

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

ANÁLISIS DE CONFIABILIDAD, DISPONIBILIDAD Y MANTENIBILIDAD DE MOTORES WAUKESHA EN LA PLANTA DE GENERACIÓN GAS-DIÉSEL DE LA EMPRESA REPSOL ECUADOR

PEDRO MAURICIO CORTEZ MÉNDEZ

Trabajo de Titulación modalidad: Proyectos de Investigación y Desarrollo, presentado ante el Instituto de Posgrado y Educación Continua de la ESPOCH, como requisito parcial para la obtención del grado de:

MAGISTER EN GESTIÓN DEL MATENIMIENTO INDUSTRIAL

Riobamba-Ecuador Febrero 2017

DERECHOS INTELECTUALES

Yo, Pedro Mauricio Cortez Méndez, declaro que soy responsable de las ideas, doctrinas y resultados expuestos en el **Trabajo de Titulación modalidad Proyectos de Investigación y Desarrollo**, y que el patrimonio intelectual generado por la misma pertenece exclusivamente a la Escuela Superior Politécnica de Chimborazo.

FIRMA No. 1803546082

DECLARACIÓN DE AUTENTICIDAD

Yo Pedro Mauricio Cortez Méndez declaro que el presente **Trabajo de Titulación modalidad Proyectos de Investigación y Desarrollo**, es de mi autoría y que los resultados del mismo son auténticos y originales. Los textos constantes en el documento que provienen de otra fuente están debidamente citados y referenciados.

Como autor/a, asumo la responsabilidad legal y académica de los contenidos de este proyecto de investigación de maestría.

Riobamba, Febrero de 2017

Pedro Mauricio Cortez Méndez No. 1803546082

DEDICATORIA

El presente trabajo lo dedico en primer lugar a Dios por permitirme llegar a culminar una etapa más en mi vida profesional. A mí amada esposa por ser mi ayuda idónea y darme ánimos constantemente a lo largo de este camino. A mis hermosas hijas por ser mi principal inspiración y motivo de superación. A mis padres por su amor y apoyo incondicional. A mis hermanos por ser ejemplo de constancia y perseverancia en mi vida.

AGRADECIMIENTO

Mi sincero agradecimiento a Dios, por ser el forjador de mi camino y brindarme la oportunidad de obtener otro triunfo personal.

A mi esposa. Hijas, padres y hermanos, por su amor, trabajo y sacrificios en todos estos años, gracias a ustedes he logrado llegar hasta aquí y convertirme en lo que ahora soy.

A mis amigos incondicionales que hemos sacrificado tiempo con nuestras familias para obtener este logro.

A mis tutores, por su paciencia, ayuda y aportes en la realización del trabajo.

Pedro

RESUMEN

Se realizó un estudio de mantenimiento basado en confiabilidad, disponibilidad y mantenibilidad para reducir los mantenimientos correctivos de motores de combustión interna WAUKESHA en la empresa REPSOL DEL ECUADOR. Se tomó los datos de los mantenimientos realizados a los 7 generadores WAUKESHA en los años 2014-2015 y se los clasificó en función de la cantidad de fallos que han ocurrido y en función de los sistemas que han fallado siendo estos últimos los sistemas de combustible, eléctrico, enfriamiento, escape, ignición, y de lubricación, estos fallos han provocado que la planta de producción de crudo se quede sin energía, es decir las horas que se ha tomado en reparar el fallo, con esto se puede saber cuál de los Generadores pertenecientes a la empresa son los que mayor número de fallos o mayor número de horas de fallo ha tenido en el periodo analizado 2014-2015. Luego de esto se determinó los tiempos de cada uno de los fallos de los generadores en donde el sistema de ignición es el que fallo en todos los generadores y el sistema de combustible solo afecto al generador A, el tiempo medio entre fallos más crítico fue para el generador D con 64,7 horas entre fallos. Con los tiempos medios entre fallos se estableció la disponibilidad, la mantenibilidad y confiabilidad existente en los motores WAUKESHA. Se determinó que realizar el mantenimiento basado en normativa MIL STANDARD 2173 reduce la ocurrencia de fallos, reduciendo así el uso de diésel en la generación de energía, debido a que el mantenimiento se lo realiza en función de parámetros que son cuantitativos en lo que a disponibilidad, confiabilidad y mantenibilidad se refiere. Según el análisis realizado el mantenimiento actual tiene una disponibilidad de 99,05% y con la aplicación del plan de mantenimiento propuesto se logra una disponibilidad de 99.86%.

Palabras clave:

<CONFIABILIDAD><MANTENIBILIDAD><DISPONIBILIDAD><GENERADOR</p>
WAUKESHA><INGENIERÍA DE MANTENIMIENTO><EMPRESA REPSOL> <PLAN DE MANTENIMIENTO><FALLOS>

ABSTRACT

A maintenance study based on reliability, availability and maintainability was carried out to reduce the corrective maintenances of internal combustion engines WAUKESHA at REPSOL DEL ECUADOR enterprise. The maintenance data of 7 generators WAUKESHA from 2014 to 2015 were gotten and classified according to the amount of failures that have occurred and to the systems that have failed such as combustible, electrical, cooling, piping, ignition and lubrication systems. These failures have caused that oil production plant does not have energy, that means if a generator stops working, it stops producing energy, due to a failure originated in some of the generator systems. Therefore, the time that the oil extraction process is stopped, it will depend on the time used to repair the system failures. The registered failure data let us to know exactly which generator must be checked frequently. Later, it is determined the times of each generator failure giving as a result that ignition system failed in all the generators and combustible system affected only the generator A. The most critical mean time was for the generator D with 64.7 hours between failures. Availability, maintainability and reliability existing between WAUKESHA engines were established with the mean time between failures. It is determined that doing maintenance based on the regulation MIL-STD-2173 reduces failure occurrences and the use of diesel when energy is generated since maintenance is carried out based on the quantitative parameters referring to availability, reliability and maintainability. From this analysis, the current maintenance has reached 99.05% of availability, however 99.86% has been reached by applying the present maintenance plan.

Key words:

<RELIABILITY><MAINTAINABILITY><AVAILABILITY><WAUKESHA
GENERATOR><MAINTENANCE ENGINEERING><REPSOL
ENTERPRISE><MAINTENANCE PLAN><FAILURES>

CONTENIDO

	Pág	5.
CAPÍTU	ЛО І	1
1.	PLANTEAMIENTO DEL PROBLEMA	1
1.1	Formulación del problema	4
1.2	Sistematización del problema	4
1.3	Objetivos	4
1.3.1	Objetivo general	4
1.3.2	Objetivos específicos	4
1.4	Justificación de la investigación	5
1.4.1	Justificación teórica	5
1.4.2	Justificación metodológica y práctica	7
1.5	Hipótesis	7
CAPÍTU	ЛО II	8
2.	MARCO TEÓRICO	8
2.1	Contexto operacional de la planta de generación	8
2.2	Motores de combustión interna WAUKESHA	8
2.2.1	Grupo electrógeno	8
2.2.2	Diseño	9
2.2.3	Datos principales	9
2.3	Sistemas de un motor WAUKESHA	0
2.3.1	Aspiración y escape	1
2.3.2	Sistema de enfriamiento1	1
2.3.3	Sistema de lubricación	3
2.3.4	Combustión1	4
2.3.5	Sistema de combustible	5
2.3.6	Sistema de ignición CEC (Custom Engine Control)1	6
2.4	Análisis RAM (Confiabilidad Mantenibilidad y Disponibilidad)1	7
2.5	Confiabilidad 1	8
2.6	Disponibilidad	1
2.7.1	Diferentes disponibilidades de mayor uso empresarial	2
2.7	Mantenibilidad	6
CAPÍTU	ЛО III	1
3.	DETERMINACIÓN DEL ESTADO TÉCNICO ACTUAL DEL SISTEMA DE GENERACIÓN A GAS	1

