Hidrogeno	рН	-	6. – 9	7,62	7,67	8,02		
Turbiedad	-	UNT		69,5	68,5	80,1		
Solidos Totales Disueltos	STD	mg/l		440	460	620		
Conductividad eléctrica	-	us/cm		820	900	1150		
Nitratos	NO ₃	mg/l		12	21	33		
Nitritos	NO_2^-	mg/l		13	12	20		
Fosfatos	PO ₄ ³⁻	mg/l		16,6	14	36		

Sulfatos	SO ₄ ²⁻	mg/l	1000	320	170	180
Sulfuro	S ²⁻	mg/l	0,5	5	5	5
Nitrógeno	NNH_3	mg/l	30	30		
Amoniacal						
Nitrógeno Total	N	mg/l	50	900		
Demanda	DBO_5	mg/l	100	256	280	
Bioquímica de						
Oxigeno						
Demanda Química	DQO	mg/l	200	455	462	
de Oxigeno						
Coliformes fecales	NMP	NMP/100ml	10000	32000		
Coliformes totales	NMP	NMP/100ml		21000		
Solidos	-	mg/l	130	389	160	210
suspendidos						
totales						
Solidos Totales	-	mg/l	1600	810	680	750
Aceites y grasas	Sus. Solubles	mg/l	30	46		
	en hexano					
Tensoactivos	Activas al azul	mg/l	0,5	18,2		
	de metileno					
Material flotante	visible		ausencia	visible	Visible	Visible

Fuente: TULSMA, 2015

Realizado por: Ramírez Yajaira, 2017

1.3.6.4 Indicadores de contaminación orgánica

La materia orgánica e inorgánica presente en las aguas residuales, nos permite determinar los procesos químicos y biológicos que vamos a utilizar en el tratamiento para este proyecto.

En la actualidad los métodos más utilizados en el laboratorio para medir las cantidades de materia orgánica presente en el agua residual son:

> Demanda bioquímica de oxígeno

Es un método usado con mayor frecuencia dentro del estudio del tratamiento de las aguas residuales, es indispensable que exista suficiente oxígeno disponible para que se realice la descomposición biológica aerobia de un desecho orgánico hasta que se haya consumido una gran parte del mismo.

> Demanda química de oxígeno

Es el método más usado para medir la cantidad de materia orgánica presente en las aguas residuales, de tal manera que es susceptible de ser oxidado químicamente con un agente

químico fuertemente oxidante en medio ácido, el Dicromato de Potasio proporciona excelente resultados.

Tabla 11-1: Relación entre parámetros DBO₅ y DQO

DQO	TIPO DE	TIPO DE TRATAMIENTO
$\overline{DBO_5}$	BIODEGRADABILIDAD	
<1.5	Muy biodegradable	Materia orgánica muy degradable y requiere de un tratamiento biológico.
1.5 <x<10< td=""><td>Biodegradable</td><td>Materia orgánica moderadamente biodegradable, un valor que permite cuestionar la selección de un tratamiento biológico.</td></x<10<>	Biodegradable	Materia orgánica moderadamente biodegradable, un valor que permite cuestionar la selección de un tratamiento biológico.
10<	Poco biodegradable	Materia orgánica poco degradable, es un hecho que será viable un tratamiento físico-químico.

FUENTE: (Cisterna&Peña, 2015)
Realizado por: Ramírez Yajaira, 2017

1.3.7 Pruebas de tratabilidad

1.3.7.1 Índice de Biodegradabilidad

El índice de biodegradabilidad nos representa el tratamiento adecuado que debemos poner en práctica para este tipo de proyecto, ya que puede ser un tratamiento físico – químico y biológico por esta razón realizaremos la siguiente relación:

Tabla 12-1: Parámetros para analizar el índice de biodegradabilidad DQO.

MUESTRAS COMPUESTAS DQO						
		TULSMA.TABLA				
FECHA	UNIDAD	RESULTADO	10			
20/02/2017	mg/l	455	200			
22/02/2017	mg/l	462	200			
	PROMEDIO	459				

Tabla 13-1: Parámetros para analizar el índice de biodegradabilidad DBO₅.

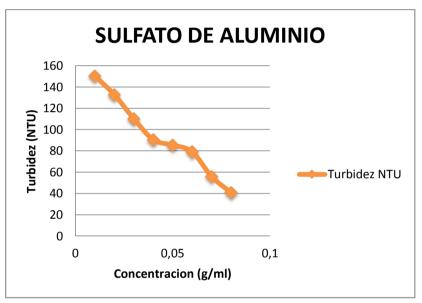
MUESTRAS COMPUESTAS DBO ₅						
TULSMA.TABL						
FECHA	UNIDAD	RESULTADO	10			
20/02/2017	$mg O_2/l$	256	100			
07/03/2017	mgO_2/l	280	100			
	PROMEDIO	268				

Tabla 14-1: Índice de biodegradabilidad relación DOO/DBO.

INDICE DE BIODEGRADABILIDAD				
Demanda Química de Oxígeno	459			
Demanda Bioquímica de Oxígeno	268			
	1,71			

Realizado por: Ramírez Yajaira, 2017

Para la determinación del índice de biodegradabilidad se realizó su análisis respectivo de cada una de las muestras compuestas para DQO y DBO_5 , de esa manera obtendremos un promedio general, en este caso nos da un valor de 1,71 esto nos indica que la materia orgánica es moderadamente biodegradable, un valor que nos permite seleccionar el tratamiento fisco químico.


1.3.7.2 Test de Jarras (dosificación)

Para el tratamiento del agua residual se realizó un proceso químico mediante el cual se analiza con dos reactivos como el policloruro de aluminio y el sulfato de aluminio, siendo más efectivo la mezcla de los dos reactivos químicos.

Al realizar las pruebas de test de jarras se analiza las concentraciones de los reactivos químicos, posteriormente se aplicó una mezcla lenta durante 10 minutos para que pueda formarse y decanten los floculós formados, finalmente se tomó las muestras para realizar sus respectivos análisis.

Tabla 15-1: Pruebas de tratabilidad mediante el test de jarras, (sulfato de aluminio)

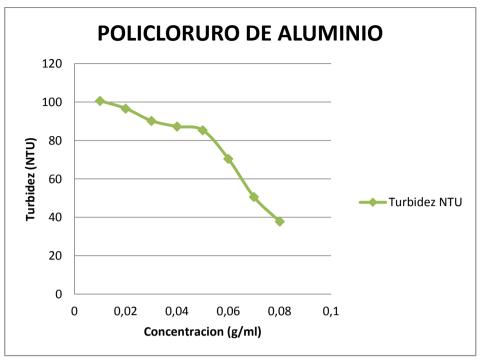

Concentració	Dosis (ml)	Tiempo de	Turbidez NTU	pН	
n (g/ml)		sedimentación(min)			
0,01	100	120	150,3	10,6	
0,02	90	100	132,8	10,1	
0,03	80	90	110,2	9,8	
0,04	70	80	90,5	9,5	
0,05	50	70	85,4	8,7	
0,06	30	60	79,1	8,3	
0,07	20	50	55,9	8	
0,08	10	40	40,7	7,8	

Gráfico 1-1: Tratabilidad del agua con sulfato de aluminio. **Realizado por:** Ramírez Yajaira, 2017

Tabla 16-1: Pruebas de tratabilidad mediante el test de jarras, (policloruro de aluminio)

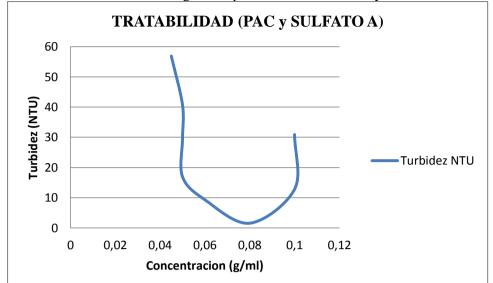

Concentración (g/ml)	Dosis (ml)	Tiempo de sedimentación(min)	Turbidez NTU	рН
0,01	100	100	100,7	9,9
0,02	90	90	96,7	9,5
0,03	80	80	90,3	9,1
0,04	70	70	87,3	8,6
0,05	50	60	85,4	8,2
0,06	30	50	70,5	7,9
0,07	20	40	50,6	7,5
0,08	10	30	37,8	7,4

Gráfico 2-1: Tratabilidad del agua con policloruro de aluminio **Realizado por:** Ramírez Yajaira, 2017

Tabla 17-1: Pruebas de tratabilidad mediante el test de jarras, (policloruro de aluminio con sulfato de aluminio)

Concentració	Concentración	Dosis	Dosis	Tiempo de	Turbidez	pН
n (PAC)	(Sulfato A)	PAC	Sulfato	sedimentación	NTU	
		(ml)	A (ml)	(min)		
0,05	0,045	150	100	90	56,9	9
0,05	0,05	120	80	80	40,7	8,7
	-					
0,06	0,05	100	70	60	29,6	7,8
0,06	0,05	90	60	50	16,9	7,5
0,07	0,06	80	50	40	9,3	7,2
0,08	0,08	50	30	30	1,55	7,1
0,09	0,1	80	50	25	12,8	6,9
0,09	0,1	90	70	20	30,9	6,5

Gráfico 3-1: Tratabilidad del agua con policloruro de aluminio y sulfato de aluminio.

Realizado por: Ramírez Yajaira, 2017

Mediante la tratabilidad del agua residual se determina la dosis óptima de los reactivos químicos, de esta manera la concentración del sulfato de aluminio al 0,08 utilizando 30 ml por cada litro de agua tratada, de igual manera con la mezcla de PAC al 0,08 utilizando 50 ml por cada litro de agua tratada.

1.4 Beneficiarios directos e indirectos

1.4.1 Directos

Los beneficiarios directos de este trabajo de titulación son la población de la parroquia Santa Fe de Galán, según datos proporcionados por el Instituto Nacional de Estadísticas y Censos (INEC) en el año 2010 la parroquia se encuentra habitada por 1 673 familia en las 7 comunidades, el cual se verá beneficiado la comunidad del centro que cuenta con 450 habitantes.

1.4.2 Indirectos

Los beneficiarios indirectos de este trabajo de titulación es el Gobierno Autónomo Descentralizado del Cantón Guano debido, por ser la institución quien debe construir la planta de tratamiento de aguas residuales para la parroquia Santa Fe de Galán.

CAPÍTULO II

2. OBJETIVOS DEL PROYECTO

2.1 Objetivo general

Diseñar una planta de tratamiento de aguas residuales para la Parroquia Santa Fe de Galán, del Cantón Guano.

2.2 Objetivos específicos

- > Establecer un plan de muestreo para la recolección adecuada de muestras representativas del agua residual.
- Caracterizar las aguas residuales que se descargan en el cuerpo receptor cercano a la población.
- Determinar los parámetros físicos, químicos y bacteriológicos del agua residual bajo la Norma TULSMA. Tabla10. Límites de descarga a un cuerpo de agua dulce
- ➤ Efectuar las pruebas respectivas de tratabilidad utilizando procedimientos adecuados que permitan clarificar el agua residual.
- Diseñar el sistema, basándonos en los distintos parámetros identificados en las pruebas de caracterización y realizando los cálculos correspondientes.
- Validar el diseño de la planta de tratamiento efectuando la caracterización final del agua tratada.

CAPITULO III

3. ESTUDIO TÉCNICO.

3.1 Localización del proyecto

3.1.1 Localización geográfica

El presente trabajo de investigación técnico de la parroquia Santa Fe de Galán se encuentra ubicada en la zona más alta del cantón Guano, a 40 km de la ciudad de Riobamba.

Tabla 18-3: Características de la localización de la parroquia Santa Fe de Galán de cantón Guano.

CARACTERISTICA	DESCRIPCION
Nombre del GAD	Gobierno Autónomo Descentralizado Parroquia Rural de
	SANTA FE DE GALAN
Fecha de creación de la	22 de enero de 1988
parroquia	
Población total	1673
Extensión	2637,5 На
Limites	- Al norte con: provincia de Tungurahua
	- Al sur con: las parroquias de Valparaíso, Ilapo y Chazo
	- Al este con: la parroquia Guanando
	- Al oeste con: la parroquia San Isidro
Rango altitudinal	Desde 2440-4160 metros de altura
Clima	Varía entre (6 a 18 °C)

FUENTE: Plan de desarrollo territorial y ordenamiento de la parroquia Santa Fe de Galán. **Realizado por:** Ramírez Yajaira, 2017

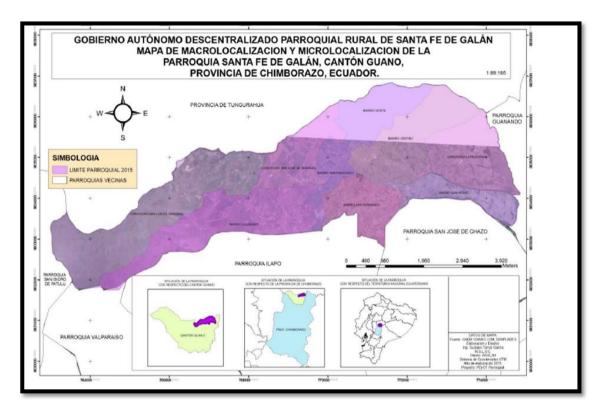


Figura 1-1: Geográfica de la parroquia Santa Fe de Galán.

FUENTE: Plan de desarrollo territorial y ordenamiento de la parroquia Santa Fe de Galán.

3.1.2 Clima de la Zona

La parroquia Santa Fe de Galán se encuentra a una altitud de 2390 msnm, en esta parroquia encontraremos suelos como pseudo-limoso muy negro al de 20% y menos 50% de retención de agua a sobre muestra sin desecación.

A la altura de 3969 metros está localizado suelos arenosos limonoso, con una densidad aparente de 1,2 a 1,3, profundo con arena fina a media con presencia de limo, mientras que el la altura de los 2440 encontramos suelos derivados de materiales piroclasticos, alofánicos, franco arenoso, gran capacidad de retención de agua saturación de bases <50% densidad aparente <0.85%, información recopilada del Plan Territorial y Ordenamiento de la parroquia Santa Fe de Gal (Galán, 2016)

3.1.3 Características geomorfológicas de la zona

La geología local de la parroquia está compuesta directa e indirectamente por formaciones geológicas y series de vulcano estratigráficas, detalladas a continuación: formación pisayambo, volcánicos del mulmul, huisla e igualata, formación sicalpa, Chimborazo y carihuairazo,

sedimentos del rio chambo y guano, lavas del Chimborazo, piroclastos del Chimborazo, piroclasticos del altar, deposito glacial, cangagua y depósitos aluviales. (Galán, 2016)

3.1.4 Hidrología

La parroquia Santa Fe de Galán del Cantón Guano, de la provincia de Chimborazo se encuentra ubicada en la demarcación hidrográfica del río Pastaza, en la cuenca del Pastaza, dentro del subcuenca del río Chambo y drenajes menor del río Guano.

Tabla 19-3: El sistema de coordenadas UTM WGS84 Zona.

X	Y	ALTITUD
773220	9829033	2390 msnm

Fuente: GADP Santa Fe de Galán, 2016 **Realizado por:** Ramírez Yajaira, 2017

3.2 Ingeniería de proyecto

3.2.1 Dimensionamiento de la planta de tratamiento de las aguas residuales

3.2.2.1 Cálculo de la población actual

El diseño de la planta de tratamiento de las aguas residuales, debe ser estimado una vida útil de al menos de 15 a 30 años, establecida por la norma INEN 005-9-1(1992), es por ello el GAD-CG sugiere que la vida útil de la planta sea de 20 años, esto quiere decir hasta el 2037.

Debido al último informe del índice del decrecimiento anual (%)- 0,012 (determinado en el Censo de Población y Vivienda en la parroquia Santa Fe de Galán del cantón Guano INEC 2010), se tomara en cuenta a la población actual que consta de **450 habitantes** con la que trabajaremos para el diseño de la planta de tratamiento de aguas residuales.