3.1	Funciones de los elementos.	31
3.1.1	Función sistema de combustible	31
3.1.2	Sistema de enfriamiento	36
3.1.3	Función en el sistema eléctrico	36
3.1.4	Función sistema de escape	37
3.1.5	Función del sistema de ignición	37
3.1.6	Función sistema de lubricación	38
3.2	Fallos en los sistemas de los generadores	39
3.2.1	Fallos en el sistema de combustible	40
3.2.2	Fallos en el sistema de enfriamiento	40
3.2.3	Fallos en el sistema eléctrico	41
3.2.4	Fallos en el sistema de escape	41
3.2.5	Fallos en el sistema de ignición	41
3.2.6	Fallos en el sistema de lubricación	41
3.3	Índices de gestión de equipos	42
3.3.1	Generador GE-1172A	42
3.3.2	Generador GE-1172B	43
3.3.3	Generador GE-1172C	44
3.3.4	Generador GE-1172D	46
3.3.5	Generador GE-1172E	47
3.3.6	Generador GE-1172F	48
3.3.7	Generador GE-1172G	49
3.4	Cálculo del tiempo medio entre fallos	50
3.5	Cálculo de mantenibilidad	51
3.6	Cálculo de confiabilidad	52
3.7	Cálculo de disponibilidad	53
3.8	Análisis de las condiciones técnicas del mantenimiento actual en los mo WAUKESHA	
3.9	Producción económica de generación	55
3.10	Costo económico de mantenimiento correctivo de los Generadores	56
3.10.1	Generador GE-1172A	57
3.10.2	Generador GE-1172B	58
3.10.3	Generador GE-1172C	59
3.10.4	Generador GE-1172D	60
3.10.5	Generador GE-1172E	60
3.10.6	Generador GE-1172F	61
3.10.7	Generador GE-1172G	62

3.10.7	Generador GE-1172G	62
3.11	Análisis de resultados obtenidos	63
3.11.1	Costos de mantenimiento	63
3.11.2	Cantidad de fallos por sistema	64
3.11.3	Cantidad de horas perdidas por mantenimiento correctivo	65
3.11.4	Pérdidas económicas de producción	65
CAPÍT	ULO IV	67
4.	PROPUESTA DEL PLAN DE MANTENIMIENTO DE LOS MOTORE WAUKESHA	
4.1	Desarrollo de las actividades de inspección	67
4.2	Realización del mantenimiento previo al TMEF	68
4.3	Desglose de los elementos reparados o cambiados de cada sistema de los generadores	
4.4	Ajuste de los tiempos medios entre fallas	69
4.5	Mejora de mantenibilidad	70
4.6	Mejora en la confiabilidad	71
4.7	Mejora en la disponibilidad	71
4.8	Comparación de análisis de mantenimiento antes y después de la metodo RAM.	_
4.8.1	Disponibilidad con y sin RAM de GE-1172A	72
4.8.2	Disponibilidad con y sin RAM de GE-1172B	73
4.8.3	Disponibilidad con y sin RAM de GE-1172C	74
4.8.4	Disponibilidad con y sin RAM de GE-1172D	75
4.8.5	Disponibilidad con y sin RAM DE GE-1172E	76
4.8.6	Disponibilidad con y sin RAM de GE-1172F	77
4.8.7	Disponibilidad con y sin RAM de GE-1172G	78
4.8.8	Comparación con y sin RAM entre el promedio de disponibilidad de cad Generador	
4.8.9	Comparación de disponibilidad total con y sin RAM	80
4.9	Propuesta de un Plan de Mantenimiento	82
4.10	Costos de mantenimiento con RAM	92
4.11	Comprobación de la Hipótesis	100
CONCI	LUSIONES	104
RECON	MENDACIONES	106
BIBLIC	OGRAFÍA	107

ÍNDICE DE TABLAS

	Pág
Tabla 1-1. Potencia instalada.	,
Tabla 2-1. Seguimiento anual de la generación de los motores WAUKESHA.	
Tabla 3-1. Horas trabajadas de los motores WAUKESHA	
Tabla 1-3. Fallos del generador WAUKESHA GE-1172-A	4
Tabla 2-3. Detalle de fallos ocurridos en Generador GE-1172A	4
Tabla 3-3. Fallos del Generador WAUKESHA GE-1172-B	4
Tabla 4-3. Detalle de fallos ocurridos Generador GE-1172B.	4
Tabla 5-3. Fallos del Generador WAUKESHA GE-1172-C	4
Tabla 6-3. Detalle de fallos ocurridos en Generador GE-1172C	4
Tabla 7-3. Fallos del Generador WAUKESHA GE-1172-D.	4
Tabla 8-3. Detalle de fallos ocurridos en Generador GE-1172D	4
Tabla 9-3. Fallos del Generador WAUKESHA GE-1172-E	4
Tabla 10-3. Detalle de fallos ocurridos en Generador GE-117E	4
Tabla 11-3. Fallos del Generador WAUKESHA GE-1172-F	4
Tabla 12-3. Detalle de fallos ocurridos en Generador GE-117F	4
Tabla 13-3. Fallos del Generador WAUKESHA GE-1172-F.	4
Tabla 14-3. Detalle de fallos ocurridos en Generador GE-117G	5
Tabla 15-3. Tiempo medio entre fallos de los sistemas de Los motores	
WAUKESHA Tabla 16-3. Tiempo medio para la reparación	5 5
Tabla 17-3. Confiabilidad de los grupos electrógenos	5
Tabla 18-3. Disponibilidad de los grupos electrógenos	5
Tabla 19-3. Horas de fallo de los Generadores	5
Tabla 20-3. Producción económica diaria de cada Generador	5
Tabla 21-3. Producción económica por hora de cada generador	5
Tabla 22-3. Costo de mantenimiento correctivo GE-1172A	5
Tabla 23-3. Costo de mantenimiento correctivo GE-1172B	5
Tabla 24-3. Costo de mantenimiento correctivo GE-1172C	5
Tabla 25-3. Costo de mantenimiento correctivo GE-1172D	6
Tabla 26-3. Costo de mantenimiento correctivo GE-1172E	6
Tabla 27-3. Costo de mantenimiento correctivo GE-1172E	6
Tabla 28-3 Costo de mantenimiento correctivo GE-1172G	6

Tabla 29-3.Resultados obtenidos de MTBF en horas
Tabla 30-3. Costo de mantenimiento por Generador
Tabla 31-3. Cantidad de fallos por sistema.
Tabla 32-3. Horas de pérdida en mantenimientos correctivos
Tabla 33-3. Pérdidas económicas por paros en generadores
Tabla 1-4. Número de horas a las que se realizara las tareas de inspección
Tabla 2-4. Número de horas a las que se realizará las tareas de
Mantenimiento
Tabla 3-4. Base de datos a ser llenada conforme se realicen los mantenimientos.
Tabla 4-4. Mejora en índice mantenibilidad
Tabla 5-4. Mejora en índice de confiabilidad
Tabla 6-4. Mejora en índice disponibilidad
Tabla 7-4. Disponibilidad con y sin RAM en GE-1172A
Tabla 8-4. Comparación grafica con y sin RAM GE 1172A
Tabla 9-4. Disponibilidad con y sin RAM en GE-1172B
Tabla 10-4. Comparación grafica con y sin RAM GE 1172B
Tabla 11-4. Disponibilidad con y sin RAM en GE-1172C
Tabla 12-4. Comparación grafica con y sin RAM GE 1172C
Tabla 13-4. Disponibilidad con y sin RAM en GE-1172D
Tabla 14-4. Comparación grafica con y sin RAM GE 1172D
Tabla 15-4. Disponibilidad con y sin RAM en GE-1172E
Tabla 16-4. Disponibilidad con y sin RAM en GE-1172E
Tabla 17-4. Disponibilidad con y sin RAM en GE-1172F
Tabla 18-4. Disponibilidad con y sin RAM en GE-1172F
Tabla 19-4. Disponibilidad con y sin RAM en GE-1172G
Tabla 20-4. Disponibilidad con y sin RAM en GE-1172G
Tabla 21-4. Comparación con y sin RAM entre el promedio de disponibilidad de o
Generador
Tabla 22-4. Disponibilidad promedio de los Generadores con y sin RAM
Tabla 23-4. Comparación de disponibilidad total con y sin RAM
Tabla 24-4. Comparación grafica de disponibilidad total con y sin RAM
Tabla 25-4. Plan de mantenimiento sistema de combustible
Tabla 26-4. Plan de mantenimiento sistema eléctrico.
Tabla 27-4. Plan de mantenimiento sistema enfriamiento.

Tabla 28-4. Plan de mantenimiento sistema enfriamiento	89
Tabla 29-4. Plan de mantenimiento sistema de ignición	90
Tabla 30-4. Plan de mantenimiento sistema de lubricación	91
Tabla 31-4. Costos de mantenimiento RAM en sistema de combustible	92
Tabla 32-4. Costos de mantenimiento RAM en sistema de eléctrico	93
Tabla 33-4. Costos de mantenimiento RAM en sistema de eléctrico	95
Tabla 34-4. Costos de mantenimiento RAM en sistema de escape	96
Tabla 35-4. Costos de mantenimiento RAM en sistema de ignición	97
Tabla 36-4. Costos de mantenimiento RAM en sistema de ignición	98
Tabla 37-4. Costos generales de mantenimiento con RAM	99
Tabla 38-4. Comparación grafica costos con y sin análisis RAM	100
Tabla 39-4. Comparación grafica costos con y sin análisis RAM	100
Tabla 40-4. Datos observados y esperados.	101
Tabla 41-4. Calculo de Chi cuadrado	101
Tabla 42-4 Distribución Chi cuadrado	102

CAPÍTULO I

1. PLANTEAMIENTO DEL PROBLEMA

REPSOL es una compañía energética global cuyo principal objetivo es contribuir en la construcción de un modelo energético sostenible a largo plazo a través del desarrollo de energías amigables que beneficien el crecimiento económico de la sociedad y el bienestar de las personas. Está localizada en Ecuador en la provincia de Orellana y tiene a su cargo la producción de crudo del bloque 16, localizado en la provincia de Francisco de Orellana y Sucumbíos en la Región Amazónica Ecuatoriana.

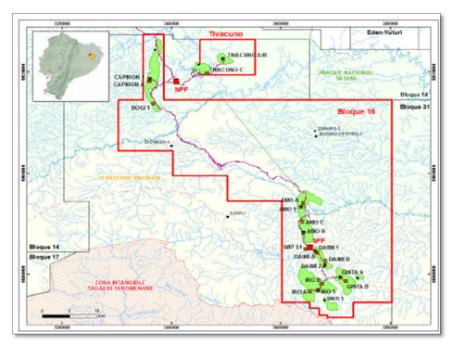


Figura 1-1. Ubicación del Bloque 16 Fuente: REPSOL Bloque 16. SGI REPSOL (2015)

Para que REPSOL Ecuador pueda mantener sus operaciones, necesita de un sistema de autogeneración eléctrica, cuyas fuentes de energía primaria utilizadas son: el crudo, el gas asociado a la producción y el diésel. En este sistema, el crudo produce el 42% de energía a través de los motores Wartsila Vasa 18V32; el gas produce el 24% de energía con motores WAUKESHA y una turbina General Electric Diésel-Gas LM250 y el diésel llega a proveer el 34% de energía utilizando dos turbinas General Electric Diesel

LM2500 y dos turbinas Caterpillar modelo Solar Centauro 50- Diesel, lo que muestra la energía total producida como se muestra en la tabla 1-1.

Tabla 1-1. Potencia instalada

			Potencia	Potencia Intalada
Equipo	Cantidad	Combustible	MW	MW
Turbina Diesel Solar	2	Diesel	3,750	7,500
Generador Detroit	1	Diesel	0.250	0.300
Generador Caterpillar	1	Diesel	1,135	1,300
Total potencia Instalada Shushu	findy			8,800
Turbina Diesel GE LM2500	2	Diesel	21,450	42900
Generador Gas Waukesha	7	Gas	1,050	7350
Generador Detroit	1	Diesel	1,000	1,000
Total potencia Instalada NPF				51250
Turbina Diesel GAS GE LM2500		Gas/Diesel	21,450	21,450
Generador Gas Waukesha	15	Gas	1,050	15750
Generador Wartisila	7	Crudo	6,000	42000
Generador Caterpillar	1	Diesel	1,135	1135
Generador Caterpillar	1	Diesel	1,600	1600
Total potencia Instalada SPF				81,935
Total potencia Instalada Bloque	16			141,985

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Desde el año 2012 la calidad del gas se ha visto afectada por la disminución del grado API del crudo, que causó la disminución de la disponibilidad de los equipos al 87% anual, incrementándose los mantenimientos correctivos en lugar de preventivos; de esta manera para la extracción de crudo se reduce la energía producida con gas y se la reemplaza por diésel, provocando que el costo de barril producido sea más elevado.

La tabla 2-1, que corresponde al año 2015 muestra los límites inferiores y los objetivos en los indicadores de confiabilidad y disponibilidad de los motores; y se evidencia que los objetivos deseados en estos dos indicadores no se han cumplido, existiendo un decremento importante del 11% en la confiabilidad y 10% en la disponibilidad; por lo tanto existe un problema que requiere la búsqueda de una solución eficiente.

Tabla 2-1. Seguimiento anual de la generación de los motores WAUKESHA.

Promedio año	Confiabilidad (%)	Límite inferior (%)	Objetivo (%)	Disponibilidad (%)	Límite inferior (%)	Objetivo (%)
2015	82	98	99	77	94	95

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Por tanto se observa en los generadores que el índice de confiabilidad ha disminuido en un 16% y el de disponibilidad en un 17%, existiendo una drástica disminución en el año 2015.

A continuación la Tabla 3-1 hace referencia a la Mantenibilidad de los motores con indicadores de:

- Número de horas trabajadas por máquina,
- Número de horas en las que el activo se encuentra apagado pero a la espera de ser utilizado,
- Muestra además un decremento en los mantenimientos preventivos (fijados para cada 1000 horas de uso) cuyos valores se encuentran detallados más adelante; y un aumento considerable en los mantenimientos correctivos implicando costos adicionales para la empresa.

Tabla 3-1. Horas trabajadas de los motores WAUKESHA.

Año	Horas trabajadas	Horas reserva	Horas Mantenimiento correctivo
2015	13720	73233	27844

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

En la tabla anterior existe un número significativo de horas de mantenimiento correctivo realizado a los generadores de la empresa, este indicador deberá ser corregido es decir obtener una reducción en los mantenimientos.

La planta de generación a gas motivo de este estudio, está compuesta por 22 motores marca WAUKESHA modelo L7042 GSI.

1.1 Formulación del problema

¿La falta de un análisis del mantenimiento preventivo en los motores WAUKESHA, provoca altos costos de mantenimiento correctivo, disminución de la producción y falta de eficiencia energética en la planta de generación a gas-diésel de la empresa REPSOL ECUADOR?

1.2 Sistematización del problema

¿De qué forma se podrá implementar la metodología en el análisis de confiabilidad, disponibilidad y mantenibilidad para los motores WAUKESHA?

¿Cuál es la incidencia que tendrá la producción de crudo con la implementación del análisis de confiabilidad, disponibilidad y mantenibilidad en los motores WAUKESHA.?

¿Cuál será la metodología para implementar el análisis de confiabilidad, disponibilidad y mantenibilidad para los motores WAUKESHA?

1.3 Objetivos

1.3.1 *Objetivo general*

Realizar un análisis de confiabilidad, disponibilidad y mantenibilidad de los motores WAUKESHA en la planta de Generación Gas-Diésel de la Empresa REPSOL Ecuador para disminuir los costos de mantenimiento correctivo.

1.3.2 Objetivos específicos

Elaborar un marco teórico referente a la confiabilidad, disponibilidad, y mantenibilidad.

- Analizar las condiciones técnicas del mantenimiento actual en los motores WAUKESHA.
- Realizar un estudio de las actividades de mantenimiento correctivo de los últimos años.
- Proponer un plan de mantenimiento basado en la confiabilidad, disponibilidad y mantenibilidad a los motores WAUKESHA.

1.4 Justificación de la investigación

1.4.1 Justificación teórica

La conexión que existe entre las líneas de investigación de la formación del programa de posgrado que se fundamentan en el "diseño y elaboración de planes de mantenimiento aplicando la Ingeniería de la fiabilidad", el "análisis y modelaje probabilísticos de índices de confiabilidad, mantenibilidad y disponibilidad.", con la estrecha relación con las empresas y sus planes de mantenimiento centrados en la confiabilidad, las cuales se ven afectadas positivamente no sólo en sus activos sino también en el personal que labora en ellas.

El RAM (Confiabilidad Mantenibilidad y Disponibilidad), optimiza el servicio de los activos de la empresa. Los trabajadores del área de mantenimiento se verán obligados a adoptar formas completamente nuevas de pensar y actuar, como ingenieros y gerentes. Al mismo tiempo, las limitaciones de los sistemas de mantenimiento son cada vez más evidentes, no importa en qué medida se encuentren informatizados (UTALCA, pág. 72).