3.2.2.2 Cálculo de los caudales

Ecuación 1-3 Cálculo del caudal doméstico (Metcalf&Eddy, 1995)

Cálculo de la aportación de Infiltración

$$I = \frac{Q}{red.alc}$$

Ecuación 1

Datos:

I: Aportación de Infiltración $\left(\frac{m^3}{dia}\right)$

red. alc: Milímetros-Kilómetros de la red de alcantarillado (25 mm-Km) Dato del GADMCG Q: Caudal promedio de las 4 semanas de muestreo 75,6 $\left(\frac{m^3}{dia}\right)$

$$I = \frac{75,6 \left(\frac{m^3}{dia}\right)}{25}$$

$$I = 3.02 \left(\frac{m^3}{dia}\right)$$

Ecuación 2-3 Cálculo del caudal Doméstico (Metcalf&Eddy, 1995)

$$Q_D = Q - I$$

Ecuación 2

Datos:

 Q_D : Caudal doméstico $\left(\frac{l}{dia}\right)$

I: Aportación de Infiltración $\left(\frac{m^3}{dia}\right)$

Q: Caudal promedio de las 4 semanas de muestreo $\left(\frac{m^3}{dia}\right)$

$$Q_D = 75.6 \left(\frac{m^3}{dia}\right) - 3.02 \left(\frac{m^3}{dia}\right)$$

$$Q_D = 72,58 \left(\frac{m^3}{dia}\right)$$

Ecuación 3-3 Cálculo del caudal medio diario (RAS, 2000)

$$Q_{MD} = Q_D + Q_I + Q_C + Q_{IN}$$

Ecuación 3

Datos:

 Q_{MD} : Caudal medio diario $\left(\frac{m^3}{dia}\right)$

 Q_D : Caudal de aguas residuales doméstico $\left(\frac{m^3}{dia}\right)$

 Q_I : Caudal de aguas residuales industriales 34,56 $\left(\frac{m^3}{dia}\right)$ (Valor considerado del RAS 2000 TITULO D pg. 52)

 Q_C : Caudal de aguas residuales comerciales 43,20 $\left(\frac{m^3}{dia}\right)$ (Valor considerado del RAS 2000 TITULO D pg. 53)

 Q_{IN} : Caudal de aguas residuales institucionales 43,20 $\left(\frac{m^3}{dia}\right)$ (Valor considerado del RAS 2000 TITULO D pg. 53)

$$Q_{MD} = 72,58 \left(\frac{m^3}{dia}\right) + 34,56 \left(\frac{m^3}{dia}\right) + 43,20 \left(\frac{m^3}{dia}\right) + 43,20 \left(\frac{m^3}{dia}\right)$$

$$Q_{MD} = 193,54 \left(\frac{m^3}{dia}\right)$$

Ecuación 4-3 Cálculo del caudal máximo horario (RAS, 2000)

$$Qmax = F * Q_{MD}$$

Ecuación 4

Datos:

 Q_{max} : Caudal máximo horario $(\frac{l}{s})$

F: Factor de mayoración (Adimensional)

 Q_{MD} : Caudal medio diario 2,24 $(\frac{l}{s})$

Ecuación 5-3 Cálculo del Factor de mayoración (Adimencional) (RAS, 2000)

$$F = \frac{3,114}{Q_{MD}^{0,062}}$$

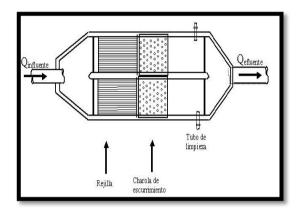
Ecuación 5

Datos:

F: Factor de mayoración (Adimensional)

 Q_{MD} : Caudal medio diario $(\frac{l}{dia})$

$$F = \frac{3,114}{2,24^{0,062}}$$
$$F = 2.97$$


$$Qmax = 2,97 * 2,24(\frac{l}{s})$$

$$Qmax = 6,64(\frac{l}{s})$$

3.2.2.3 Cálculo del sistema de rejillas

Criterios para el diseño de las rejillas

Son dispositivos formados por barras metálicas paralelas del mismo espesor y de igual separación, son destinados para la remoción de los sólidos gruesos en suspensión como cuerpo flotante, su finalidad es proteger los dispositivos de transporte de aguas residuales contra la obstrucción, como tuberías, bombas etc. (Crites&Tchobanoglous, 2014)

Figura 2-3: Rejillas de limpieza manual **Fuente:**((Metcalf&Eddy, 1995)

El cálculo para el sistema de rejillas se utilizará como referencia las rejas de limpieza manual, en este caso no deberá exceder de los 3 metros del largo de las rejillas, las barras que conforman esta reja no suelen exceder la anchura de 15mm y de profundidad 50mm, las barras van soldadas en el diseño estructural de la reja para evitar su rotura en caso que llegue a taponarse. (Metcalf & Eddy, 2017 pg. 510)

Tabla 20-3: Información típica de rejas de barras de limpieza manual y mecánica.

Características	Unidad	Limpieza manual	Limpieza mecánica
(tamaño de barra)	Cindud	Zimpicza manuar	Zimpieza mecamea
Ancho	mm	5 – 15	5 – 15
Profundidad	mm	25 – 37,5	25 – 37,5
Separación entre barras	mm	25 – 50	15 – 75
Pendiente en relación a la vertical	Grados	25 – 50	50 – 82,5
Velocidad de aproximación	m/s	0,3 – 0,6	0,3 – 0,9

Perdida de carga	mm	150	150
admisible			

Fuente: (Metcalf&Eddy, 1995)pg. 510) Realizado por: Ramírez Yajaira, 2017

Ecuación 6-3 Cálculo del área libre a partir del caudal de diseño y la velocidad mínima.

(Crites&Tchobanoglous, 2014)

$$Al = \left(\frac{Q_{max}}{v}\right)$$

Ecuación 6

Datos:

Al: Área libre (m^2)

 Q_{max} : Caudal máximo horario $(\frac{l}{dia})$

v: Velocidad aproximación $(\frac{m}{s})$ (valor considerado de la **tabla 20-3**)

$$Al = \left(\frac{0,007\left(\frac{m3}{s}\right)}{0,6\left(\frac{m}{s}\right)}\right)$$

$$Al = 0.01 m^2$$

Ecuación 7-3 Cálculo del tirante del agua del canal (Allende, 1994)

$$h = (\frac{Al}{b})$$

Ecuación 7

Datos:

h: Tirante del agua del canal m (m)

 A_i : Área libre (m^2)

b: Base de sección propuesta 0.5 m RAS 2000 TITULO E .Normas Ecuatorianas para estudio y Diseño de Sistema de Agua Potable y Disposición de Aguas Residuales

$$h = \frac{0.01}{0.5}$$

$$h = 0.02 m$$

Ecuación 8-3 Cálculo de la altura del canal (Crites&Tchobanoglous, 2014)

$$H = h + h_s$$

Ecuación 8

Datos:

H: Altura del canal (m)

h: Tirante del agua en el canal (m)

 h_s : Altura de seguridad (m); 0.5 m R18AS 2000 TITULO E .Normas Ecuatorianas para estudio y Diseño de Sistema de Agua Potable y Disposición de Aguas Residuales.

$$H = 0.02 + 0.5$$

$$H = 0.52 m$$

Ecuación 9-3 Cálculo de la longitud de barras (Crites&Tchobanoglous, 2014)

$$Lb = \frac{H}{sen\emptyset}$$

Ecuación 9

Datos:

Lb: Longitud de barra (m)

H: Altura del canal (m)

$$Lb = \frac{0.52 \, m}{sen(45)}$$

$$Lb = 0.73 m$$

Ecuación 10-3 Cálculo del número de barras (Crites&Tchobanoglous, 2014)

$$N *= \frac{b}{e+S}$$

Ecuación 10

Datos:

N *: Numero de barras

b: Ancho del canal (m); 0.5 m RAS 2000 TITULO E .Normas Ecuatorianas para estudio y Diseño de Sistema de Agua Potable y Disposición de Aguas Residuales

S: Separación entre las barras (m) (valor considerado de la tabla 20.3)

e: Espesor de las barras(m); 0,01 m TITULO E .Normas Ecuatorianas para estudio y Diseño de Sistema de Agua Potable y Disposición de Aguas Residuales.

$$N *= \frac{0.5}{0.01 + 0.025}$$

$$N *= 14.28 \cong 14 \ barras$$

Ecuación 11-3 Cálculo de la longitud sumergida de la barra (Crites&Tchobanoglous, 2014)

$$dmax = \frac{Qmax}{v * b}$$

Ecuación 11

Datos:

dmax: Longitud sumergida de la barra (m)

Q: Caudal máximo horario $(\frac{m^3}{s})$

v: Velocidad aproximación $(\frac{m}{s})$ (valor considerado de la **Tabla 20-3**)

b: Base de sección propuesta (m); 0.5 m RAS 2000 TITULO E .Normas Ecuatorianas para estudio y Diseño de Sistema de Agua Potable y Disposición de Aguas Residuales

$$dmax = \frac{0,007\left(\frac{m3}{s}\right)}{0,6\left(\frac{m}{s}\right)*0.5 m}$$

$$dmax = 0.02 m$$

Ecuación 12-3 Cálculo Pérdida de carga (Metcalf&Eddy, 1995)

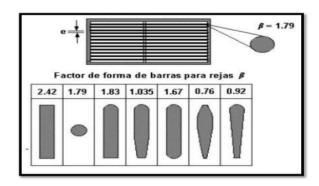
Las pérdidas producidas a través de las rejillas está en función de la velocidad de aproximación del fluido y de la velocidad de flujo a través de los abarrotes, para estimar las pérdidas de carga a través de una rejilla se realiza por la siguiente expresión (Metcalf&Eddy, 1995)

$$hc = \beta * \left(\frac{e}{W}\right)^{\frac{4}{3}} * \left(\frac{v^2}{2g}\right) * sen\emptyset$$

Ecuación 12

Datos:

hc: Pérdida de carga


W: Separación entre barra(m) (valor considerado de la **Tabla 20-3**)

e: Espesor máximo de las barra(m) 15 a 50 mm. TITULO E .Normas Ecuatorianas para estudio y Diseño de Sistema de Agua Potable y Disposición de Aguas Residuales

 $v^2/2g$: Carga de velocidad antes de la reja (m) Metcalf & Eddy. Ingeniería de aguas residuales .1995

sen : Ángulo de inclinación separación entre barra (45 °) Metcalf & Eddy. Ingeniería de aguas residuales ,1995

 β : Factor dependiente de la forma de la barra

Figura 3-3: Factor de forma de barras para rejas **Fuente:** ((Vaquez&Valdez, 2012)

$$hc = 1,79 * \left(\frac{0,015}{0,025}\right)^{\frac{4}{3}} * \left(\frac{0,6^2}{2(9,8)}\right) * sen 45^{\circ}$$

hc = 0.012 m < 0.015 m Es admisible

Para este tipo de canal es de sección rectangular debido a su caudal que es pequeño.

Tabla 21-3: Información típica para el diseño del canal.

Parámetro	Abreviatura	Unidad	Datos
Caudal medio diario	Qmd	m^3/s	0,006492
Caudal de diseño	Qdiseño	m^3/s	0,0163
Longitud del canal	L	m	1
Material del canal	-	-	Hormigón
Coeficiente de	N	-	0,016
rugosidad de Manning			
Base del	В	m	0,5
canal(asumida)			
Altura del canal	Н	m	0,6
(asumida)			
Pendiente del canal	S	%	0,5
Altura de seguridad	Hs	m	0,5
Espesor de barras	Н	mm	15-50
Perdida de carga	Hf	m	0,015
admisible			

Fuente: Normas Ecuatorianas para estudio y Diseño de Sistema de Agua Potable y Disposición de Aguas Residuales Realizado por: Ramírez Yajaira, 2017

Ecuación 13-3 Cálculo de radio hidráulico para un canal rectangular (Metcalf&Eddy, 1995)

El radio Hidráulico es un parámetro muy importante para el dimensionamiento de los canales, tubos y otros componentes de las obras hidráulicas, generalmente es representado con la letra RH.

$$RH = \frac{b * h}{b + (2h)}$$

Ecuación 13

Datos:

RH: = Radio hidráulico (m)

b: Base del canal (asumida) (m)(valor asumido de la **tabla 21.3**)

h: Altura del canal (m)

$$RH = \frac{(0.5 * 0.52) m^2}{0.5 + 2(0.52)m}$$

$$RH = 0.17 \, m$$

Ecuación 14-3 Cálculo de la velocidad del tratamiento (Ecuación de Manning)

$$V = \frac{1}{n} * RH^{\frac{2}{3}} * S^{\frac{1}{2}}$$

Ecuación 14

Tabla 22.3 Coeficiente de rugosidad de Manning

Canales revestidos	N
Asbesto cemento	0.010
Cemento mortero (Hormigón, acabado con paleta, paredes lisas)	0.013
Cemento pulido	0.011
Concreto áspero	0.016
Concreto liso	0.012
Mampostería	0.015
Piedra	0.025
Piedra sobre mortero	0.035
Membrana de plástico sumergida	20.027

Fuente: (RAS, 2000) Sistema de Acueductos pg. 94

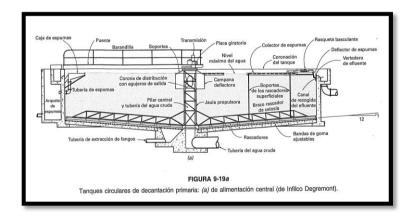
Realizado por: Ramírez Yajaira, 2017

Datos:

v: Velocidad media del canal (m/s)

RH: = Radio hidráulico (m); 0.17 (m)

S: Pendiente canal rectangular revestido de hormigón (valor asumido de la tabla 21.3)


n: Coeficiente de Manning (valor asumido de la tabla 22.3)

$$v = \frac{1}{0,013} * 0.17^{\frac{2}{3}} * 0.0005^{\frac{1}{2}}$$
$$V = 0.53 \frac{m}{s}$$

3.2.2.4 Criterios para el diseño del tanque de sedimentación

Es un proceso físico que consiste en la eliminación de los sólidos sedimentables presentes en el agua residual por acción de la gravedad, los cuales tienen mayor densidad que el líquido en que se encuentra suspendidos.

El objetivo de la operación es disminuir la velocidad de flujo dela agua, haciéndola pasar por un tanque de manera que los sólidos en suspensión sedimenten debido a diferencias de densidades. (Metcalf&Eddy, 1995)

Figura 4-3: Tanque de decantación circular **Fuente:** (Metcalf&Eddy, 1995)

Es recomendable utilizar un tanque de decantación circular debido a que el flujo es radial y logra una gran remoción de lodos, a diferencia del flujo horizontal que se da en el tanque rectangular, el agua residual a decantar se introduce por el centro o por la periferia del tanque.

Tabla 23-3: Criterios para el diseño de sedimentador circular.

Parámetro	Intervalo	Valor típico
Tiempo de retención (h)	1,5-3	2
Carga superficial	30-50	-
(m^3/m^2dia)		
Profundidad (m)	3-4,5	3,6

Fuente: ((Crites&Tchobanoglous, 2014) pg. 310)

Tabla 24-3: Criterios para el diseño de un sedimentador circular.

Parámetros (circular)	Intervalo	Típico
Profundidad m	3-4,5	3,6
Diámetro m	3-60	12-45
Pendiente de la solera mm/m	6,25-16	8
Velocidad de los rascadores	0,02-0,05	0,03
r/min		

Fuente: ((Metcalf&Eddy, 1995) pg. 544)

Ecuación 15-3 Cálculo de la carga de superficie (Crites&Tchobanoglous, 2014)

Los tanques de sedimentación se dimensiona en función de la carga superficie, expresada en (m^3/m^2dia) , la adopción de este tipo de carga superficie adecuada depende del tipo de suspensión que hay que decantar.