Debido a grandes cambios, los administradores de todo el mundo están buscando un nuevo enfoque para el mantenimiento. Se quiere evitar las salidas en falso y callejones sin salida que siempre van acompañadas de grandes trastornos. En su lugar, se busca un marco estratégico que sintetice los nuevos desarrollos en un patrón coherente, de modo que puedan evaluar con sensatez y aplicar los criterios que probablemente serán de mayor valor para ellos y sus empresas. Uno de éstos es la metodología actual de RAM que en la industria se centra en el mantenimiento preventivo (PM) desarrollado para el

equipamiento. Existen muchas clases de RAM que se practican en el mundo. La versión clásica es un método de determinación de Mantenimiento Preventivo (PM), basado en el análisis de las posibles averías funcionales (UTALCA)

La criticidad es un parámetro que permite priorizar las actividades de mantenimiento al relacionar la frecuencia de un evento potencial no deseado con sus consecuencias probables con el apoyo de la hoja de información (PEMEX, 2006).

La empresa generadora de bienes y/o servicios que utilizan instalaciones, edificios máquinas, herramientas, utensilios, dispositivos, etc., para lograr su objetivo social, necesitan que sus activos se mantengan en un estado de funcionamiento, confiabilidad, mantenibilidad y disponibilidad acorde a sus necesidades y procurar que su vida útil sea la máxima posible y a menor costo; lo cual se logra a través del mantenimiento, mismo que actúa como una entidad de servicio a la producción. La forma de maximizar la eficacia, la eficiencia, la efectividad, la productividad de los activos, es mediante el conocimiento y aplicación de las leyes que gobiernan entre producción y mantenimiento (MORA, 2009)

Según Luis Felipe Sexto, el primer paso de un proceso RAM es, definir las funciones de cada activo en su contexto operacional y sus correspondientes estándares de rendimiento deseados, programas de mantenimiento para ser ejecutados por el personal de mantenimiento, procedimientos operativos para ser ejecutados por el personal de operación; así como el listado de los aspectos en los que deben realizarse cambios al diseño del activo o a la forma en que se opera, de este forma se enfrentarán las situaciones en las que no se alcanza el rendimiento deseado con la configuración actual, y se podrá obtener mejoras y cambias significativos.

- Mayor seguridad e integridad ambiental.
- Mejora en el rendimiento.
- Favorable relación costo-efectividad del mantenimiento.
- Se alarga la vida útil de los activos.

- Amplia base de datos disponible.
- Mayor motivación del personal.

1.4.2 Justificación metodológica y práctica.

El desempeño de las actividades laborales en el área petrolera, específicamente en lo concerniente a la extracción de gas natural a través del uso de los motores WAUKESHA, permiten conocer que el trabajo se desarrolla de forma "amigable con el ambiente"; si se considera que se debe aprovechar el potencial de los pozos, de los cuales se obtiene petróleo gas y agua, este último previo a un tratamiento químico se reinyecta a los pozos; el crudo en sí y el gas que se obtienen gratuitamente por decir un término cercano, y que para no ser quemado se lo aprovecha para generar energía, en especial el gas.

El análisis de confiabilidad, disponibilidad y mantenibilidad de motores WAUKESHA que se desea aplicar en la planta de generación gas-diésel de la empresa REPSOL-Ecuador, posee características importantes como: el conocimiento más acertado sobre el tiempo en el cual se deberá dar un mantenimiento a los activos, el control más exacto de los repuestos que se requieren para los mantenimientos, la disponibilidad de los motores en caso de ser demandados; y principalmente el ahorro de dinero en el rubro de mantenimiento para la empresa.

1.5 Hipótesis

La aplicación de la metodología RAM (confiabilidad, disponibilidad y mantenibilidad) en los motores a gas WAUKESHA en la planta de generación gas-diésel de la empresa REPSOL Ecuador incrementa la eficiencia operativa de sus generadores WAUKESHA.

CAPÍTULO II

2. MARCO TEÓRICO

2.1 Contexto operacional de la planta de generación

Las siete unidades de generación a gas operan en el sector norte NPF, del boque 16, generan constantemente una carga de 5,4 MW, sin embargo esto dependerá de la existencia de las condiciones de abastecimiento de gas o las condiciones de mantenimiento

El sistema eléctrico abastece a las siguientes cargas:

Well Pads (Islas de producción) compuestas por:

- Bombas electro-sumergible, para la extracción del fluido, bombas para la reinyección de agua de formación.
- **>** Bombas centrifugas para el envío del fluido a la planta de producción.
- Planta de proceso compuesta por deshidratadoras compresores, bombas, separadoras, etc.
- Servicios auxiliares bombas de aceite, refrigeración a 480V para funcionamiento de las unidades de generación y proveer de energía al campamento.

2.2 Motores de combustión interna WAUKESHA

2.2.1 Grupo electrógeno

Para que un motor de generación eléctrica pueda operar recorrerá varias etapas, iniciando por la separación de los elementos del crudo, agua y gas, este último se dirige a la planta de generación por medio de tuberías hasta llegar a los compresores de gas elevando la presión, como lo muestra la figura 1-2. (REPSOL ECUADOR, 2015)

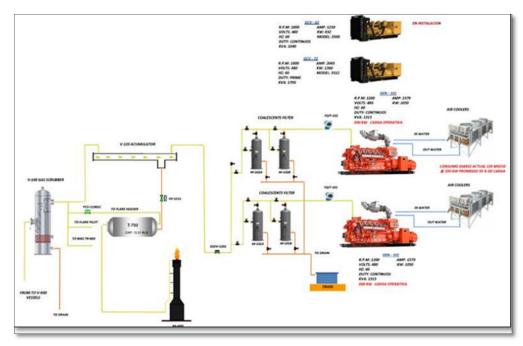


Figura 1-2. Proceso de generación eléctrica de motores WAUKESHA. Fuente: REPSOL Bloque 16. SGI REPSOL (2015)

2.2.2 Diseño

El grupo electrógeno está formado por un motor a gas WAUKESHA (VHP-L7042GSI) // KATO (1050 kW/6 polos/1200 rpm/ 4160 V/60 Hz). (REPSOL ECUADOR, 2015)

2.2.3 Datos principales

El grupo electrógeno utiliza un motor gas WAUKESHA como impulsor principal del Generador. El motor VHP-L7042GSI es un motor de cuatro tiempos, tiene un sistema naturalmente aspirado con turbina alimentadora y radiador (intercooler). En la actualidad el motor ha sido modificado para obtener un mejor rendimiento a través del sistema ESM Control del Sistema de Máquina (Engine Control System), el cual incluye elementos como la regulación de la sincronización, velocidad del turbo compresor, parada del equipo, detección de detonación, herramientas de diagnóstico, registros entre otros. (REPSOL ECUADOR, 2015)

Los primeros motores desarrollados por la marca WAUKESHA son los motores de alto poder VHP (Very High Power) que fueron fabricados a mediados de 1960; actualmente existen más de 20000 motores VHP alrededor del mundo y se actualizan constantemente. A partir del 2005, en su cuarta serie, se implementó su sistema de control ESM. (REPSOL ECUADOR, 2015)

- Configuración, en V
- Número de cilindros, 12
- Diámetro de los cilindros, 9,375"
- Carrera, 8,5"
- ➤ Velocidad, 1200 r.p.m.
- Desplazamiento del pistón por cilindro, 28,15 1
- Número de válvulas, 2 válvulas de entrada, por cilindro, 2 válvulas de salida
- Dirección de giro mirando al mando, en sentido de las agujas del reloj
- Potencia de régimen del motor 1050 kW.