El área del sedimentador, en base de la carga de superficie mediante la siguiente ecuación:

$$As = \frac{Qmax}{Cs}$$

Ecuación 15

Datos:

As: Área del sedimentador (m^2)

Qmax: Caudal máximo horario (m^3/dia) 573,70 $(\frac{m^3}{dia})$

Cs: Carga de superficie (m^3/m^2dia) (valor considerado de la **tabla 23.3**)

$$As = \frac{573,70 \left(\frac{m^3}{dia}\right)}{50 \ (m^3/m^2 dia)}$$

$$As = 11.20 m^2$$

Ecuación 16-3 Cálculo del diámetro del sedimentador (Allende, 1994)

El diámetro del sedimentador se determina por la siguiente ecuación:

$$\emptyset = \sqrt{4 * \frac{As}{\pi}}$$

Ecuación 16

Datos:

Ø: Diámetro del sedimentador (m)

As: Área del sedimentador (m^2)

 π : Número irracional (3,14159)

$$\emptyset = \sqrt{4 * \frac{11,20 \ m^2}{\pi}}$$

$$\emptyset = 3.77 \, m$$

Ecuación 17-3 Cálculo del radio del sedimentador (Metcalf&Eddy, 1995)

El radio del sedimentador se calcula mediante la siguiente ecuación:

$$r = \sqrt{\frac{As}{\pi}}$$

Ecuación 17

Datos:

r: Radio del sedimentador (m)

As: Área del sedimentador (m^2)

 π : Número irracional (3,14159)

$$r = \sqrt{\frac{11,20 \ m^2}{\pi}}$$

$$r = 1.88 \ m$$

Ecuación 18-3 Cálculo del volumen de sedimentador (Crites&Tchobanoglous, 2014)

Una vez obtenido el diámetro se procede a determinar el volumen del tanque mediante la siguiente ecuación:

$$V = \pi * r^2 * h$$

Ecuación 18

Datos:

V: Volumen del sedimentador (m^3)

 r^2 : Radio del sedimentador (m)

h: Profundidad del sedimentador (m^3) (valor considerado de la **tabla 24.3**)

$$V = \pi * 1.88 * 3$$

$$V = 17.71 \ m^3$$

Ecuación 19-3 Cálculo del tiempo de retención hidráulica (Crites&Tchobanoglous, 2014)

$$Trh = \frac{V}{Qmax}$$

Ecuación 19

Datos:

Trh: Tiempo de retención hidráulica (horas)

V: Volumen del sedimentador (m^3)

Qmax: Caudal máximo diario (m^3/dia) 573,70 $(\frac{m^3}{dia})$

$$Trh = \frac{17,71 \ m^3}{573,70 \left(\frac{m^3}{dia}\right)}$$

$$Trh = 0.03 \ dia = 0.74 \ horas$$

Los tanques de sedimentación primaria que proporcionan tiempo de retención menores (0,5-1)h con menor eliminación de sólidos suspendidos, se usan en ocasiones como sedimentación primario previo a un tratamiento biológico.

Remoción de DBO₅ y sólidos suspendidos

La eficiencia de remoción del DBO_5 y solidos suspendidos, se encuentra en función de la concentración del efluente y del tiempo de retención.

Tabla 25-3: Valores de las constantes empíricas a y b

Variable	A	В
DBO_5	0,018	0,020
SST	0,0075	0,014

Fuente: (Metcalf&Eddy, 1995) pg. 593)

Ecuación 20-3 Tasa de remoción de DBO_5 , es realiza mediante la siguiente ecuación: (Crites&Tchobanoglous, 2014)

$$R = \frac{trh}{a + (b * trh)}$$

Ecuación 20

Datos:

R: Porcentaje de remoción esperado DBO₅

Trh: Tiempo de retención hidráulica (horas)

a, b: Constantes empíricas (valor considerado de la Tabla 25.3)

$$R = \frac{0,74}{0,018 + (0,020 * 0,74)}$$

$$R = 24.57 \%$$

Ecuación 21-3 Tasa de remoción de *SST*, es realiza mediante la siguiente ecuación (Metcalf&Eddy, 1995)

$$R = \frac{trh}{a + (b * trh)}$$

Ecuación 21

Datos:

R: Porcentaje de remoción esperado

Trh: Tiempo de retención hidráulica (horas)

a, b: Constantes empíricas (valor considerado de la Tabla 25.3)

$$R = \frac{0.74}{0.0075 + (0.014 * 0.74)}$$

$$R = 45,01 \%$$

3.2.2.5 Criterios para el diseño del tanque de coagulación

Por medio del tratamiento de coagulación es muy útil ya que se puede dar la mejora por medio de la eliminación de sólidos que se encuentran en suspensión y también se encarga de la Demanda Biológica de Oxígeno.

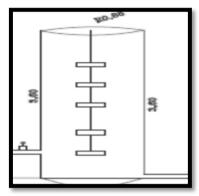


Figura 5-3: Tanque de coagulación

Fuente: (Alasino, 2014)

La base fundamental de este proceso radica en un mecanismo desestabilizador de partículas coloidales que se da por la añadidura de ciertos reactivos químicos conocidos como coagulantes, una vez que se encuentran desestabilizadas están listas para unirse o agregarse. (Arboleda, 2012)

La tabla contiene nombres de algunos coagulantes y floculantes, utilizados para el tratamiento de aguas residuales.

Tabla 26-3: Propiedades de los coagulantes y floculantes

Compuesto	Efecto
Sulfato de aluminio	Coagulante
Sulfato férrico	Coagulante
Sulfato ferroso	Coagulante
Polímero sintético catiónico	Floculante
Polímero de base de sales de aluminio	Floculante
Polímero de base de sales de hierro	Floculante

Fuente: ((Metcalf&Eddy, 1995) Pg. 245)

Como coagulante, es inyectan polímeros catiónicos que se encargan de dispersar los reactivos en la masa de agua a tratar, lo que requiere crear una turbulencia fuerte, lo que se denomina mezcla rápida, el tiempo de residencia en la zona de coagulación será de 2 a 5 minutos. (Allende, 1994)

Tabla 27-3: Parámetros de diseño del tanque de coagulación

Parámetros	Medida
Gradiente de velocidad (s ⁻¹)	500-1000
Tiempo de retención (min)	1-60
Relación Geométrica (a)	3

Relación Geométrica (b)	3.5

Fuente: Programa regional HPE/OPS/CEPIS, 1992 pág. 86

Ecuación 22-3 Cálculo del volumen del tanque de coagulación (Allende, 1994)

$$V_t = Q_{max} * Trh$$

Ecuación 22

Datos:

 V_t : Volumen del tanque de coagulación (m^3)

 Q_{max} : Caudal máximo 0,007 (m^3/s)

Trh: Tiempo de retención (*s*); 240 *s* (Valor considerado de la **Tabla 27-3** programa regional HPE/OPS/CEPIS, 1992 pág. 86)

$$V_t = 0.007 \ m^3/s \ x \ 240 \ s$$

 $V_t = 16.8 \ m^3$

Ecuación 23-3 Cálculo del diámetro de la cámara de coagulación (Rojas, 2014)

$$DT = \sqrt[3]{\frac{4 * V * a}{\pi * b}}$$

Ecuación 23

Datos:

DT: Diámetro de la cámara de mezcla (m)

 V_t : Volumen del tanque de coagulación (m^3) ; 16,8 m^3

a: Relación geométrica(adimencional); 3 (Valor considerado de la **Tabla 26.3**)

b: Relación geométrica (adimencional); 3.5 (Valor considerado de la Tabla 26.3)

$$DT = \sqrt[3]{\frac{4 * 16,8 m^3 * 3}{\pi * 3.5}}$$

$$DT = 2.40 \ m$$

Ecuación 24-3 Cálculo de la profundidad de la cámara de mezcla (Metcalf&Eddy, 1995)

$$H = b * \frac{DT}{a}$$

Ecuación 24

Datos:

H: Profundidad de la cámara de mezcla (m)

DT: Diámetro de la cámara de mezcla (m); 2.87 m

a: Relación geométrica (adimencional); 3 (Valor considerado de la **Tabla 27-3**)

b: Relación geométrica (adimencional); 3.5 (Valor considerado de la Tabla 27-3)

$$H = 3.5 * \frac{2.40 m}{3}$$

$$H = 2.8 m$$

Ecuación 25-3 Cálculo del diámetro de la turbina (Crites&Tchobanoglous, 2014)

$$D = \frac{DT}{a}$$

Ecuación 25

Datos:

D: Diámetro de la turbina (m)

DT: Diámetro de la cámara de coagulación (m); 2.40 m

a: Relación geométrica (adimencional); 3 (Valor considerado de la Tabla 27-3)

$$D = \frac{2.40m}{3}$$

$$D = 0.8 \, m$$

Ecuación 26-3 Cálculo de la anchura de los deflectores (Metcalf&Eddy, 1995)

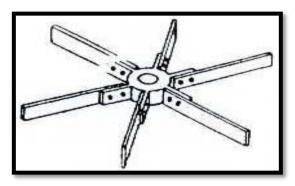
Los deflectores son placas instaladas en la pared del tanque, para proporcionar una mayor agitación y evitar que el movimiento del agitador arrastre todo el líquido en masa sin que se mezcle, para de esta manera no producir la cavitación que afecta al agitador. (Islas, 2005)

$$W_d = \frac{D}{10}$$

Ecuación 26

Datos:

 W_d : Anchura de los deflectores (m)


D: Diámetro de la turbina (m); 0.8 m

$$W_d = \frac{0.8m}{10}$$

$$W_d = 0.08 \ m$$

3.2.2.6 Criterios para el diseño de las paletas

Es el aparato que produce la energía necesaria para llevar acabo el mezclado o dispersión de las pequeñas cantidades de productos químicos en el agua residual.

Figura 6-3: Turbina de hojas planas **Fuente:** (Crites&Tchobanoglous, 2014)

El sistema de tratamiento esta implementado por un tanque de decantación por tal razón es necesario diseñar unas paletas ya que es de suma importancia, ya que al tanque se adicionara el coagulante de sulfato de aluminio el cual necesita agitación constante que permitirá que los sólidos precipiten.

Tipos de agitadores

- ✓ *Agitadores de alta velocidad*: son mezcladores que tienen la función de realizar la mezcla del cloro con el agua residual. (Crites&Tchobanoglous, 2014)
- ✓ Agitadores estáticos: son utilizados para mezclar el agua residual con los químicos a utilizar para el tratamiento. (Crites&Tchobanoglous, 2014)
- ✓ Agitadores de turbina y hélice: por la alta velocidad que está expuesta el agua residual, la velocidad producido por los impulsores son capaces de efectuar su trabajo de esta manera obteniendo una buena mezcla del agua con el reactivo, los que trabajan a baja velocidad la mezcla seria para ayudar a la floculación. (Crites&Tchobanoglous, 2014)
- ✓ Agitadores de paletas: los mezcladores de este tipo giran lentamente porque cuentan con una gran superficie. (Crites&Tchobanoglous, 2014)

✓ *Agitadores de paletas:* este tipo de mezcladores giran lentamente porque cuentan con una gran superficie de acción. (Crites&Tchobanoglous, 2014)

Tabla 28-3: Valores del gradiente de velocidad del fluido para el diseño de las paletas.

INTERVALOS DE VALORES			
Proceso		Tiempo de detección	Valores de G, S ⁻¹
Mezclado	Operaciones de mezcla rápida típicas	5-20 s	250-1500
	Mezcla rápida en procesos de filtración de contacto	< 1-5 s	1500-7500
Floculación	Procesos de floculación típicamente empleados en el tratamiento de agua residual	30-60 min	20-80
	Floculación en procesos de filtración directa	2-10 min	20-100
P. 4 (24)	Floculación en procesos de filtración contacto	2-5 min	30-150

Fuente: ((Metcalf&Eddy, 1995) Pg. 245)

> Gradiente de velocidad del fluido

Al efectuar la prueba de jarras en el laboratorio de análisis técnicos ESPOCH, se determina que la agitación se realizó aproximadamente a 100 revoluciones por minuto, con lo cual se deduce que la paleta debe agitar a 200 RPM que la mezcla sea eficiente. Por lo tanto calculamos el gradiente de velocidad del fluido.

Ecuación 27-3 Gradiente de velocidad del fluido (Metcalf&Eddy, 1995)

$$G = 0.25 * n^{1,25}$$

Ecuación 27

Datos:

G: Gradiente de velocidad (S^{-1})

V: Revoluciones por minuto (RPM)

$$G = 0.25 * (200)^{1.25}$$

$$G = 188,03 (S^{-1})$$

Ecuación 28-3 Potencia disipada de la mezcla (Metcalf&Eddy, 1995)

Cuanto mayor sea la energía suministrada en el tanque el fluido tendrá una turbulencia mayor generada y por tanto la mezcla generada será mejor.

$$P = G^2 * \mu * V$$

Ecuación 28

Datos:

P: Potencia necesaria, KW

 G^2 : Gradiente medio de velocidad del fluido G^{S-1}

μ: Viscosidad dinámica del agua residual valor considerado de la Apéndice (Metcalf&Eddy,

1995) 15°C (1,139 $E^{-3} N * s/m^2$)

V: Volumen del tanque de coagulación (m^3)

$$P = (188,03 S^{-1})^2 * 1,139 E^{-3} N * s / m^2 * 22,92 m^3$$

$$P = 922,98 \ W * \frac{1Hp}{745,7 \ W}$$

$$P = 1,24 Hp$$

Ecuación 29-3 Cálculo del diámetro del impulsor (Metcalf&Eddy, 1995)

$$di = \frac{1}{3} * \emptyset$$

Ecuación 29

Datos:

di: Diámetro del impulsor

Ø: Diámetro del tanque de coagulación 2,40 (m)

$$di = \frac{1}{3} * 2,40 m$$

$$di = 1 m$$

Ecuación 30-3 Cálculo de la altura del impulsor respecto al fondo (Metcalf&Eddy, 1995)

$$Hi = di$$

Ecuación 30

Datos:

Hi: Altura del impulsor

di: Diámetro del impulsor

$$Hi = 1 m$$

Ecuación 31-3 Cálculo de la anchura de las palas del impulsor (Metcalf&Eddy, 1995)

$$q = \frac{1}{5} * di$$

Ecuación 31

Datos:

q: Anchura de las palas del impulsor (m)

di: Diámetro del impulsor (m)

$$q = \frac{1}{5} * 1 m$$

$$q = 0.2 m$$

Ecuación 32-3 Cálculo de la longitud de las paletas del impulsor montadas en el disco central (Metcalf&Eddy, 1995)

$$Lp = \frac{1}{8} * di$$

Ecuación 32

Datos:

Lp: Longitud de las palas del impulsor (m)

di: Diámetro del impulsor (m)

$$Lp = \frac{1}{8} * 1 m$$

$$Lp = 0.13 m$$

Ecuación 33-3 Cálculo de la longitud de las paletas del impulsor (Metcalf&Eddy, 1995)

$$Lpi = \frac{1}{4} * di$$

Ecuación 33

Datos:

Lpi: Longitud de las palas del impulsor (m)

di: Diámetro del impulsor (m)

$$Lpi = \frac{1}{4} * 1$$

$$Lpi = 0.27 \text{ m}$$

Ecuación 34-3 Cálculo del diámetro del disco central (Metcalf&Eddy, 1995)

$$s = \frac{1}{4} * \emptyset$$

Ecuación 34

Datos:

s: Diámetro del disco central

Ø: Diámetro del mezclador 2,40 (m)

$$s = \frac{1}{4} * 2,40 m$$

$$s = 0.6 m$$

Ecuación 35-3 Cálculo de la velocidad de rotación, N (Metcalf&Eddy, 1995)

Es la cantidad de revoluciones por minuto que se va a producir en el tanque, para efectuar la mezcla.

Tabla 29-3: Valores de K para las necesidades de energía de mezclado.