Figura 2-2. WAUKESHA VHP Fuente: REPSOL Bloque 16. EnDyn (2015)

2.3 Sistemas de un motor WAUKESHA

2.3.1 Aspiración y escape

El sistema de aspiración y escape debe tener cumplir condiciones específicas: 5 pies cúbicos de aire por minuto y por caballo de fuerza, las cuales permitirán un obtener un perfecto funcionamiento. (REPSOL ECUADOR, 2015)

2.3.2 Sistema de enfriamiento

Distribución de la energía

La figura 3-2 muestra la eficiencia y la distribución (rechazo de calor) de energía térmica de un motor típico. La energía que ingresa al motor es la producida por el combustible (100%). A menudo la única energía utilizada por los motores para conducir el volante del motor (aproximadamente un 40% de lo que está disponible); y la energía de calor restante con frecuencia se desperdicia en los otros sistemas con son escape, enfriamiento, lubricación. (REPSOL ECUADOR, 2015)

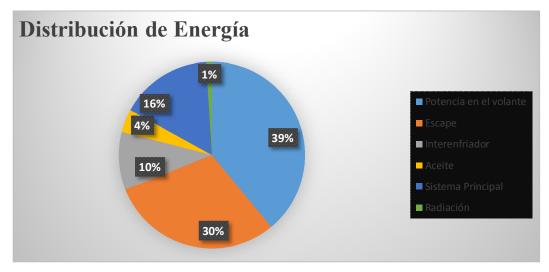


Figura 3-2. Distribución de energía de un motor de combustión interna. Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Tanque de compensación dividido. Es un tanque de expansión y un tanque de deaeración en una sola unidad.

Tanque de expansión. Se requiere el uso de un tanque de expansión porque el refrigerante (anticongelante) se expande a medida que su temperatura se eleva. Este no debe ser muy grande porque el sistema no desarrollará la presión suficiente y no puede

ser muy pequeño dado que el refrigerante se derramará al calentarse el motor. El tanque de expansión debe de estar en el punto más elevado del sistema de refrigeración para así poder obtener la ventilación apropiada. (REPSOL ECUADOR, 2015)

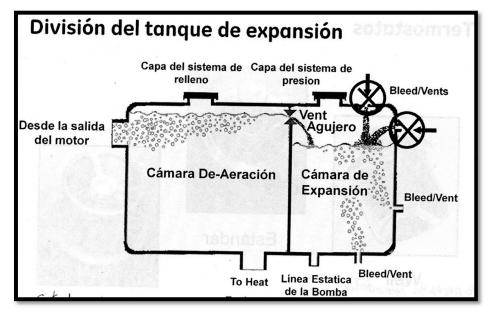


Figura 4-2. División del tanque de expansión Fuente: GE WAUKESHA. Elaborado por Cortez P. (2015)

Tanque de-aeración. El agua proveniente de los termostatos del motor (los mismos que son mecánicos, y se abren de acuerdo a la temperatura del agua, haciendo que recircule en la máquina o vaya al tanque) entra a la cámara de-aeración del tanque. Puesto que el volumen del tanque es relativamente grande, la velocidad se reduce drásticamente, permitiendo así que el aire atrapado en el refrigerante suba a la parte superior del tanque; el aire se purga a la cámara de expansión del tanque a través de un orificio pequeño. (REPSOL ECUADOR, 2015)

Circuito del sistema auxiliar. La bomba auxiliar alimenta al ínter enfriador (intercooler, que se encuentra bajo el turbo) y al enfriador de aceite. En los motores turbo carburados el sistema auxiliar es un sistema completamente independiente el cual enfría al ínter enfriador y al enfriador de aceite. En los motores de aspiración manual el circuito auxiliar solo enfría al enfriador de aceite y en la mayoría de los casos este sistema usa

el mismo refrigerante que el sistema principal. En resumen sus dos funciones son: Mantener la temperatura adecuada del aire que entra a un motor turbo carburado (ínter enfriador) y mantener la temperatura adecuada del aceite lubricante; de manera general suelen presentarse algunos problemas:

- Depósitos (incrustaciones minerales, depósitos de compuestos de silicón).
- Corrosión.
- Cavilación (proceso de erosión puramente mecánico causado por el aplastamiento o colapso repetido de burbujas de vapor atrapadas en un líquido).

2.3.3 Sistema de lubricación

Para obtener un perfecto funcionamiento de este sistema deberá poseer las siguientes características:

- Capacidad de aceite 276 litros, aproximadamente 73 galones.
- Enfriador de aceite
- Filtro de aceite
- Bomba de aceite
- Bomba de pre-lubricación.

La bomba de pre-lubricación es un motor de emergencia (stand-by) que debe estar listo para arrancar en cualquier momento por lo que es imperativo que se estabilice la presión de aceite inmediatamente que arranca el motor, para eso se utiliza una bomba de pre-lubricación que opera eléctricamente cuando el motor no está funcionando, el propósito de la bomba es asegurar que las cavidades internas del motor estén llenas de aceite para que cuando el motor arranque, se pueda establecer la presión de aceite inmediatamente ya que no hay demora en llenar con aceite la parte superior del motor. (REPSOL ECUADOR, 2015)

2.3.4 Combustión

Para que se pueda llevar a cabo la combustión tienen que estar presentes: oxigeno, calor (proveniente de la bujía) y combustible. El tipo de combustión es un factor determinante en que tan rápido responde el motor a los cambios de carga, cuanto combustible se consume y la temperatura de la combustión. (REPSOL ECUADOR, 2015)

Combustión rica. Hay más combustible y aproximadamente la misma cantidad de oxigeno (respecto a la combustión estequiométrica-ideal). El motor tendrá la capacidad de reaccionar más rápidamente a los cambios de carga y también podrá soportar la mayor carga, pero el consumo de combustible va a aumentar. (REPSOL ECUADOR, 2015)

Combustión pobre. Existe menos combustible en la misma cantidad de oxígeno, el motor opera ahorrando combustible pero pierde potencia.

Combustión anormal. Se encuentran la detonación y la pre-ignición.

Detonación.- Es el auto ignición de la mezcla de gas en la cámara de combustión. Es causada por el calor y la presión de la carga de combustible que se está quemando, causando así la ignición del combustible en otra parte de la cámara de combustión alejada de la llama frontal original, la detonación limita el rendimiento y la potencia total del motor se evidencia un tercer factor, que es el tiempo Dónde la mezcla se ve expuesta a dicha temperatura y presión. (REPSOL ECUADOR, 2015)

Entre los principales promovedores de la detonación están:

- Temperaturas más altas en el cilindro
- Índice de detonación bajo
- Adelanto del tiempo de encendido
- Aumentar la relación de compresión
- Presiones de entrada más altas
- > Temperaturas elevadas del líquido de enfriamiento
- Velocidades de rotación más lentas
- Humedad atmosférica baja

- Carga elevada del motor
- Pre-ignición.

La pre-ignición se inicia cuando la combustión de la mezcla antes de que se genere la chispa en la bujía.

- Entre los promovedores de pre-ignición tenemos:
- Depósitos incandescentes en el cilindro
- Bujía con un rango de calor incorrecto
- Válvula que se está quemando
- Corona del pistón sobre calentada

La detonación puede causar pre-ignición, causando que pequeñas partículas de aluminio se desprendan de la corona del pistón y se depositen en la cabeza y las válvulas. Estas partículas se calientan al rojo vivo, por tanteo pueden causar el encendido prematuro de la mezcla de aire y combustible. (REPSOL ECUADOR, 2015)

De igual manera la pre-ignición puede ocasionar detonación, la pre-ignición genera un avance neto en el tiempo de encendido del motor. (REPSOL ECUADOR, 2015)

WKI (WAUKESHA KNOCK INDEX)

Se refiere al índice que muestra la habilidad del combustible para resistir la detonación. (Poder calorífico y estabilidad del combustible). Un valor bajo, demanda retraso del tiempo de encendido y una reducción de potencia. Es importante indicar que el valor típico para el gas natural es 91. (REPSOL ECUADOR, 2015)

2.3.5 Sistema de combustible

La función del sistema de combustible es mantener la relación de MAC (mezcla de aire y combustible) a través de todas las variaciones de la carga del motor y debe suministrar la mezcla en las cantidades adecuadas. (REPSOL ECUADOR, 2015)

Está formado por: carburador y regulador.

El carburador.- se parece a una válvula mezcladora que controla el combustible en relación al aire. El carburador logra hacer esta tarea porque mide la cantidad de aire que ingresa y entonces permite que la cantidad correcta de combustión fluya y se mezcle con el aire. (REPSOL ECUADOR, 2015)

Regulador de presión.- Válvula Fisher.