Impulsor	Régimen laminar
Hélice, paso cuadrado, 3 palas	41
Hélice, paso de dos, 3 palas	43,5
Turbina, 6 palas planas	71
Turbina, 6 palas curvas	70
Turbina ventilador, 6 palas	70
Turbina, 6 palas en punta de flecha	71
Paleta plana, 6 palas	36,5
Turbina cerrada, 2 palas curvas	97,5
Turbina cerrada con estator(sin deflectores)	172,5

Fuente: ((Metcalf&Eddy, 1995) Pg. 246)

$$N = \sqrt[3]{\frac{P}{K * \rho * di^5}}$$

Ecuación 35

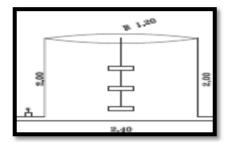
Datos:

P: Potencia necesaria, (Watt)

 ρ : Densidad del fluido (Kg/ m^3) 999,1 Kg/ m^3 Apéndice C (Metcalf&Eddy, 1995)

di: Diámetro del impulsor (m); 0,63 (m)

K: Constante de mezclado (valor considerado de la Tabla 28.3)


$$N = \sqrt[3]{\frac{922,98 \ watt}{71 * 999,1(\frac{\text{Kg}}{m^3}) * 1(m)^5}}$$
$$N = 1,08 \ \frac{rev}{s}$$

$$N=65 \ rpm$$

3.2.2.7 Cálculo del tanque floculador

La floculación es un proceso químico mediante el cual, con la adición de sustancias floculantes se aglutina las sustancias coloidales presentes en el agua, facilitando de esta forma su decantación. (Allende, 1994)

El proceso de floculación es una mezcla lenta y no rompa los floculós formados, el tiempo de floculación es de 30 minutos, los choques es favorecido por la creación de una turbulencia moderada, la agitación no debe ser muy fuerte puesto que la cohesión de los floculós es relativamente débil. (Crites&Tchobanoglous, 2014)

Figura 7-3: Tanque floculador **Fuente:** (Metcalf&Eddy, 1995)

Los procesos de coagulación y de floculación se emplean para extraer del agua los sólidos que en ella se encuentran suspendidos siempre que su rapidez natural de asentamiento sea demasiado baja para proporcionar clarificación efectiva; además permite acondicionador el agua residual que contenga vertidos industriales, mejorar la eficiencia de los sedimentadores secundarios especialmente cuando se trata del proceso de lodos activados. (Frank, 2015)

En la siguiente tabla se expone los parámetros que se deben considerar:

Tabla 30-3: Parámetros de diseño del floculador

Características	cas Valor	
	Intervalo	Típico
Tiempo de retención (min)	20-60	30
Floculación inducida por paletas, máxima velocidad periférica de la paleta, con reductor de velocidad hasta el 30% de velocidad máxima (m/s)	0,45-1,00	0,60
Floculación por agitación por aire, con difusores de tubo poroso	0,60-1,20	0,75

Fuente: (Metcalf&Eddy, 1995) Pg. 245)

Tabla 31-3: Valores recomendados de carga superficial de acuerdo a la suspención química

Suspensión	Carga superficial (m³/m²dia)		
	Intervalo	Valor típico	
Flóculo de alúmina	25 - 50		50
Flóculo de hierro	25 - 50		50
Flóculo de cal	30 - 60		60

Fuente: ((Metcalf&Eddy, 1995)Pg. 134)

Ecuación 36-3: Cálculo del área superficial (Allende, 1994)

$$As = \frac{Qmax}{Cs}$$

Ecuación 36

Datos:

As: Área superficial del floculador (m^2)

Qmax: Caudal máximo horario (m^3/dia) 573,70 $(\frac{m^3}{dia})$

Cs: Carga de superficie (m^3/m^2dia) (valor considerado de la **tabla 31-3**)

$$As = \frac{573,70 \left(\frac{m^3}{dia}\right)}{50 \left(m^3/m^2 dia\right)}$$

$$As = 11.20 m^2$$

Ecuación 37-3: Cálculo del diámetro del floculador (Metcalf&Eddy, 1995)

El diámetro del floculador se determina por la siguiente ecuación:

$$\emptyset = \sqrt{4 * \frac{As}{\pi}}$$

Ecuación 37

Datos:

Ø: Diámetro del floculador (m)

As: Área del floculador (m^2)

 π : Número irracional (3,14159)

$$\emptyset = \sqrt{4 * \frac{11,20 \ m^2}{\pi}}$$

$$\emptyset = 3,77 \, m$$

Ecuación 38-3: Cálculo del radio del floculador (Metcalf&Eddy, 1995)

El radio del floculador se calcula mediante la siguiente ecuación:

$$r = \sqrt{\frac{As}{\pi}}$$

Ecuación 38

Datos:

r: Radio del floculador (m)

As: Área del floculador (m^2)

 π : Número irracional (3,14159)

$$r = \sqrt{\frac{11,20 \ m^2}{\pi}}$$

$$r = 1.88 \ m$$

Ecuación 39-3: Cálculo del volumen de floculador (Crites&Tchobanoglous, 2014)

Una vez obtenido el diámetro se procede a determinar el volumen del tanque mediante la siguiente ecuación:

$$V = \pi * r^2 * h$$

Ecuación 39

Datos:

V: Volumen del floculador (m^3)

 r^2 : Radio del floculador (m)

h: Profundidad del floculador (m^3) (valor considerado por el GADM-CG)

$$V = \pi * 1,88 * 2$$

$$V = 12 \ m^3$$

Ecuación 40-3 Gradiente de velocidad del fluido k (Crites&Tchobanoglous, 2014)

Al efectuar la prueba de jarras en el laboratorio de analisis técnicos, se determina que la agitación se realizó a aproximadamente 60 revoluciones por minuto, con lo cual se deduce que la paleta debe agitar a 60 RPM para que la mezcla sea eficiente.

$$G = 0.25 * n^{1,25}$$

Ecuación 40

Datos:

G: Gradiente de velocidad (S^{-1})

V: Revoluciones por minuto (RPM)

$$G = 0.25 * (60)^{1.25}$$

$$G = 41.75 (S^{-1})$$

Ecuación 41-3 Potencia disipada de la mezcla (Crites&Tchobanoglous, 2014)

Cuanto mayor sea la energía suministrada en el tanque el fluido tendrá una turbulencia mayor generada y por tanto la mezcla generada será mejor.

$$P = G^2 * \mu * V$$

Ecuación 41

Datos:

P: Potencia necesaria, KW

 G^2 : Gradiente medio de velocidad del fluido G^{S-1}

μ: Viscosidad dinámica del agua residual valor considerado de la Apéndice (Metcalf&Eddy,

1995) 15° C $(1,139 E^{-3} N * s / m^2)$

V: Volumen del floculador (m^3)

$$P = (41,75 \ S^{-1})^2 * 1,139E^{-3} N * s / m^2 * 12 m^3$$

$$P = 239,98 W * \frac{1Hp}{745,7 W}$$
$$P = 0,42 Hp$$

3.2.2.8 Cálculo del sedimentador secundario de flujo horizontal

El diseño del sedimentador de flujo horizontal (placas) posee tiempos de retención cortos de 15 minutos, además son unidades de alta eficiencia y de poca profundidad con relación a sedimentadores convencionales. El periodo de funcionamiento teniendo en cuenta criterios económicos y técnicos es de 8 a 16 años. (Rojas, 2014)

Un sedimentador de flujo horizontal consta de cuatro zonas que son: una zona de entrada, sedimentación, de salida y de recolección de lodos y tienen como características, tiempo de retención cortos, poca profundidad y un ángulo de inclinación de 60° todas estas características ayudan a tener mayor velocidad de sedimentación de lodos.

Tabla 32-3: Criterios para el diseño del sedimentador de flujo horizontal

Parámetro	Valor	Unidad
Carga superficial	50-70	m³/m²dia
Profundidad	2-5	m
Número de Reynolds	< 500	Adimensional
Pendiente de fondo	>2	%
Tiempo de retención	<15	min
Características critica de	1-1,5	Adimensional
funcionamiento		
Relación largo- ancho	3-6	m
Relación largo -profundidad	5-20	m

Fuente: (BVSDE, 2005 pág. 18)- (MarcadorDePosición1pág. 54)

Ecuación 42-3 Cálculo del área del sedimentador A_s (Metcalf&Eddy, 1995)

$$A_s = \frac{Q_{max}}{Cs}$$

Ecuación 42

Datos:

 A_s : Área del sedimentador (m^2)

 Q_{max} : Caudal máximo horario 0,007 ($^{\text{m}^3/_{\text{S}}}$)

Cs: Carga superficial $(m^3/_{m^2. s})$; 70 $m^3/_{m^2. dia} = 8.10 \times 10^{-4} m^3/_{m^2. s}$ (Valor considerado de la **Tabla 29.3**)

$$A_S = \frac{0.007 \text{ m}^3/_S}{8.10 \times 10^{-4} \text{ m}^3/_{m^2. S}}$$

$$A_S = 8,64 m^2$$

Ecuación 43-3 Cálculo de la velocidad promedio de flujo (Metcalf&Eddy, 1995)

$$v_0 = \frac{Q_{max}}{A_s * sen\theta}$$

Ecuación 43

Datos:

 v_0 : Velocidad promedio de flujo (cm/s)

 $m{Q}_{max}$: Caudal máximo horario 0,007 ($^{ ext{m}^3/_{ ext{S}}}$)

 A_s : Área de sedimentación (m^2) ; 8,64 m^2

θ: Angulo de inclinación del elemento de sedimentación de alta tasa(grados); 60°

$$v_0 = \frac{0.007 \text{ m}^3/\text{s}}{8,64 \text{ m}^2 * \text{sen } 60}$$
$$v_0 = 9.36x10^{-4} \text{ m}/\text{s}$$
$$v_0 = 0.0935 \text{ cm}/\text{s}$$

Ecuación 44-3 Cálculo de la longitud del sedimentador (Crites&Tchobanoglous, 2014)

$$L = \frac{A_s}{B}$$

Ecuación 44

Datos:

L: Longitud del sedimentador

 A_s : Área de sedimentación (m^2) ; 8,64 m^2

B: Ancho del sedimentador; 2.5m (Valor considerado de la **Tabla 29.3** con respecto a la relación L/B 3-6)

$$L = \frac{8,64 \ m^2}{2.5 \ m}$$
$$L = 3,46 \ m$$

Ecuación 45-3 Cálculo de la longitud relativa del sedimentador (Crites&Tchobanoglous, 2014)

Es la distancia entre dos puntos que tiene una conexión que depende de varias características y factores.

$$L_r = \frac{L}{B}$$

Ecuación 45

Datos:

 L_r : Longitud relativa del sedimentador

L: Longitud del sedimentador (m); 3,46 m

B: Ancho del sedimentador (m); 2.5m (Valor considerado de la **Tabla 29-3** con respecto a la relación L/B 3-6)

$$L_r = \frac{3,46 \ m}{2.5 \ m}$$

$$L_r = 1,38 \ m$$

Tabla 33-3: Parámetros de diseño de placas planas de asbestos – cemento

Parámetro	Valor	Unidad
Longitud	1-3	m
Ancho	2-3	m
Espesor	0.01	m

Ángulo de inclinación	40-60	Grados
Espaciamiento entre placas	4-6	cm

Fuente: (Rojas, 2014) pág. 85

Ecuación 46-3 Cálculo del tiempo de retención en las placas (Crites&Tchobanoglous, 2014)

$$t_{rp} = \frac{I}{v_0}$$

Ecuación 46

Datos:

 t_{rp} : Tiempo de retención en las placas (min)

I: Longitud recorrida a través de la placa (m); 1 m (Valor considerado de la Tabla 33-3)

 v_0 : Velocidad promedio de flujo entre placas inclinadas (m/s); 9.36x10⁻⁴ m/s

$$t_{rp} = \frac{1 m}{9.36 x 10^{-4} \, \text{m/s}}$$

$$t_{rp} = 1068,38 \, s$$

$$t_{rp} = 17,8 \, \min$$

Ecuación 47-3 Cálculo del tiempo de retención en el tanque sedimentador (Metcalf&Eddy, 1995)

$$Trh = \frac{A_s * H_s}{Q_{max}}$$

Ecuación 47

Datos:

Trh: Tiempo de retención (min)

 A_s : Área de sedimentación (8,64 m^2)

H_s: Altura total (m); 2 m (Valor considerado de la **Tabla 32-3**)

 Q_{max} : Caudal máximo horario $(m^3/_S)$; $0.007 m^3/_S$

$$Trh = \frac{8,64 \ m^2 * 2 \text{ m}}{0.007 \ m^3/_S}$$

$$Trh = 2468.57 s$$

$$Trh = 41 min$$

Ecuación 48-3 Cálculo del Número de Reynolds (Crites&Tchobanoglous, 2014)

$$Re = \frac{v_0 * d_p}{\vartheta}$$

Re: Número de Reynolds (Adimensional)

v: Velocidad promedio de flujo entre placas inclinadas (m/s); $9.36x10^{-4}$ m/s

 d_p : Ancho del conducto o espaciamiento entre placas (m); 0.04 m (valor considerado de la Tabla 33-3)

 θ : Viscosidad cinemática del agua a 15° $(m^2/_S)$; 1.140x10⁻⁶ $m^2/_S$ (Valor considerado del apendice de METCALF&EDDY Tabla C1)

$$Re = \frac{9.36x10^{-4} \text{ m/}_S * 0.04 \text{ m}}{1.140x10^{-6} \text{ m}^2/_S}$$
$$Re = 32,84$$

Ecuación 49-3 Cálculo de la longitud de transición (Crites&Tchobanoglous, 2014)

Denominada como longitud de rampa, esta longitud nos permite efectuar cambios de una sección transversal a una sección curva.

$$L' = 0.013 * Re$$

Ecuación 49

Datos:

L': Longitud de transición

Re: Número de Reynolds (Adimensional)

$$L' = 0.013 * 32,84$$

 $L' = 0.43$

Ecuación 50-3 Longitud relativa del sedimentador de flujo horizontal en la longitud de transición (Metcalf&Eddy, 1995)

$$L_{cr} = L_r - L'$$

Ecuación 50

Datos:

 L_{cr} : Longitud relativa del sedimentador de alta tasa en la longitud de transición

L_r: Longitud relativa del sedimentador; 1,38 m

L': Longitud de transición; 0.43

$$L_{cr} = 1.38 - 0.43$$

$$L_{cr} = 0.95$$

Ecuación 51-3: Cálculo de la velocidad de sedimentación crítica (Allende, 1994)

$$v_{SC} = \frac{S_C * v_0}{sen\theta + (L_{cr} * cos\theta)}$$

Ecuación 51

Datos:

 v_{SC} : Velocidad de sedimentación critica (cm/s)

 S_C : Característica crítica de funcionamiento para láminas paralelas (Adimensional); 1 (Valor considerado de la **Tabla 32-3**)

 v_0 : Velocidad promedio de flujo entre placas inclinadas (m/dia); 80.87 m/dia

 L_{cr} : Longitud relativa del sedimentador de alta tasa en la longitud de transición; 0,95 m

0: Angulo de inclinación del elemento de sedimentación de alta tasa (grados); 60°

$$V_{SC} = \frac{1 * 80.87 \text{ m}/dia}{sen60 + (0.95 * cos60)}$$

$$V_{SC} = 60,35 \,\mathrm{m}/dia$$

$$V_{SC} = 0.07 \, \mathrm{cm}/_{S}$$

Ecuación 52-3 Cálculo del número de placas por módulo (Crites&Tchobanoglous, 2014)

$$Np = \frac{(L_{S} - L_{P} * cos\theta)sen\theta + d_{S}}{d_{S} + e_{p}}$$

Ecuación 52

Datos:

Np: Número de placas por modulo (Unidad)

L_S: Longitud del sedimentador (m); 3,46 m

 L_P : Longitud de las placas (m); 1 m

 d_s : Separación entre placas (m); 0.060 m (Valor considerado de la **Tabla 33-3**)

e_p: Espesor de las placas (m); 0.01 m (Valor considerado de la **Tabla 33-3**)

θ: Angulo de inclinación del elemento de sedimentación de alta tasa (grados); 60°

$$Np = \frac{(3,46 - 1\ m * cos60)sen60 + 0.060m}{0.060m + 0,01m}$$

$$Np = 39.85 \cong 40$$

Ecuación 53-3 Cálculo del volumen del sedimentador (Crites&Tchobanoglous, 2014)

$$V = L * B * H$$

Datos:

V: Volumen del sedimentador (m^3)

L: Longitud del sedimentador (m); 3,46 m

B: Ancho del sedimentador (m); 2.5m

H: Altura del sedimentador (m); 2 m (Valor considerado de la Tabla 3-32)

$$V = 3.46 \text{ m} * 2.5 m * 2 m$$

$$V = 17.3 m^3$$

3.2.2.9 Cálculo de las eras de secado

Las eras de secado son dispositivos que tienen como objetivo la deshidratación de los lodos producidos por el tratamiento, para que pueda manejarse como material sólido, con un contenido de humedad inferior al 70 %. La ventaja principal de las eras de secado es su bajo costo y el escaso mantenimiento que necesitan. (Crites&Tchobanoglous, 2014)

Ecuación 54-3 Cálculo de la volumen de lodos producidos (Crites&Tchobanoglous, 2014)

$$V_{LE} = Qmax * V_{lodos}$$

Ecuación 54

Datos:

 V_{LE} : Volumen de lodos a extraerse del tanque (m^2)

Qmax: Caudal máximo horario 6,64 $(\frac{l}{s})$

 V_{lodos} : Volumen de lodos obtenidos en el laboratorio (400 ml/1 litro)

$$V_{LE} = 6,64 \left(\frac{l}{s}\right) * \left(\frac{400 \ ml}{l}\right)$$
$$V_{LE} = 4,78 \ \frac{m^3}{dia}$$

Ecuación 55-3 Cálculo del área del lecho de secado (Crites&Tchobanoglous, 2014)

La profundidad del lecho que va depositarse en el lecho de secado es de 0.20 a 0.40 m según OPS/CEPIS 05,163. pág. 18.

$$A_{LS} = \frac{V_{LE}}{H_d}$$

Ecuación 55

Datos:

 V_{LE} : Volumen de lodos a extraerse del tanque (m^3) ; 4,78 m^3

 H_d : Profundidad de aplicación (m); 0.40 m

$$A_{LS} = \frac{4,78 \ m^3}{0.40 \ m}$$
$$A_{LS} = 11,95 \ m^2$$

Ecuación 56-3 Cálculo de la longitud del lecho de secado (Metcalf&Eddy, 1995)

El ancho del lecho de secado según mencionado por el OPS/CEPIS/05.163 pág. 18 puede estar entre 3 a 6 m por tanto, para nuestro cálculo tomaremos el valor de 5 m de ancho.

$$L_{LS} = \frac{A_{LS}}{b_{LS}}$$

Ecuación 56

Datos:

 $\boldsymbol{A_{LS}}$: Área del lecho de secado (m^2) ; 11,95 m^2

 b_{LS} : Ancho del lecho de secado (m); 5m

$$L_{LS} = \frac{20,22 \ m^2}{5 \ m}$$
$$L_{LS} = 2,39 \ m$$

Ecuación 57-3 Cálculo del volumen del tanque para lodos (Metcalf&Eddy, 1995)

$$V_{TL} = L_{LS} * b_{LS} * H_d$$

Ecuación 57

Datos:

 L_{LS} : Longitud del lecho de secado (m); 2,39 m

 $\boldsymbol{b_{LS}}$: Ancho del lecho de secado (m); 5 m H_d: Profundidad de aplicación (m); 0.40 m

$$V_{TL} = 2,39 \ m * 5 \ m * 0.40 \ m$$

$$V_{TL} = 4,78 \ m^3$$

3.2.2.10 Cálculo de la dosificación de los químicos

Ecuación 58-3 Cálculo de la concentración del sulfato de aluminio (Rojas, 2014)

El Sulfato de Aluminio es un coagulante efectivo para la clarificación y la formación de las partículas de menor peso específico que facilitan la sedimentación, la adición de estas sustancias químicas persigue la remoción de la turbiedad y de color del agua.

$$C_1 * V_1 = C_2 * V_2$$

$$C_2 = \frac{(C_1 * V_1)}{V_2}$$

Ecuación 58

Datos:

C₂: Concentración del sulfato de aluminio (ppm)

C₁: Concentración del sulfato de aluminio (ppm) al 8%

V₂: Volumen consumido de la solución patrón para el tratamiento (ml)

 V_1 : Volumen consumido de la solución patrón (30 ml) para cada litro de agua

$$C_2 = \frac{(80000 \ ppm * 30 \ ml)}{1000 \ ml}$$

$$C_2 = 2400 \ ppm$$

Ecuación 59-3 Cálculo del peso de sulfato de aluminio (Rojas, 2014)

$$C_{op} = C_2 * V$$

Ecuación 59

Datos:

C_{op}: Peso del sulfato de aluminio consumido diariamente (kg/dia)

V: Volumen del taque mezclador 12600 litros.

C2: Concentración del sulfato de aluminio (ppm)

$$C_{op} = 2400 \frac{mg}{l} * 12600 \left(\frac{l}{dig}\right)$$

$$C_{op} = 30,2 \frac{kg}{dia}$$

Ecuación 60-3 Cálculo de la concentración del policloruro de aluminio PAC (Rojas, 2014)

$$C_1 * V_1 = C_2 * V_2$$

$$C_2 = \frac{(C_1 * V_1)}{V_2}$$

Ecuación 60

Datos:

C2: Concentración del PAC (ppm)

C₁: Concentración del PAC (ppm) al 8%

 V_2 : Volumen consumido de la solución patrón para el tratamiento (ml)

 V_1 : Volumen consumido de la solución patrón (50 ml) para cada litro de agua

$$C_2 = \frac{(80000 \ ppm * 50 \ ml)}{1000 \ ml}$$

$$C_2 = 4000 \ ppm$$

Ecuación 61-3 Cálculo del peso de PAC (Rojas, 2014)

$$C_{op} = C_2 * V$$

Ecuación 61

Datos:

Cop: Peso del PAC consumido diariamente (kg/dia)

V: Volumen del taque mezclador 12600 litros.

C2: Concentración del PAC (ppm)

$$C_{op} = 4000 \frac{mg}{l} * 12600 \left(\frac{l}{dia}\right)$$

$$C_{op} = 50.4 \frac{kg}{dia}$$

3.2.2 Resultados:

3.2.2.1 Resultados de la caracterización del agua residual

A continuación se presenta en la siguiente tabla los parámetros que NO CUMPLEN con la norma del Texto Unificado Legislación Secundaria del Ministerio del Ambiente (REGISTRO OFICIAL, ACUERDO MINISTERIAL N. 097 TABLA 10): Limites de descarga a un cuerpo de agua dulce.

Tabla 34-3: Parámetros que no cumplen con la Norma TULSMA.

Parámetro	Símbolo	Unidad	limite	20/02/17	22/02/17	01/03/17
			permisible			
Sulfuro	S ²⁻	mg/l	0,5	5	5	5
Nitrógeno	NNH_3	mg/l	30	30		
Amoniacal						
Nitrógeno Total	N	mg/l	50	900		
Demanda	DBO_5	mg/l	100	256	280	
Bioquímica de						
Oxigeno						
Demanda	DQO	mg/l	200	455	462	
Química de						
Oxigeno						
Coliformes	NMP	NMP/100ml	10000	32000		
fecales						
Coliformes	NMP	NMP/100ml		21000		
totales						
Solidos	SST	mg/l	130	389	160	210
suspendidos						
totales						
Aceites y grasas	Sus. Solubles	mg/l	30	46		
	en hexano					
Tensoactivos	Activas en azul	mg/l	0,5	18,2		
Material flotante	visible		ausencia	visible	visible	Visible

Realizado por: Ramírez Yajaira, 2017

3.2.2.2 Resultado de la tratabilidad del agua residual tratada.

Tabla 35-3: Resultados de la tratabilidad de agua tratada dentro de la norma vigente.

Parámetro	Símbolo	Unidad	limite permisible	Agua tratada
Potencial de Hidrogeno	pН	-	6 9	6,93
Turbiedad	-	UNT	-	1,25

Solidos Totales	STD	mg/l	-	550
Disueltos				
Sulfatos	SO ₄ ²⁻	mg/l	1000	208
Sulfuro	S ²⁻	mg/l	0,5	0,3
Nitrógeno Amoniacal	NNH_3	mg/l	30	3,52
Nitrógeno Total	N	mg/l	50	40
Demanda Bioquímica de	DBO_5	mg/l	100	38
Oxigeno				
Demanda Química de	DQO	mg/l	200	90
Oxigeno				
Coliformes fecales	NMP	NMP/100ml	10000	5000
Solidos suspendidos	-	mg/l	130	86
totales				
Solidos Totales	-	mg/l	1600	725
Aceites y grasas	Sus. Solubles	mg/l	30	24
	en hexano			
Tensoactivos	Activas al	mg/l	0,5	0,46
	azul de			
Desited de mont Designer Veision	metileno			

Realizado por: Ramírez Yajaira, 2017

3.2.2.3 Resultado de la validación de caracterización final del agua tratada.

Tabla 36-3: Resultados de la validación de la caracterización físicos - químicos y microbiológicas del agua tratada

Parámetro	Símbolo	Unidad	limite permisible	Agua
				tratada
Nitrógeno Amoniacal	NNH_3	mg/l	30	2,60
Nitrógeno Total	N	mg/l	50	27,72
Demanda Bioquímica de Oxigeno	DBO ₅	mg/l	100	16
Demanda Química de Oxigeno	DQO	mg/l	200	38
Coliformes totales	NMP	NMP/100ml		Ausencia
Aceites y grasas	Sus. Solubles en hexano	mg/l	30	24
Tensoactivos	Activas al azul de metileno	mg/l	0,5	0,46

3.2.2.4 Resultado del porcentaje de remoción del agua residual

Tabla 37-3: Resultados de la caracterización y pruebas de tratabilidad representado en

porcentaje de remoción.

	Caracterización	Pruebas de	Porcentaje de
Parámetro	(afluente)	tratabilidad (efluente)	remoción
Sulfuro	15	0,3	98,67
Nitrógeno Amoniacal	30	3,52	88,27
Nitrógeno Total	900	40	95,56
Demanda Bioquímica			
de Oxigeno	268	38	85,82
Demanda Química de			
Oxigeno	458,5	90	80,37
Coliformes fecales	21000	5000	76,19
Solidos suspendidos			
totales	253	46	81,82
Aceites y grasas	46	14	69,57
Tensoactivos	18,2	0,46	97,47

Realizado por: Ramírez Yajaira, 2017

3.2.3.5 Resultados del dimensionamiento de la planta de tratamiento.

Tabla 38-3: Determinación del caudal máximo horario.

Parámetro	Símbolo	Unidad	Valor
Población actual	Pa	Habitantes	450
Aporte de infiltración	I	$\left(\frac{m^3}{dia}\right)$	3,02
Caudal doméstico	Q_D	$\left(\frac{m^3}{dia}\right)$	72,58
Caudal medio diario	Q_{MD}	$\left(\frac{m^3}{dia}\right)$	193,54
Caudal máximo horario	Qmax	(l/s)	6,64

Tabla 39-3: Dimensionamiento de sistema de rejillas.

Parámetro	Símbolo	Unidad	Valor
Área libre	Al	m^2	0,01
Tirante del agua	h	M	0,02
Altura del canal	Н	M	0,52
Longitud de barras	Lb	M	0,73
Numero de barras	N	-	14
Longitud sumergida	dmax	M	0,02
de la barra			
Perdida de carga	hc	M	0,012
Diámetro de rejilla	Dr	M	0,015
Angulo de	A	0	45
inclinación			

Realizado por: Ramírez Yajaira, 2017

Tabla 40-3: Dimensionamiento del canal.

Parámetro		Símbolo	Unidad	Valor
Radio hidráulico		RH	M	0,17
Velocidad	de	V	m/s	0,53
tratamiento				
Base del canal		В	M	0,50

Realizado por: Ramírez Yajaira, 2017

Tabla 41-3: Dimensionamiento del tanque de sedimentación primaria

Parámetro	Símbolo	Unidad	Valor
Área del sedimentador	As	m^2	11,20
Diámetro del sedimentador	Ø	m	3,77
radio del sedimentador	Н	m	1,88
Volumen del sedimentador	V	m^3	17,71
Tiempo de retención	Thr	h	0,74

Tabla 42-3: Dimensionamiento del tanque de coagulación

Parámetro	Símbolo	Unidad	Valor
Volumen del tanque de	Vt	m^3	16,8
coagulación			
Diámetro de la cámara de	DT	m	2,40
coagulación			
Profundidad de la cámara	Н	m	2,8
de coagulación			
Diámetro de la turbina	D	m	0,8
Anchura de los deflectores	W_d	m	0,08

Realizado por: Ramírez Yajaira, 2017

Tabla 43-3: Dimensionamiento de las paletas.

Parámetro	Símbolo	Unidad	Valor
Gradiente de velocidad	G	S^{-1}	188,03
Potencia disipada	P	Нр	1,24
Diámetro del impulsor	Di	m	1
Altura del impulsor al	Hi	m	1
fondo			
Anchura de las palas del	q	m	0,2
impulsor			
Longitud de las paletas	Lp	m	0,13
montadas al impulsor			
Longitud de las paletas	Lpi	m	0,25
Diámetro central	S	m	0,60
Velocidad de rotación	N	rpm	65

Tabla 44-3: Dimensionamiento del tanque floculador

Parámetro	Símbolo	Unidad	Valor
Área del sedimentador	As	m^2	11,20
Diámetro del	Ø	m	3,77
sedimentador			
radio del sedimentador	Н	m	1,88
Volumen del	V	m^3	12
sedimentador			

Tiempo de retención	Thr	h	0,74
Gradiente		S^{-1}	41,75
Potencia requerida		Нр	0,42

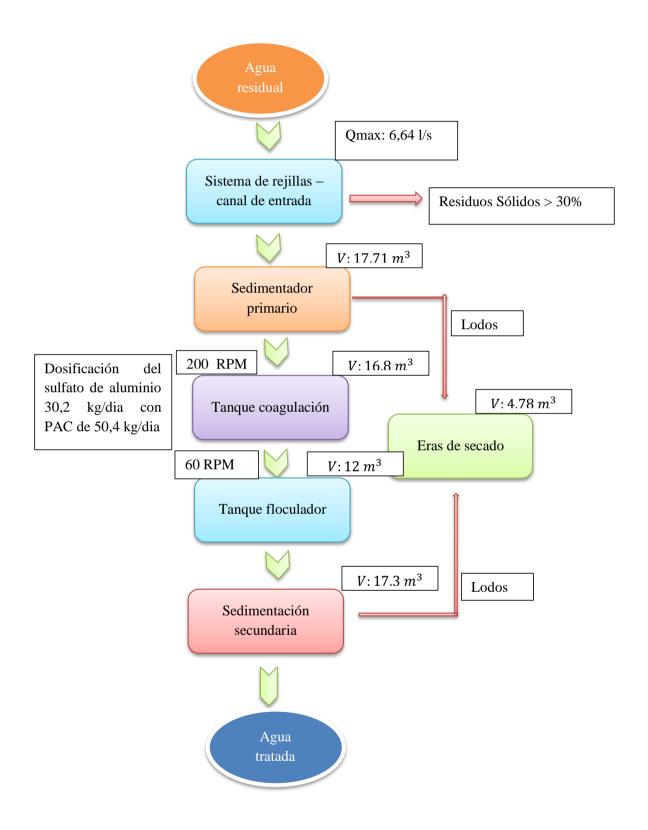
Realizado por: Ramírez Yajaira, 2017

Tabla 45-3: Dimensionamiento del sedimentador de flujo horizontal

Parámetro	Símbolo	Unidad	Valor
Área del sedimentador	A_{s}	m^2	8,64
Velocidad promedio de	v_0	cm/s	0,0935
flujo			
Longitud del	L	m	3,46
sedimentador			
Longitud relativa del	Lr	m	1,38
sedimentador			
Tiempo de retención en	t_{rp}	min	17,8
las placas			
Tiempo de retención	Trh	min	41
Número de Reynolds	Re	Adimensional	32,84
Longitud de transición	L'	m	0,43
Longitud relativa del	L_{cr}	m	0,95
sedimentador			
Velocidad de	v_{sc}	cm/s	0,07
sedimentación critica			
Número de placas por	Np	Unidad	40
modulo			
Volumen del	V	m^3	17,3
sedimentador			

Tabla 46-3: Dimensionamiento de las eras de secado

Parámetro	Símbolo	Unidad	Valor
Masa de los sólidos que conforman los lodos	Ms	Kg _{SS} /día	22,95
Volumen diario de	V_{DL}	l/dia	183,89
lodos sin químicos,			
volumen diario de lodos	V_{DL}	1/dia	147,11


digeridos			
Volumen de lodos a	V_{LE}	m^3	8,09
extraerse del tanque			
Área del lecho de	A_{LS}	m^2	20,22
secado			
Cálculo de la longitud	L_{LS}	m	4,05
del lecho de secado,			
Volumen del tanque	V_{TL}	m^3	8,01
para lodos	2017		

Realizado por: Ramírez Yajaira, 2017

Tabla 47-3: Dosificación de los químicos.