La relación de la MAC en el motor es el resultado de una interacción entre el carburador y el regulador. Se puede pensar que el carburador es un orificio ajustable, mientras que el regulador determina la presión del gas que pasa por dicho orificio. Si se cambia uno de los dos, ya sea la presión o el tamaño del orificio, el resultado será un cambio en el flujo y la relación de la MAC. El carburador determina la MAC por volumen, mientras que el regulador determina la MAC por presión. (REPSOL ECUADOR, 2015)

2.3.6 Sistema de ignición CEC (Custom Engine Control).

El módulo de ignición se encarga de controlar el tiempo de ignición, permitiendo que la máquina trabaje mejor y con más potencia, con bajas emisiones, menor cantidad de paradas e incremente la vida útil de las bujías. Este módulo funciona leyendo las señales del pickup de efecto Hall que determinan la posición exacta del eje sabiendo entonces que cilindro debe funcionar. El tiempo de ignición puede ser cambiado a través de 2 interruptores con 16 posiciones, colocados en la parte derecha del IM interruptor de tiempo (timing switches). Además existe un selector de tres posiciones para fijar (predeterminar) el módulo para un modelo específico de máquina. (REPSOL ECUADOR, 2015)

El módulo tiene tres focos de señalización (LEDS): *Power LED*, indica que existe alimentación al módulo; *Pickup LED*, y muestra que la señal de los sensores de efecto hall están fallando, el cableado es incorrecto o la máquina está en reposo; *Application LED*, que se enciende cada vez que el módulo detecta un patrón magnético diferente al modelo de la máquina o el interruptor (switch) (Ver TROUBLESHOOTING en IM Custom Engine Control Ignition Module 5.00-2). (REPSOL ECUADOR, 2015)

Una de las ventajas del sistema CEC es la capacidad que tiene para comunicarse con otros módulos disponibles para control del motor. Como el DSM, que es un módulo detector de detonación. Con el DSM conectado los interruptores de tiempo (timing switches) en el IM no funcionan y el tiempo varía de acuerdo a valores reseteados. Módulo DSM. (REPSOL ECUADOR, 2015)

El módulo DSM tiene la habilidad de mantener operando al motor sin detonaciones y al mismo tiempo mantener la economía de combustible y otros parámetros de desempeño del motor. (REPSOL ECUADOR, 2015)

Este módulo detecta las vibraciones generadas en cada cilindro porque se usan sensores individuales que miden una gama específica de frecuencias generadas por las detonaciones. (REPSOL ECUADOR, 2015)

El módulo tiene dos interruptores para el tiempo de encendido, los cuales se encuentran ubicados a un lado de la caja pero solo uno de los interruptores está en control. La condición del cable D es lo que determina cuál de los dos interruptores está activo. Si el cable D no está conectado a tierra o sea el circuito está abierto, el interruptor B está en control. (REPSOL ECUADOR, 2015)

Estos interruptores pueden girar a cualquier posición, cambiando así el tiempo de encendido de todos los cilindros. El tiempo de encendido cambiará un grado por cada tope del interruptor. (REPSOL ECUADOR, 2015)

El módulo está equipado con señalizaciones como: encendido, alarma y apagado completo del equipo, (power, alarm and shutdown) y un LCD localizado dentro del módulo, el mismo que muestra el status del sistema a través de códigos. (REPSOL ECUADOR, 2015)

2.4 Análisis RAM (Confiabilidad Mantenibilidad y Disponibilidad).

Confiabilidad Mantenibilidad y Disponibilidad (RAM según su sigla en inglés) es una tecnología orientada a la determinación de los requerimientos de mantenimiento de los

activos físicos. Aunque su basamento en esencia ya estaba planteado en los años 70, no es hasta la década de los 90 que estas ideas han madurado, se han ajustado y extendido con mayor fuerza por América Latina. Aunque sería totalmente inexacto afirmar que goza de una generalización privilegiada en la mayoría de las empresas de los países con elevado desarrollo. (REPSOL ECUADOR, 2015)

Cuando se ha requerido aplicar el concepto de tecnologías de mantenimiento a los daños de maquinaria y paras producidas en la empresa REPSOL, se ha generado un conflicto entre los grupos de trabajo de las diferentes áreas: es decir que el sector de mantenimiento exige la cooperación para desarrollar un trabajo conjunto con otros sectores sean estos: organización, producción u otros, cada uno de ellos trabajan de forma diferente bajo el erróneo concepto de producción sin mantenimiento. Entonces, es imposible avanzar, y alcanzar las mismas metas, provocando una evidente incompatibilidad en la forma de entender los procesos de la organización y producción en equipo. Por lo que se vuelve indispensable involucrar a los operadores de las otras áreas en los procesos que desarrolla la empresa pero bajo el "esquema de producción con mantenimiento" (REPSOL ECUADOR, 2015)

2.5 Confiabilidad

El término "fiabilidad" también se utiliza para designar el valor de la confiabilidad y puede definirse a su vez como una probabilidad." (L.F., 2005)

El término fiabilidad o confiabilidad es medible a través del MTBF

➤ <u>MTBF</u> (Mean Time Between Failures): es el tiempo medio entre fallas y refleja con qué frecuencia ocurre una detención. (L.F., 2005)

$$MTBF = \frac{T5 + T6 + T7}{n} = \frac{\text{tiempo total de funcionamiento}}{\text{número de fallos}}$$
 Ecuación (1)

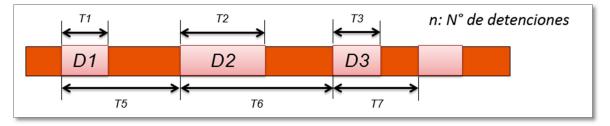


Figura 5-2. Detención de un equipo

Fuente: PLACENCIA, Sebastián. Índice de clase mundial Ecuador 2014

En dónde D1-D2-D3 son las detenciones a través del tiempo.

La medida de la confiabilidad de un equipo es la frecuencia con la cual ocurren las fallas. Si no existen fallas, el equipo sería 100% confiable, si la frecuencia de fallas es muy baja, entonces la confiabilidad del equipo es aún aceptable, pero si es muy alta, el equipo es poco confiables. (Gutierrez, 2009)

La función de confiabilidad, supervivencia o fiabilidad R(t) es definida como la probabilidad de que un activo funcione adecuadamente durante un período determinado bajo condiciones operativas específicas que pueden ser por ejemplo: condiciones de presión, temperatura, velocidad, tensión o forma de una onda eléctrica, nivel de vibraciones... etc. (LOPEZ, 2012)

Es común representar a la fiabilidad con la letra R ya que proviene de la palabra inglesa Reliability, además de una medida de la fiabilidad es el MTBF (Mean Time Between Failures), la cual se relaciona con la duración media entre fallos, y se puede expresar:

$$MTBF = \int_0^\infty R(t)dt$$
 Ecuación (2)

Dónde: R(t) es la función de la confiabilidad

Según (López, 2012) en la práctica, la fiabilidad se mide como el tiempo entre ciclos de mantenimiento o el tiempo medio entre dos fallos consecutivos MTBF, y esto

puede medirse en general por horas, kilómetros, horas de vuelo, piezas producidas, etc. (LOPEZ, 2012)

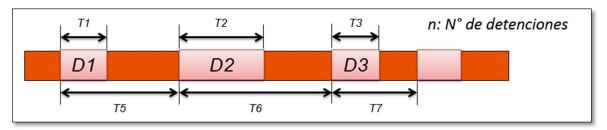


Figura 6-2. Detención de un equipo

Fuente: PLACENCIA, Sebastián. Índice de clase mundial Ecuador 2014

En Dónde D1-D2-D3 son las detenciones a través del tiempo.

$$MTBF = \frac{T5 + T6 + T7}{n} = \frac{\text{tiempo total de funcionamiento}}{\text{número de fallos}}$$
 Ecuación (3)

La Función Fiabilidad: representada como R(t), representa la probabilidad de que in componente nuevo sobreviva más del tiempo t, Dónde T se define como la vida del bien o componente:

$$R(t) = P(T > t) = 1 - F(t)$$
 Ecuación (4)

Dónde:

Función de Distribución Acumulada: F(t), es la probabilidad de que un componente nuevo no sobreviva más del tiempo t.

$$F(t) = P(T \le t)$$
 Ecuación (5)

La Función de Densidad f(t), se obtiene al derivar la expresión (4) obteniendo una función la cual da una idea de la dispersión de la vida del componente.

$$f(t) = \frac{d}{dt} F(t)$$
 Ecuación (6)

De acuerdo a (López, 2012 pag 6) al dividir la ecuación (5) para la ecuación (3) se obtiene la Tasa de fallos y(t), la cual es una característica de la fiabilidad de un componente, y es muy común que el comportamiento de fallos de un componente sea descrito en términos de su tasa de fallos. La tasa de fallos puede interpretarse como la "velocidad" a la cual se producen los fallos, y puede ser considerada como una medida de lo propenso de un dispositivo a fallar en función de su edad (Juan, y otros, 2002 pag 3). (LOPEZ, 2012)

2.6 Disponibilidad

Capacidad de un elemento de encontrarse en un estado para desarrollar una función requerida bajo condiciones determinadas en un instante dado durante un intervalo de tiempo determinado, asumiendo que se proveen los recursos externos requeridos. (SEXTO, 2014)

NOTA 1 – Esta capacidad depende de la combinación de aspectos de la fiabilidad, la mantenibilidad y la sostenibilidad del mantenimiento. (SEXTO, 2014)

NOTA 2 – Los recursos externos requeridos, distintos de los recursos de mantenimiento no afectan la disponibilidad del elemento.