Parámetro	Símbolo	Unidad	Valor
Concentración del sulfato de aluminio	C_2	Ppm	2400
Peso requerido de sulfato de aluminio	C_{op}	kg/dia	30,2
Concentración del PAC	C_2	Ppm	4000
Peso requerido del PAC	C_{op}	kg/dia	50,4

3.3 Sistema de tratamiento de las aguas residuales propuesto

Figura 8-3: Sistema de tratamiento **Fuente:** Ramírez Yajaira, 2017

3.4 Requerimientos de tecnología, equipos y maquinaria

3.4.1 Requerimiento de equipos y métodos para realizar la caracterización físico – químico y bacteriológico del agua residual.

A continuación se especificara los equipos, materiales y reactivos que son necesarios para la caracterización que se realizó al agua residual.

Tabla 48-3: Equipos, materiales y reactivos para realizar la caracterización físico – químico y

microbiológico.

Equipos	Materiales	Reactivos
✓ Espectrofotómetro	✓ Matraz Erlenmeyer	✓ Sulfato de aluminio
HACH DR 2800	✓ Varilla de vidrio	✓ Ácido sulfúrico
✓ Conductímetro	✓ Pera de succión	✓ Solución Buffer pH
✓ Turbidímentro	✓ Caja Petri	10
✓ Balanza analítica	✓ Bureta	✓ Hidróxido de sodio
✓ Baño María	✓ Pizeta	✓ Nitritos
✓ Estufa	✓ Pipetas	✓ Nitratos
✓ Bomba de aireación	✓ Vaso de	✓ Fosfatos
✓ Conos Imhoff	precipitación	
✓ Reactor para DQO Y	✓ Pipetas	
BDO	volumétricas	
	✓ Balones aforados	
	✓ Capsula de	
	porcelana	
	✓ Pinzas	
	✓ Celdas	
	✓ Reverbero	

Realizado por: Ramírez Yajaira, 2017

Los métodos utilizados para analizar los parámetros de caracterización del agua residual se especifica a continuación:

Tabla 49-3: Parámetro, unidad y método de la caracterización físico del agua.

Parámetro	Unidad	Método
Conductividad eléctrica	uS/cm	2510-B
Ph		4500-B
Solidos totales disueltos	mg/l	2540-C
Turbiedad	NTU	2130-B

Tabla 50-3: Parámetro, unidad y método de la caracterización química del agua.

Parámetro	Unidad	Método
Nitritos	mg/l	4500-NO2-B
Nitratos	mg/l	4500-NO3-C
Fosfatos	mg/l	4500-P-D
Sulfatos	mg/l	4500-SO4-B
Sulfuro	mg/l	4500-S2—E
Nitrógeno Amoniacal	mg/l	4500-NN03-C
Nitrógeno Total Kjedahl	mg/l	HACH 10072
Demanda Bioquímica de	mg/l	5210-B
Oxigeno		
Demanda Química de	mg/l	5220-C
Oxigeno		
Solidos totales	mg/l	2540-A
Aceites y Grasas	mg/l	STANDARD METHODS
		5540- C
Tensoactivos	mg/l	EPA 418 1

Realizado por: Ramírez Yajaira, 2017

Tabla 51-3: Parámetro, unidad y método de la caracterización microbiológico del agua.

Parámetro	Unidad	Método
Coliformes Fecales	UFC/100 M1	Microfiltración
Coliformes Totales	UFC/100 M1	Microfiltración

Realizado por: Ramírez Yajaira, 2017

3.4.2 Requerimientos de materiales y equipos para el muestreo y medición de caudal del agua residual.

Tabla 52-3: Materiales de muestreo y recolección de Información

Fundamento	Materiales	Procedimiento			
Se basara dentro de la	Recipientes de vidrio ámbar	Para la recolección de las			
Norma Técnica Ecuatoriana	para realizar la	muestras se realizó en un			
NTE INEN 2169:98, Agua.	caracterización físico y	intervalo de 60 minutos en las			
Calidad del agua Muestreo.	química del agua residual.	horas picos para obtener			
Manejo y conservación de	Recipientes de vidrio de	muestras compuestas.			
muestras.	ámbar resistentes al calor para				
	la caracterización				
	microbiológica.				

Tabla 53-3: Los equipos y materiales utilizados para la determinación del caudal se detalla a continuación:

Materiales	Equipos			
Mandil	Cámara fotográfica			
Guantes	GPS			
Botas de caucho	Cronómetro			
Balde graduado de 10 Litros				
Cuaderno				
Portaminas				

Realizado por: Ramírez Yajaira, 2017

3.5 Análisis de costo/beneficio del proyecto

Tabla 54-3: Determinación de los costos del sistema.

Rubro / Descripción						
			<u>unitario</u>	global		
OBRAS PRELIMINARES						
Replanteo y nivelación	m^2	11,72	1,10	12,89		
			,	-		
Limpieza y desbroce	m^2	11,72	1,80	21,10		
Cerramiento	Ml	140,00	33,25	4.655,00		
			Subtotal	4688,99		
CANAL D	E RECEPO	CION				
Escavación manual	m^3	1,78	2,64	4,70		
Hormigón simple fc= 210 kg/cm2 + encofrado	m^3	1,24	263,60	326,86		
Enlucido interior +impermeabilizante	m^2	5,12	8,15	41,73		
Enlucido vertical exterior	m^2	5,12	9,90	50,69		
Malla electrosoldada 6mm de 15x15 cm	m^2	5,28	3,75	19,80		
TUBERÍA PVC 110 mm+ACCESORIOS	Ml	2,50	5,69	14,23		
			Subtotal	458,15		
REGILLA SEPAR	ADORA D	E SÓLIDOS	3			
Suministro e instalación de regilla según diseño	U	1,00	117,40	117,40		
TANQUE SEDIMENTADOR						
Excavación manual	m^3	15,73	2,64	41,63		
Hormigón simple fc= 140 kg/cm2 en replantillos	m^2	0,15	163,85	24,58		
Empedrado base piedra bola e= 15 cm	m^2	0,45	17,86	8,04		
acero de refuerzo fy=4200 kg/cm2	Kg	954,00	2,18	2.504,2		
Hormigón simple fc= 210 kg/cm2 + encofrado	m^3	9,50	263,60	659,00		

m ³ m ³ m ³ m ²	45.10 1.2 10.85 50.50	9.00 90.00 190.00 9.00 Subtotal	415.00 90.56 268.15 446.50 1220.21				
m ³ m ³ m ³	1.2	90.00	90.56				
m ³ m ³	1.2	90.00	90.56				
m ³							
	45.10	9.00	415.00				
020112							
ERAS DE SECADO							
		Subtotal	9586,25				
m ²	90.50	6.00	283.00				
m ²	120.00	8.50	1543.00				
m ²	150.00	10.00	1100.00				
m ³	30.75	190.00	2504.50				
m ²	20.80	90.00	1500.00				
m ³	120.50	9.00	2204.50				
m ²	30.50	5.00	350.50				
m ²	30.50	1.50	100.75				
FLOCULA	DOR						
		Subtotal	6860,75				
m ²	70.50	6.00	383.00				
m ²	120.00	8.50	1011.00				
m ²	120.00	10.00	1100.00				
m ³	15.75	190.00	1922.50				
m ²	10.80	90.00	952.00				
m ³	100.50	9.00	1164.50				
m ²	50.50	5.00	252.50				
m ²	50.50	1.50	75.75				
TANQUE DE COAGULACIÓN							
Oi	1,00	Subtotal	3461				
Gl	1.00	70.83	70,83				
m^2	2,84	15,73	44,67				
m^2	2,84	3,75	10,65				
			69,28 28,12				
	m ² Gl	m² 2,84 m² 2,84 m² 2,84 Gl 1,00 COAGULACIÓN m² 50.50 m³ 100.50 m² 10.80 m³ 15.75 m² 120.00 m² 70.50 FLOCULADOR m² 30.50 m² 30.50 m³ 120.50 m² 20.80 m³ 30.75 m² 150.00 m² 150.00 m² 120.00 m² 150.00 m² 150.00 m² 150.00 m² 150.00 m² 90.50	m² 2,84 9,90 m² 2,84 3,75 m² 2,84 15,73 Gl 1,00 70,83 Subtotal Subtotal COAGULACIÓN m² 50.50 1.50 m² 50.50 5.00 m³ 100.50 9.00 m² 10.80 90.00 m² 120.00 10.00 m² 120.00 8.50 m² 70.50 6.00 Subtotal FLOCULADOR m² 30.50 1.50 m² 30.50 5.00 m³ 120.50 9.00 m² 20.80 90.00 m² 20.80 90.00 m² 150.00 10.00 m² 150.00 10.00 m² 120.00 8.50 m² 90.50 6.00 Subtotal Subtotal				

Fuente: Ing. Civil Carolina Almache Realizado por: Ramírez Yajaira, 2017

Tabla 55-3: Determinación del costo anual de sulfato de aluminio.

Reactivo	Dosis (Kg/dia)	Costo unitario Kg(\$)	Costo diario (\$)	Costó mensual (\$)	Costo anual (\$)
Sulfato de	30,2	0,75	10,4	362	1 244
aluminio					
PAC	50,4	0,90	20,1	456	3543
				Total	4787

Realizado por: Ramírez Yajaira, 2017

Tabla 56-3: Presupuesto referencial (costo de mantenimiento mensual)

DETALLE	Costo mensual (\$)
Obras preliminares	36,15
Canal de recepción	83,00
Rejillas	107,40
Tanque de sedimentación	911,30
Tanque se mezclador	542,76
Tanque de sedimentación secundario	1046,90
Total (\$)	2727,51

Fuente: Ing. Civil Carolina Almache Realizado por: Ramírez Yajaira, 2017

3.6 Análisis

El agua residual generada en la parroquia Santa Fe de Galán se descarga directamente al riachuelo (SN) y a los terrenos cultivables que se encuentran alrededor de la población, siendo un problema que debe ser atendido por la contaminación que provoca en los medios hídricos por su alto nivel de cargas contaminantes, mediante la caracterización físico – químico y microbiológico del agua residual donde se determinó: sulfuro, nitrógeno total, DBO, DQO, coliformes fecales, coliformes totales, sólidos suspendidos totales, aceites y grasas y tensoactivos son parámetros que se encontraban fuera de la norma establecida por tal motivo el impacto ambiental es una de las preocupaciones más importantes para el GADM-CG.

Para los parámetros que se encuentran fuera de norma fueron tratados mediante las pruebas de tratabilidad utilizando los métodos físicos- químicos a nivel de laboratorio, empleando un test de jarra para determinar la concentración de los reactivos químicos (sulfato de aluminio y PAC), de tal manera que la concentración óptima del sulfato de aluminio es al 0,08 g/ml utilizando 30 ml por cada litro de agua tratada de igual manera para el PAC al 0,08g/ml con 50

ml por cada litro de agua tratada, proporcionando un mejor proceso de coagulación y floculación.

La concentración del sulfato de aluminio óptima para tratar el agua residual es de 30,2 kg/dia y del PAC es de 50,4 kg/dia para mejorar la calidad de agua que se va hacer vertido por el riachuelo (SN) y por la constante actividad agrícola.

Con los resultados obtenidos tanto en la caracterización, tratabilidad y validación del agua se pudo tener en conocimiento el porcentaje de remoción de los parámetros identificados, los valores de porcentaje de remoción son: sulfuro 98,67%, nitrógeno total 95,56%, DBO 85,82%, DQO 80,37%, coliformes totales 76,19%, sólidos suspendidos totales 81,82%, aceites y grasas 69,57% y tensoactivos 97,47%.

Con los datos proporcionados por el Instituto Nacional de Estadística y Censo (INEN) sobre la población de la parroquia proporciona que decrece en -0,012%, por lo que fue necesario realizar el diseño del tratamiento con referencia a la población actual mediante el cual se establece de la siguiente manera: rejillas, canal de entrada rectangular, tanque de sedimentación primaria, tanque de coagulación , tanque floculador, tanque de sedimentación secundario, paletas de agitación tipo turbina de 6 palas y eras de secado.

CONCLUSIONES

Se realizó el aforo del caudal por 4 semanas en un horario de 8:00 am hasta 17:00 pm permitiendo de esta manera determinar los caudales en horas picos, mediante las pruebas de caracterización del agua residual de la parroquia Santa Fe de Galán se determinó los parámetros: Sulfuro, Nitrógeno Total, DBO, DQO, Coliformes Fecales, Solidos Suspendidos Totales, Aceites y Grasas, y Tensoactivos no cumple con la Norma TULSMA, Texto Unificado de Legislación Secundario del Medio Ambiente.

Mediante el índice de biodegradabilidad se determinó que el tratamiento para el sistema es un valor de 1,71 que es la relación de DQO/DBO_5 indica que la materia orgánica es moderadamente biodegradable permitiendo la selección de un tratamiento físico - químico.

Para efectuar las pruebas de tratabilidad se tomó en cuenta: el índice de biodegradabilidad para la selección del tratamiento físico – químico y test de jarras mediante el proceso de coagulación y floculación.

El sistema de tratamiento de aguas residuales para la parroquia Santa Fe de Galán constara de las siguientes operaciones: rejillas, tanque de decantación primaria, tanque de coagulación, tanque floculador, paletas de agitación tipo turbina de 6 palas, sedimentación secundaria y eras de secado; con lo que se logra que el efluente cumpla con la Norma TULSMA, Texto Unificado de Legislación Secundario del Medio Ambiente, ANEXO 1 Tabla 10. Límites de descarga a un cuerpo de agua dulce.

El diseño seleccionado del sistema de tratamiento de aguas residuales fue validado en el laboratorio de la UNACH dando como resultado: sulfuro 0,11 mg/L, nitrógeno total 27,72 mg/l, DBO 16 mg/l, DQO 38 mg/l, coliformes totales 5000 NMP/100ml, aceites y grasas 24 mg/l y tensoactivos 0,46 mg/L, los valores obtenidos si se encuentran dentro de los limites permisible de la normativa vigente.

RECOMENDACIONES

Debido a que las rejillas son de limpieza manual es recomendable remover los sólidos sostenidos, al observar una cantidad del 50% ya que puede obstruir el paso del agua para el proceso del sistema de tratamiento.

Se recomienda realizar la limpieza periódica de los diferentes equipos que conforman la planta de tratamiento para evitar los depósitos de las partículas que pueden provocar el taponamiento de tuberías y equipos para en un futuro evitar inconvenientes.

Los lodos generados en el tanque de sedimentación primaria y sedimentación secundario son dispuestos en eras de secado para su respectiva deshidratación para luego ser utilizados en un proyecto comunitario, generando la sustitución de un fertilizante químico por abonos orgánicos para el sector de la agricultura en la parroquia.

Se recomienda que se realice unas pruebas de caracterización físico químico y microbiológico semestral para verificar que la planta de tratamiento cumpla con las especificaciones de la investigación del proyecto.

En el caso de aumentar el valor de las relaciones de $\frac{DQO}{DBO_5}$, el sistema físico – químico propuesto seguirá siendo válido, en caso que la relación disminuya será necesario la implementación de un proceso de degradación biológica la misma que es realizada por los mismos microorganismos.

BIBLIOGRAFÍA

2169:98, NTE INEN. Agua calidad de agua. Muestreo. Técnicas de muestreo. Ecuador, 2016.

Alasino, Noelia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. *Metodología para aguas residuales*. [En línea] 2014. [Citado el: 10 de Julio de 2017.] www.bvsde.paho.org/bvsacd/scan/027757/027757-03b.pdf.

Allende, A. *Manual de tratamiento de aguas residuales*. Segunda . La Habanna : Instituto Superior Politécnico José Antonio Echeverría, 1994.

Arboleda, J. *Teoría y Práctica de la purificación dela gua*. Bogota- Colombia : NOMOS, 2012. págs. 250,434,675.

BVSDE. Unidades Hidráulicas. [En línea] 2005. [Citado el: 23 de Julio de 2016.] www.bvsde.paho.org/bvsacd/scan/027757/027757-03b.pdf.

Callay Pala, Ximena Fernanda. Diseño de la planta de tratameinto de aguas residuales de la parroquia San Gerardo del Cantón Guano. [En línea] 2015. [Citado el: 12 de Julio de 2017.] http://dspace.espoch.edu.ec/bitstream/123456789/4355/1/96T00295%20UDCTFC.pdf.

Cisterna&Peña. Determinación de la relación de BDO/DQO en aguas residuales en comunidades con poblaciones menores a 25000 habitantes en la VII región. [En línea] 2015. [Citado el: 18 de 10 de 2017.] http://www.bvsde.paho.org/bvsaidis/chile13/trab-12.pdf.

Crites&Tchobanoglous. *Tratamiento de aguas residuales en pequeñas poblaciones*. Santafe de Bogota, Colombia : McGraw-Hill Interamericana, S.A, 2014. págs. 356,786,452,672,895.

Frank, Cabanilla. Medición de fluido en canales abiertos con vertedero. [En línea] 10 de Septiembre de 2015. [Citado el: 11 de Julio de 2017.] http://documents.mx/documents/medicion-de-fluidos-en-canales-abiertos-con-vertederos-corregidodocx.html.

Galán, Plan Territorial y ordenamiento de la parroquia Santa Fe de Galán. [En línea] 01 de 01 de 2016. [Citado el: 03 de 08 de 2017.] http://app.sni.gob.ec/sni-link/sni/PORTAL_SNI/data_sigad_plus/sigadplusdiagnostico/0660820400001_PDYOT%20SA NTA%20FE%20V1 28-10-2015 17-06-26.pdf.

Instituto de Hidrologia, Meterologia y Estudios Ambientales. *Instructivo para la toma de muestras de aguas residuales* . Republica de Colombia : s.n., 2007.

Islas, Ricardo. Proyectos de Plantas de Tramiento de aguas. España: Bellisco, 2005.

Metcalf&Eddy. *Ingenieria de aguas residuales, Tratamiento, Vertido, Reutilizacion Tomo 1.* España : McGraw - Hill, 1995.

Metcalf&Eddy. *Ingenieria de aguas residuales, Tratamiento, Vertido, Reutilizacion Tomo 2.* España: Mc Graw-Hill, 1995.

Ramlho, R. Tratamiento de aguas residuales. Sevilla - España : 2a ed. Reveté S.A, 2003.

RAS. Reglamento Tecnico del Sector de Agua Potable y Saneamiento: Tratamiento de Aguas. [En línea] 2000. [Citado el: 12 de Julio de 2017.] http://cra.gov.co/apc-aafiles/37383832666265633962316339623934/7._Tratamiento_de_aguas_residuales.pdf.

Rojas, R. Sistema de tratamiento de aguas residuales: Gestion integral de tratamiento de aguas residuales. Lima-Perú: CEPIS/OPS-OMS, 2014.

Romero, Jairo. Calidad del Agua:Teoria y Principios de Diseño. Bogota-Colombia: Escuela Colombiana de Ingeniería, 2014.

Vaquez&Valdez. *Ingeniería de los sistemas de Tratamiento y Diposición de aguas residuales.* Segunda. México D.F : Fundación ICA, 2012.

ANEXOS

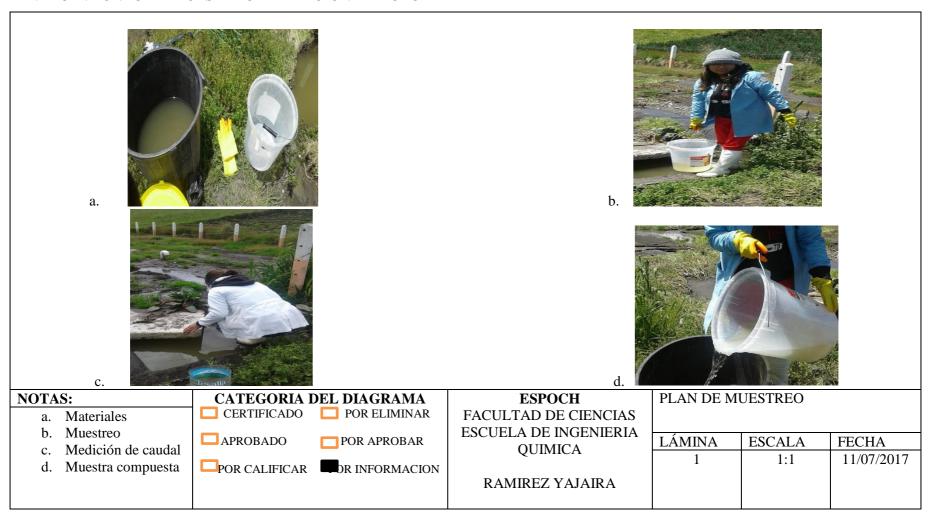
ANEXO A: TECNICAS:

Potencial de Hidrógeno	o (método Standard Methods 4500-B)		
Concepto	Material	Reactivo	Técnica
El pH es un parámetro que	Ph-metro	agua residual	Calibre el pH-metro
nos indica la alcalinidad o la	 vaso de precipitación de 	agua destilada	Coloque un vaso de vidrio limpio con un
acidez del agua residual.	250 ml		volumen de muestra suficiente como para
			cubrir al electrodo de vidrio
			Sumerja los electrodos de la muestra y
			suavemente revuelva a una velocidad
			constante para la homogeneidad y suspensión
			de los sólidos y esperar hasta que la lectura se
			estabilice.
			Anote el valor de la lectura
Conductividad Eléctrica	a(método Standard Methods 2510-B)	<u>'</u>	
Concepto	Material	Reactivo	Técnica
Es la capacidad de una	Conductímetro	agua residual	Coloque un vaso de vidrio limpio con un
solución de transportar	Vaso de precipitación de	agua destilada	volumen de muestra suficiente como para
corriente eléctrica a través de	250 ml		cubrir al electrodo de vidrio
si, además siempre depende			Colocar el Conductímetro en el vaso y esperar
de la presencia de los iones y			hasta que la lectura se estabilice.
la concentración total, así			Anote el valor de la lectura, contiene 3 escalas

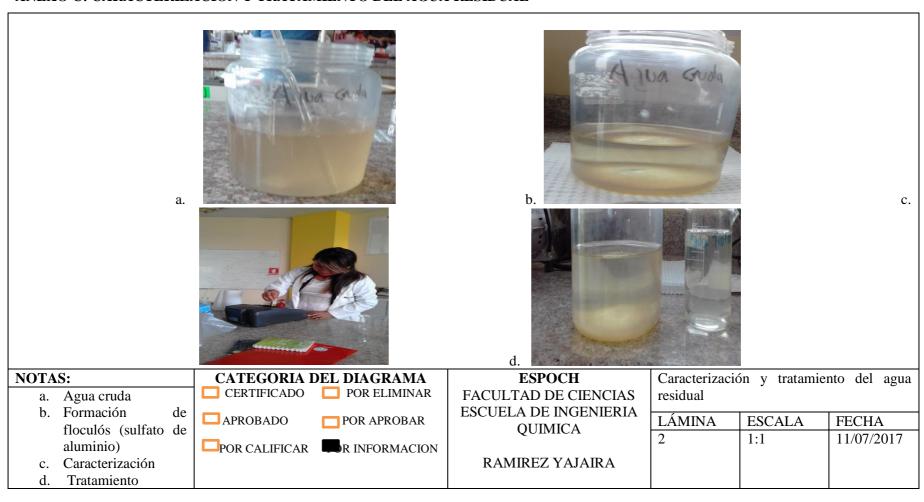
como la temperatura	como la temperatura $(0-1, 0-10, 0-1000)$ microSiemens/cm $(\mu S/cm)$				
Sólidos disueltos totales (SDT)	(método Standard Methods 2540-C)				
Concepto	Material	Reactivo	Técnica		
Es una medida del contenido combinado de sustancias orgánicas e inorgánicas, contenidas en el líquido en	 Conductímetro Vaso de precipitación de 250 ml 	agua residualagua destilada	 Coloque un vaso de vidrio limpio con un volumen de muestra suficiente como para cubrir al electrodo de vidrio Colocar el Conductímetro en el vaso, 		
forma molecular o en forma de suspensión granular.			seleccione SDT en la pantalla esperar hasta que la lectura se estabilice. Anote el valor de la lectura		
Turbidez (Método HAC)	CH 2130-B)				
Concepto	Material	Reactivo	Técnica		
La turbidez es un parámetro que mide la intensidad de color en el agua que se obtiene de la captación del agua cruda y luego de la filtración (agua tratada), identifica la impureza	TurbidímentroCeldaPizeta	 Agua residual Agua destilada 	 Colocar en la celda el agua recolectada en la descarga (afluente). Y agua tomada después del proceso del tratamiento (efluente) Colocar la celda en el Turbidímentro. Leer directamente el valor según la escala deseada (0-1, 0-10, 0-100 NTU) 		
Nitratos (Método HAC)	H 4500-NO3-C)				
Concepto	Material	Reactivo	Técnica		
Son compuestos químicos utilizados como fertilizantes	 Vaso de precipitación de 250 ml 	Agua destiladaAgua residual	Colocar 10 mL de muestra de agua cruda con el reactivo nitratos		

en la agricultura, su contaminación es difusa provocando daños a la salud.	HACH DR2800PipetaCelda	Reactivo de nitrato	 Agitar y esperar el tiempo que indica el equipo de HACHDR2800 Colocar la celda de la muestra en blanco(agua destilada),limpiar bien el exterior de la cubeta Posteriormente colocar la muestra con el agua residual. El resultado aparecerá en la pantalla en: mg/L NO⁻³ – N
Nitritos (Método HACI	H 4500-NO32-B)		
Concepto	Material	Reactivo	Técnica
Los nitritos van aparecer en concentraciones mayores a 1 mg/L en fuentes de plantas de tratamientos de aguas residuales.	 Vaso de precipitación de 250 ml HACH DR2800 Pipeta Celda 	 Agua destilada Agua residual Reactivo de nitrito 	 Colocar 10 mL de muestra de agua cruda con el reactivo nitritos Agitar y esperar el tiempo que indica el equipo de HACHDR2800 Colocar la celda de la muestra en blanco(agua destilada),limpiar bien el exterior de la cubeta Posteriormente colocar la muestra con el agua residual. El resultado aparecerá en la pantalla en: mg/L NO⁻² – N
Fosfato (Método HACI			
Concepto	Material	Reactivo	Técnica
Es importante para el	Vaso de precipitación de	Agua destilada	Colocar 10 mL de muestra de agua cruda con

crecimiento de algas y otros microorganismos biológicos debido al nocivo crecimiento de las algas en aguas superficiales.	250 mlHACH DR2800PipetaCelda	Agua residual Reactivo de fosfatos	 el reactivo fosfato Agitar y esperar el tiempo que indica el equipo de HACHDR2800 Colocar la celda de la muestra en blanco(agua destilada),limpiar bien el exterior de la cubeta Posteriormente colocar la muestra con el agua
Sulfato (Método HACH	I 4500-SO4-B)		residual. • El resultado aparecerá en la pantalla en: mg/L P04 ⁻³
Concepto	Material	Reactivo	Técnica
Los altos novel de sulfato pueden corroer tubería, se debe utilizar materiales resistentes a la corrosión para las tuberías, como el tubo plástico.	 Vaso de precipitación de 250 ml HACH DR2800 Pipeta Celda 	 Agua destilada Agua residual Reactivo de sulfato 	 Colocar 10 mL de muestra de agua cruda con el reactivo sulfato Agitar y esperar el tiempo que indica el equipo de HACHDR2800 Colocar la celda de la muestra en blanco(agua destilada),limpiar bien el exterior de la cubeta Posteriormente colocar la muestra con el agua residual. El resultado aparecerá en la pantalla en: mg/L S04-2
Sólidos suspendidos (N	Método HACH 2540-D)		
Concepto	Material	Reactivo	Técnica


Son sólidos constituidos sedimentables y materia orgánica en suspensión o coloidal que son retenidos por un medio filtratante.	 Vaso de precipitación de 250 ml HACH DR2800 Pipeta Celda 	 Agua destilada Agua residual 	 Colocar 10 mL de muestra de agua cruda. Esperar el tiempo que indica el equipo de HACHDR2800 Colocar la celda de la muestra en blanco(agua destilada),limpiar bien el exterior de la cubeta Posteriormente colocar la muestra con el agua residual. El resultado aparecerá en la pantalla en: mg/L
			SST
Sólidos totales (Método	APHA 2540-A)		
Concepto	Material	Reactivo	Técnica
La muestra de agua correctamente mezclada, en una placa previamente secada y pesada a peso constante en un horno a 103 a 105 °C El aumento de peso de placa es el resultado de los sólidos totales	 Capsula de porcelana de 90 mm de diámetro Desecador Horno mufla Balanza de análisis 	Agua residual	 Calentar la capsula limpia en la estufa de 103- 105 °C durante una hora. Elegir un volumen determino de la muestra 25 mL posteriormente transferir a la capsula pesada y dejar que se evapore hasta que se seque. Secar la muestra evaporada durante al menos una hora en el desecador y pesar Pesar el ciclo hasta sea constante.
•	e Oxigeno (Método Estándar Methods	·	
Concepto	Material	Reactivo	Técnica
Se llena una muestra hasta	 Equipo de DBO 	Agua residual	• Caliente o frio la muestra hasta 2°C de la

que rebose el frasco hermético e incubarlo a una temperatura establecida durante 5 días. El oxígeno disuelto se mide antes y después de la incubación el ROB y se calcula mediante la diferencia entre el OD inicial y el final.	 Botellas de incubación Tampones de copa Capsula magnética Probeta graduada Termómetro Embudo 	Hidróxido de sodio Nutrientes	temperatura de incubación (20°C).usando una probeta graduada, vierta 150 ml de la muestra en una botella obscura. • Coloque una capsula magnética para mezclar en cada botella. Añada el contenido de un un Buffer nutritivo para que el DBO, para el crecimiento óptimo de las bacterias si la muestra original requiera. Aplicar grasa en la boca de cada botella para sellar con el tampón de copa. • Usando un embudo adicione un sobre de hidróxido de Litio en el tampón de copa de cada muestra. • Coloque las muestras en el quipo a
			temperatura de 20 ±2 °C dejar por 5 días.
	Oxigeno (Método 5220-C)	Dec effect	Tr.C
Concepto	Material	Reactivo	Técnica 200
Se define como la cantidad de	Pipeta volumétrica	Aguas residual	Homogenizar 100 ml de muestra durante 30
compuestos orgánicos e	Viales con reactivos	• Ftalato ácido	segundos en una mezcladora. Conectar el
inorgánicos son oxidados con	Gradilla	de potasio	reactor de DQO y precalentar a 150 ° C.
una mezcla de ácido crómico		(KHP)	Prepara el reactivo para la curva patrón y
y sulfúrico a ebullición, en			luego realizar diluciones del patrón (KHP).
una disolución acido fuerte			Sostener el tubo en un ángulo de 45 grados y


con un exceso de dicromato de potasio.			 adicionar 2 ml de cada dilución a los tubos. Colocar los tubos en el bloque digestor por 2 horas y posteriormente dejar enfriar a temperatura ambiente, en una gradilla para evitar la formación de precipitado Leer en la pantalla HACH DR2800
Coliformes fecales (Mid	<u> </u>		
Concepto	Material	Reactivo	Técnica
El agua contiene una gran	Pipeta estéril	Agua destilada	Esterilizar el ambiente donde va a trabajar
cantidad de bacterias cuya	 Cultivos para coliformes 	Agua residual	Hacer las disoluciones necesarias de la
necesidades son nutritivas y	 Estufa 		muestra (10^{-3}) , cuidadosamente en un tubo
de T óptima su desarrollo es	Auto clave		esterilizado.
variable, son bacterias que			Colocar 1 ml de muestra en el cultivo.
viven en el intestino de los			Dejar en la incubadora durante 2 días a una
animales y del hombre.			temperatura de 35°C.
Sulfuros (Método Yodo	ométrico $4500-S^{2-}-E$)	<u>'</u>	
Concepto	Material	Reactivo	Técnica
Las bacterias anaerobias	Matraz de 250 mL	Agua residual	Tomar 25 mL de muestra y añadir 1 Ml de
reductoras del sulfato	• Bureta de 25 mL	• Solución de	HCl (6N)+ 5Ml de solución patrón de yodo
producen ácido sulfhídrico al		yodo	(0,025N), esta mezcla tomara un color
ser oxidado por las películas		• Tiosulfato de	amarillo.
microbiales causando		sodio	Titular con Tiosulfato de sodio 0,025N hasta
problemas de corrosión en los			un amarillo pálido.