El término Disponibilidad (Availability) es medible:

$$A = \frac{(T5-T1)+(T6-T2)+(T7-T3)}{T5+T6+T7} = \frac{MTBF-MTTR}{MTBF}$$
 Ecuación (7)

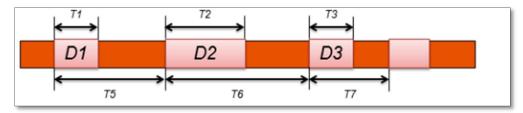


Figura 7-2. Detención de un equipo

Fuente: PLACENCIA, Sebastián. Índice de clase mundial Ecuador 2014

Dónde:

MTBF= Tiempo medio entre fallos

MTTR= Tiempo medio de reparación

La disponibilidad es la proporción de tiempo durante la cual un sistema o equipo estuvo en condiciones de ser usado (Torres, 2010)

Es así que se puede decir que la disponibilidad depende esencialmente de:

- El número de fallos (Fiabilidad).
- De la rapidez con que sean reparados (Mantenibilidad)
- De los procedimientos definidos para el mantenimiento (Mantenimiento)
- De la calidad de los medios aplicados (Logística)

Y de la compatibilidad de estos factores entre ellos (interdependencia) (Torres, 2010)

2.7.1 Diferentes disponibilidades de mayor uso empresarial.

Al realizar estudios RAM, es importante destacar que se pueden utilizar algunas clases de disponibilidades, la elección de una de ellas tendrá que ver con los datos que se posean, con las expectativas de la empresa y con los elementos que se desean controlar. (Gutierrez, 2009)

Entre las disponibilidades de mayor uso empresarial se tiene:

Disponibilidad genérica (D_G), es usada en organizaciones en las que no se manejan indicadores RAM, para realizar la medición solo se contemplan tiempos útiles

y los de no funcionalidad, siendo adecuada para pruebas piloto en las empresas. (Gutierrez, 2009)

La disponibilidad genérica puede ser medida tomando en cuenta los mantenimientos correctivos como también los mantenimientos preventivos. Para su cálculo se utiliza parámetros UT (Up time o tiempos útiles) y DT D (Down time o tiempo en que la máquina ni funciona ni produce). (Gutierrez, 2009)

La siguiente ecuación representa la disponibilidad genérica sin considerar los mantenimientos preventivos:

$$D_{G} = \frac{\text{Medias de los UT}}{2! \text{Medias de los UT+Medias de los DT}} = \frac{\frac{\sum_{i=1}^{m} \text{UTi}}{m}}{\frac{\sum_{i=1}^{m} \text{UTi}}{m} + \frac{\sum_{i=1}^{m} \text{DTi}}{n}}$$
Ecuación (8)

Dónde:

m: número de eventos UT.

n: número de eventos DT.

Para la disponibilidad genérica con mantenimientos preventivos, se usa la siguiente expresión:

$$D_{G} = \frac{\text{Tiempo de funcionamiento}}{\text{Tiempo en que puede operar}} = \frac{TT - \sum PM - \sum DT}{TT - \sum PM}$$
Ecuación (9)

Disponibilidad inherente o intrínseca (DI).- Este tipo de disponibilidad se utiliza cuando se desea controlar las actividades de mantenimientos no planeados (correctivos y/o modificativos). Sus parámetros son MTBF y MTTR, sólo tienen en cuenta daños, fallas o pérdidas de funcionalidad por razones propias del equipo y no exógenas a él. (Gutierrez, 2009)

Para el cálculo de la disponibilidad inherente se usa la siguiente expresión:

$$D_G = \frac{MTBF}{MTBF + MTTR}$$

Disponibilidad alcanzada (DA).- El medir esta disponibilidad es excelente cuando se busca controlar las tareas planeadas de mantenimiento (preventivas o predictivas) y las correctivas por separado, esta disponibilidad no registra obligatoriamente tiempos de espera o demora y suele ser muy rigurosa en su cálculo. (Gutierrez, 2009)

AA es la probabilidad de que el sistema opere satisfactoriamente cuando se requiere en cualquier tiempo bajo condiciones de operación normales y en un entorno ideal de soporte logístico, sin considerar retraso, ni logístico ni administrativo, pero involucre en sus cálculos los tiempos imputables a las actividades planeadas de mantenimiento, aparte de las acciones correctivas que ya trae desde la inherente o intrínseca. (Gutierrez, 2009)

La disponibilidad alcanzada usa como parámetros de cálculo, MTBM, MTBMc, MTBMp, Mp, y \overline{M} , la siguiente expresión mide la disponibilidad alcanzada:

$$DA = \frac{MTBM}{MTBM + \overline{M}} = \frac{\frac{1}{\frac{1}{MTBMc} + \frac{1}{MTBMp}}}{\frac{1}{MTBMc} + \frac{MTR}{MTBMp} + \frac{Mp}{MTBMp}}$$
Ecuación (10)

Dónde:

MTBM es Mean Time Between Maintenance o tiempo medio entre mantenimientos; Blachard y otros (citado por Mora Gutierrez, 2009) menciona que el tiempo medio entre mantenimientos, más que un índice de confiabilidad es un indicador de la frecuencia de los mantenimientos que en ausencia de mantenimiento preventivo se aproxima al valor MTBF y es función de la frecuencia de los mantenimientos planeados y no planeados. (Gutierrez, 2009)

MTBNc es el tiempo medio entre mantenimientos no planeados o correctivos, este se aproxima al MTBF en ausencia de los mantenimientos preventivos.

MTBMp es el tiempo medio entre mantenimientos planeados o preventivos.

 \overline{M} es el tiempo medio de mantenimiento activo que se requiere para realizar una tarea de mantenimiento; Blachard y otros (citado por Mora Gutierrez, 2009) sugieren que es

función de los tiempos medios de mantenimiento correctivo y planeado y sus frecuencias relativas, solo se consideran los tiempos activos de mantenimiento y no se tienen en cuenta los tiempos administrativos y tampoco logísticos. (Gutierrez, 2009)

MTTR es Mean Time To Repair o el tiempo neto medio para realizar reparaciones o mantenimientos correctivos.

Mp es el tiempo neto medio para ejecutar tareas proactivas de mantenimientos planeados.

Es pertinente mencionar además que en confiabilidad los tiempos útiles son inherentes al equipo o sistema, mientras que en mantenibilidad los tiempos de reparaciones o de tareas proactivas son inherentes al recurso humano que las realiza. (Gutierrez, 2009)

Disponibilidad operacional Do "Es adecuada cuando se requiere vigilar de cerca los tiempos de demoras administrativas o de recursos físicos o humanos; trabaja con las actividades planeadas y no planeadas de mantenimiento, en forma conjunta". (Gutierrez, 2009)

La implementación de este tipo de disponibilidad requiere de mucho esfuerzo y recursos económicos. Utiliza los mismos parámetros de la disponibilidad alcanzada más los correspondientes demores de tiempos logísticos y administrativos. (Gutierrez, 2009)

Disponibilidad operacional generalizada Dog, Es utilizada cuando se predice MC en equipos con mucho tiempo de operación en que funcionan mas no producen, algo así como trabajar en vacío. Trabaja con los mismos parámetros de la operacional, con el añadido de que los tiempos en que el equipo funciona pero no produce (Ready time) se agregan a los tiempos útiles más cercanos en fecha, de esta manera los tiempos (útiles son aumentados. (Gutierrez, 2009)

Esta disponibilidad es la más compleja y completa, así como también la más exigente y costosa de implementar, aparte de que la empresa debe tener previamente, bastante experiencia en el tema. (Gutierrez, 2009)