tubos del alcantarillado		•	Añadir la	solución	de	almidón	y	seguir
			titulando co	on Tiosulfa	to ha	sta un col	lor.	

ANEXO B: PUNTO DE MUESTREO Y MEDICION DEL CAUDAL

ANEXO C: CARACTERIZACION Y TRATAMIENTO DEL AGUA RESIDUAL

ANEXO D: APENDICE DE METCALF&EDDY

TABLA C-1
Propiedades físicas del agua a

Tempe- ratura °C	Peso específico γ, kN/m³	Densidad ^h $ ho$, kg/m ³	Módulo de elasticidad ^b E/10 ⁶ , kN/m ²	Viscosidad dinámica $\mu \times 10^3$, N·s/m ²	Viscosidad cinemática $\nu \times 10^6$, $m^{2/8}$	Tensión superficial ^c σ, N/m	Presión de vapor p _v , kN/m²
0	9,805	999,8	1,98	1,781	1,785	0,0765	0,61
5	9,807	1.000,0	2,05	1,518	1,519	0,0749	0,87
10	9,804	999,7	2,10	1,307	1,306	0,0742	1,23
15	9,798	999,1	2,15	1,139	1,139	0,0735	1,70
20	9,789	998,2	2,17	1,002	1,003	0,0728	2,34
25	9,777	997,0	2,22	0,890	0,893	0,0720	3,17
30	9,764	995,7	2,25	0,798	0,800	0,0712	4,24
40	9,730	992,2	2,28	0,653	0,658	0,0696	7,38
50	9,689	988,0	2,29	0,547	0,553	0,0679	12,33
60	9,642	983,2	2,28	0,466	0,474	0,0662	19,92
70	9,589	977,8	2,25	0,404	0,413	0,0644	31,16
80	9,530	971,8	2,20	0,354	0,364	0,0626	47,34
90	9,466	965,3	2,14	0,315	0,326	0,0608	70,10
100	9,399	958,4	2,07	0,282	0,294	0,0589	101,33

TABLA E-1 (Cont.)

			Con	centracio	ón de ox	ígeno di	suelto, n	ng/l		
Tomas	Salinidad, partes por millar									
Temp., °C	0	5	10	15	20	25	30	35	40	45
15	10,07	9,77	9,47	9,19	8,91	8,64	8,38	8,13	7,88	7,65
16	9,86	9,56	9,28	9,00	8,73	8,47	8,21	7,97	7,73	7,50
17	9,65	9,36	9,09	8,82	8,55	8,30	8,05	7,81	7,58	7,36
18	9,45	9,17	8,90	8,64	8,39	8,14	7,90	7,66	7,44	7,22
19	9,26	8,99	8,73	8,47	8,22	7,98	7,75	7,52	7,30	7,09
20	9,08	8,81	8,56	8,31	8,07	7,83	7,60	7,38	7,17	6,96
21	8,90	8,64	8,39	8,15	7,91	7,69	7,46	7,25	7,04	6,84
22	8,73	8,48	8,23	8,00	7,77	7,54	7,33	7,12	6,91	6,72
23	8,56	8,32	8,08	7,85	7,63	7,41	7,20	6,99	6,79	6,60
24	8,40	8,16	7,93	7,71	7,49	7,28	7,07	6,87	6,68	6,49
25	8,24	8,01	7,79	7,57	7,36	7,15	6,95	6,75	6,56	6,38
26	8,09	7,87	7,65	7,44	7,23	7,03	6,83	6,64	6,46	6,28
27	7,95	7,73	7,51	7,31	7,10	6,91	6,72	6,53	6,35	6,17
28	7,81	7,59	7,38	7,18	6,98	6,79	6,61	6,42	6,25	6,08
29	7,67	7,46	7,26	7,06	6,87	6,68	6,50	6,32	6,15	5,98
30	7,54	7,33	7,14	6,94	6,75	6,57	6,39	6,22	6,05	5,89
31	7,41	7,21	7,02	6,83	6,65	6,47	6,29	6,12	5,96	5,80
32	7,29	7,09	6,90	6,72	6,54	6,36	6,19	6,03	5,87	5,71
33	7,17	6,98	6,79	6,61	6,44	6,26	6,10	5,94	5,78	5,63
34	7,05	6,86	6,68	6,51	6,33	6,17	6,01	5,85	5,69	5,54
35	6,93	6,75	6,58	6,40	6,24	6,07	5,92	5,76	5,61	5,46
36	6,82	6,65	6,47	6,31	6,14	5,98	5,83	5,68	5,53	5,39
37	6,72	6,54	6,37	6,21	6,05	5,89	5,74	5,59	5,45	5,31
38	6,61	6,44	6,28	6,12	5,96	5,81	5,66	5,51	5,37	5,24
39	6,51	6,34	6,18	6,03	5,87	5,72	5,58	5,44	5,30	5,16
40	6,41	6,25	6,09	5,94	5,79	5,64	5,50	5,36	5,22	5,09

ANEXO E: CARACTERIZACION DEL AGUA RESIDUAL ESPOCH

ESPOCH

INFORME DE ANÁLISIS DE AGUAS

Análisis solicitado por: Srta. Yajaira Ramírez Fecha: 22 de febrero al 3 de marzo del 2017

Tipo de muestras: Agua Residual doméstica. Muestra compuesta Localidad: Parroquia Santa Fe de Galán del Cantón Guano

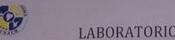
TRABAJO DE TESIS

Análisis Químico

Determinaciones	Unidades	*Método	*Limites	R	esultad	0
pH	Und.	4500-B	6-9	7,62	7,67	8,02
Conductividad	µSiems/cm	2510-B	*******	820	900	1150
Turbiedad	UNT	2130-B		69,5	68,5	80,1
Sólidos totales disueltos	mg/L	2540-C		440	460	620
Nitratos	mg/L	4500-NO3 C		12	21	33
Nitritos	mg/L	4500-NO2-B	*******	13	12	20
Sulfuros	mg/L	4500 S2E	0,5	5	5	5
Nitrógeno Amoniacal	mg/L	4500-NO3 C	30	30		
Nitrógeno total kjendahl	mg/L	HACH 10072	50	900		
Demanda Química de Oxígeno	mg/L	5220-C	200	200	455	462
Demanda Bioquímica de Oxígeno	mg/L	5210-B	100	100	256	280
Fosfatos	mg/L	4500- P-D	******	16,6	14	36
Sulfatos	mg/L	4500- SO4-B	1000	320	170	180
Sólidos Suspendidos	mg/L	2540-D	130	389	160	210
Sólidos Totales	mg/L	2540-A	1600	810	680	750
Coliformes totales	NMP/100ml	Microfiltración		32000		
Coliformes Fecales	NMP/100ml	Microfiltración	10000	21000	*****	*****

*Métodos Normalizados. APHA, AWWA, WPCF 17 ed.

Observaciones:


Atentamente.

Dra. Gina Alvarez R.

RESP. LAB. CALIDAD DEL AGUA

Nota: El presente informe afecta solo a la muestra analizada.

ANEXO F: CARACTERIZACION DEL AGUA RESIDUAL UNACH

LABORATORIO DE SERVICIOS AMBIENTALES

INFORME DE ANALISIS

NOMBRE:

Srta. Yajaira Ramirez

INFORME Nº: 031- 17

EMPRESA: Proyecto de Tesis ESPOCH

Nº SE: 031 - 17

DIRECCIÓN Guano

FECHA DE RECEPCIÓN: 07 - 03 - 17

TELÉFONO: 2900037

FECHA DE INFORME: 10 - 03 - 17

NÚMERO DE MUESTRAS: 1 Agua Residual Domestica, Santa Fe de Galan, Guano TIPO DE MUESTRA:

IDENTIFICACIÓN: MA - 071-17

El laboratorio se responsabiliza solo del análisis, no de la obtención de las muestras.

RESULTADO DE ANÁLISIS

MA - 071-17

PARAMETROS	UNIDADES	MÉTODO/PROCEDIMIENTO	RESULTADO	U(K=2)	FECHA DE ANÁLISIS	
* Detergentes	mg/l	STANDARD METHODS 5540 - C mod	18,2	N/A	07 - 03 - 17	
Acedes y grasas	mg/l	EPA 418 1	46	N/A	07 - 03 - 17	

MÉTODOS UTILIZADOS: Métodos Normalizados para el Análisis de Aguas Potables y Residuales APHA, AWWA, WPCF, STANDARD METHODS 21º EDICIÓN y métodos HACH adaptados del STANDARD METHODS 21º EDICIÓN.

RESPONSABLES DEL ANÁLISIS:

Dr. Juan Carlos Lara R. Benito Mendoza T., PhD.

TECNICO L.S.A.

Pagina I de I

FMC2101-01

t. S.A. Campus Master Edison Riera Km 1 % via a Guano Bloque Administrativo

⁻Los resultados de este informe corresponden unicamente a la(s) muestrare) analizada(s). Se prohibe la reproducción paresal de esse informe on la numerzación del laboratorio.

ANEXO G: TRATAMIENTO DE AGUA RESIDUAL

ESPOCH

INFORME DE ANÁLISIS DE AGUAS

Análisis solicitado por: Srta. Yajaira Ramírez Fecha de Análisis: 15 de junio del 2017 Fecha de Entrega de Resultados: 26 de junio de 2017

Tipo de muestras: Agua Residual doméstica. Muestra compuesta Localidad: Parroquia Santa Fe de Galán del Cantón Guano

TRABAJO DE TESIS

Análisis Químico

Determinaciones	Unidades	*Método	**Limites	Resultados
рН	Und.	4500-B	6-9	6,23
Conductividad	µSiems/cm	2510-B	********	800
Turbiedad	UNT	2130-B		1,25
Sólidos totales disueltos	mg/L	2540-C	*********	550
Nitratos	mg/L	4500-NO3 C		1,7
Nitritos	mg/L	4500-NO2-B		0,021
Sulfuros	mg/L	4500 S2E	0,5	0,3
Nitrógeno Amoniacal	mg/L	4500-NO3 C	30	3,52
Nitrógeno total kjendahl	mg/L	HACH 10072	50	40
Demanda Química de Oxígeno	mg/L	5220-C	200	90
Demanda Bioquímica de Oxígeno	mg/L	5210-B	100	38
Fosfatos	mg/L	4500- P-D		10
Sulfatos	mg/L	4500- SO4-B	1000	208
Sólidos Suspendidos	mg/L	2540-D	130	86
Sólidos Totales	mg/L	2540-A	1600	725
Coliformes totales	NMP/100ml	Microfiltración		Ausencia
Coliformes Fecales	NMP/100ml	Microfiltración	10000	Ausencia

Observaciones:

Atentamente.

Dra. Gina Álvarez R.

RESP. LAB. CALIDAD DEL AGUA

Nota: El presente informe afecta solo a la muestra analizada.

^{*}Métodos Normalizados. APHA, AWWA, WPCF 17 ed.
**TULAS TABLA 10 . Limites de descarga a un cuerpo de agua dulce

ANEXO H: VALIDACIÓN DEL AGUA RESIDUAL

LABORATORIO DE SERVICIOS AMBIENTALES

INFORME DE ANALISIS

NOMBRE:

Yajaira Ramirez

INFORME Nº 085- 17

EMPRESA: Proyecto de Tesis ESPOCH

Nº SE: 085-17

DIRECCIÓN Guano

FECHA DE RECEPCIÓN: 21 - 06 -17

FECHA DE INFORME: 27 - 06- 17

TELÉFONO: 2900037

NÚMERO DE MUESTRAS: 1, Agua residual tratada, Santa Fe de Galán, Guano IDENTIFICACIÓN: MA -215-17 Santa Fe de Galán

TIPO DE MUESTRA:

Agua

El laboratorio se responsabiliza solo del análisis, no de las muestras.

RESULTADO DE ANALISIS

MA - 215-17

PARAMETROS	UNIDADES	MÉTODO/PROCEDIMIENTO	RESULTADO	U(K=2)	FECHA DE
* Aceites y grasas	mg/i	EPA 418 1	24	N/A	ANALISIS
* Detergentes	mg/l	STANDARD METHODS 5540 - C	0.46	N/A	21 - 06 -17 21 - 06 -17
DOO	mg/l	STANDARD METHODS 5220 - D mod	38	+/- 10 %	21 - 06 -17
* DBO5	mg O2/I	STANDARD METHODS 5210 - B	16	N/A	21 - 06 -17
* Sulfuros	mg/i	STANDARD METHODS 4500 S F	0,11	N/A	21 - 06 -17
* Nitrogeno Total	mg/l	STANDARD METHODS 4500 - N - B mod	27,72		21 - 06 - 17
* Nitrogeno Amoniacal	mg/l	STANDARD METHODS 4500 - NH3 B&C	2,60	N/A	21 - 06 -17
Coliformes totales	UFC/100 ml	STANDARD METHODS 9221 C	< 2	N/A	21 - 06 -17
* Coliformes fecales	UFC/100 ml	STANDARD METHODS	(Ausencia)	N/A	21 - 06 -17
recales .		9221 C	(Ausencia)	N/A	21-06-17

MÉTODOS UTILIZADOS: Métodos Normalizados para el Análisis de Aguas Potables y Residuales APHA AVWA, WPCF STANDARD METHODS 21° EDICIÓN y melodos HACH adaptados del STANDARD METHODS 21º EDICIÓN

RESPONSABLES DEL ANÁLISIS:

Dr. Juan Carlos Lara Benito Mendoza T., Ph.D.

TECNICO L.S.A.

Los resultados de este informe corresponden inocamente a fats) initestrats) analozados s Se prohibe la reproducción jurcial de este informe sin la antirizzación del laboratorio