Finalmente se puede decir que al realizar mediciones RAM los diferentes factores que afectan la funcionalidad de los equipos son considerados por las distintas maneras de calcular la disponibilidad, en consecuencia, es la empresa la que asume la que más le conviene en función de los datos que posee, los parámetros que desea controlar y sus expectativas. (Gutierrez, 2009)

2.7 Mantenibilidad

Capacidad de un elemento bajo condiciones específicas de uso dadas para mantenerse en, o ser devuelta a un estado en el cual pueda desarrollar una función requerida cuando el mantenimiento se ejecuta bajo condiciones determinadas y utilizando procedimientos y recursos preestablecidos. (UNE-EN, 2011)

NOTA – La mantenibilidad también se utiliza para designar el valor de la ejecución del mantenimiento. (UNE-EN, 2011)

El término mantenibilidad es medible a través del MTTR:

➤ <u>MTTR</u> (Mean Time To Repair): es el tiempo medio de Reparaciones, y refleja cuál es la detención más grave.

$$MTTR = \frac{T1 + T2 + T3}{n} = \frac{tiempo\ total\ de\ recuperación}{numero\ de\ fallos}$$
 Ecuación (11)

Figura 8-2. Detención de un equipo

Fuente: PLACENCIA, Sebastián. Índice de clase mundial Ecuador 2014

2.8 Gestión del Mantenimiento

De acuerdo a (Placencia Urrutia, 2014) la norma EN13306 define a la gestión de mantenimiento como:

Gestión del mantenimiento: Todas las actividades de la gestión que determinan los objetivos del mantenimiento, las estrategias y las responsabilidades y las realizan por medio de la planificación del mantenimiento, control y supervisión del mantenimiento, mejora de los métodos en la organización incluyendo los aspectos económicos. (UNE-EN, 2011)

En este contexto, se puede manifestar que la gestión del mantenimiento es un trabajo de planificación, control y supervisión, el cual debe ser realizado para asegurar la disponibilidad y efectividad de una infraestructura requerida, o conjunto de activos que constituyan el sistema de producción de una empresa (Márquez, 2010 pag.3). (Marquez, 2010)

El propósito de la gestión del mantenimiento es la optimización de la funcionalidad de los activos de la empresa en función de los lineamientos, objetivos, estrategias y responsabilidades planteadas por la organización. (Marquez, 2010)

La gestión del mantenimiento tiene una injerencia directa sobre los resultados de indicadores de CMD de una empresa, pues como afirma REY, citado por (Mora Gutiérrez, 2009), la eficiencia con que la gestión de mantenimiento contribuye para alcanzar la producción total mediante la dotación de capacidades y la fiabilidad del parque industrial, se plasma al maximizar la disponibilidad de los equipos. (Gutierrez, 2009)

2.8.1 Etapas de la gestión de mantenimiento.

Para lograr una efectiva gestión de mantenimiento, se deben ejecutar ciertas etapas las cuales deben ser cubiertas para que el modelo de gestión pueda cumplir con su misión, estas son:

- Planificación
- Programación
- > Ejecución
- Supervisión y control

2.8.1.1 Planificación

La etapa de planificación se enfoca en la definición de rutinas y procedimientos y en la elaboración de planes detallados considerando tiempos relativamente cortos o mediados, usualmente mensuales o trimestrales, por lo que se hace necesaria la determinación de las operaciones necesarias, mano de obra requerida, materiales a emplear, equipos a utilizar y duración de las actividades. (Aguila, 2012)

En este proceso se asegura la existencia de una estructura organizada de planes preventivos o correctivos que estén alineados con las reales necesidades de los equipos. La planificación es una forma organizada de administrar el trabajo de mejora. (UNEFA, 2011)

Durante la etapa de planificación se deben considerar los siguientes aspectos:

- Fener establecidos los objetivos y metas en cuanto a los objetos a mantener.
- Garantizar la disponibilidad de los equipos o sistemas
- El establecimiento de un orden de prioridades para la ejecución de las acciones de mantenimiento.
- Un sistema de señalización y codificación lógica
- Inventario técnico

- Procedimientos y rutinas de mantenimiento
- Registro de fallas
- Estadísticas de tiempo de parada y tiempo de reparación. (Aguila, 2012)

2.8.1.2 Programación

En esta etapa se realiza la organización para la ejecución de las actividades del mantenimiento definidas en la etapa de planificación, la etapa de programación es más específica que la etapa de planificación ya que se encarga de designar cuándo, con quien y con que hacer una actividad de mantenimiento. (UNEFA, 2011)

En esta etapa se establece la frecuencia para la asignación del mantenimiento preventivo, lo cual es esencial para que exista una continua disponibilidad de los equipos e instalaciones. (Aguila, 2012)

2.8.1.3 Ejecución

La etapa de ejecución del mantenimiento es una de las más desarrolladas dentro de una empresa, por lo que es muy importante el tratar de sistematizar para conseguir hacerla lo menos dependiente de las personas, esto generalmente es resultado de la falta de documentación de las actividades y la capacitación inadecuada del personal dando como resultado que la empra se vuelva vulnerable, así como dependiente de las personas y la tecnología. (UNEFA, 2011)

Para lograr que el proceso sea eficiente, es importante realizar una documentación adecuada y oportuna, así como el manejo de manuales y el cumplimiento de las especificaciones de seguridad, entre otras ayudar a minimizar las posibilidades de error y a garantizar el éxito de la etapa de ejecución. (UNEFA, 2011)

2.8.1.4 Supervisión y control

En esta etapa de la gestión del mantenimiento, se puede determinar la calidad del mantenimiento efectuado ya que dentro de las etapas anteriores se pueden medir y evaluar la gestión a través de la citación de los diferentes índices (Intervención, defectos, fuerza de trabajo, etc), su determinación va a permitir analizar el desenvolvimiento del sistema aplicado, facilitando asi la posterior corrección de las deficiencias del sistema aplicado. (UNEFA, 2011)

Tanto la etapa de ejecución, control y evaluación, vinculan dos acciones administrativas de singular importancia tales como la dirección y la coordinación de los esfuerzos del grupo de realización de las actividades generadas en los procesos de planificación y programación teniendo la consecuencia de los objetivos propuestos. (Aguila, 2012)

En general la ejecución, el control y la evaluación, permiten que las actividades se realicen tal cual fueron planificados, los resultados deben ser evaluados de tal forma que se logre la retroalimentación del proceso inicial. (Aguila, 2012)

CAPÍTULO III

3. DETERMINACIÓN DEL ESTADO TÉCNICO ACTUAL DEL SISTEMA DE GENERACIÓN A GAS

A lo largo del año 2015 se evidenciaron fallos que condujeron a que los campos de producción de REPSOL se detengan por falta de energía disminuyendo así la producción.

El análisis que se muestra en este trabajo de investigación se inicia con el detalle de los fallos ocurridos en los grupos electrógenos del sistema de generación de REPSOL campo NPF y también se enumeran las funciones de cada elemento que ha presentado desperfectos para saber posteriormente cuál es su "modo de fallo" es decir la causa del problema. El análisis efectuado recoge los fallos ocurridos en los sistemas de los Generadores, el tiempo en el cual han ocurrido y su frecuencia, además de la confiabilidad que tienen los grupos electrógenos, la disponibilidad y la mantenibilidad, todo esto basado en la frecuencia de la ocurrencia de los fallos es decir sustentado en los tiempos medios entre fallos.

3.1 Funciones de los elementos

3.1.1 Función sistema de combustible

El sistema de combustible está compuesto por los siguientes elementos:

Distribuidor de gas (Manifold).- La válvula reguladora tipo (pv-4852) o manifold dosifica la cantidad apropiada de gas que debe ingresar al sistema de inyección de combustible de los grupos electrógenos, este elemento se visualiza en la figura 1-3 que se muestra a continuación. Todos los modelos de estas válvulas cumplen con las normas aplicables, tales como API, NACE MR 0175.

Figura 1-3. Distribuidor (manifold) del sistema de generación. Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Filtros coladores (strainer).- Estos filtros coladores son componentes importantes de los sistemas de tuberías que protegen el equipo contra posibles daños debido a la suciedad y otras partículas que pueden ser transportados por el fluido del proceso, en este caso particular los filtros detienen en su interior las partículas extrañas dentro del gas combustible según se muestra en la figura 2-3.

Figura 2-3. Filtro del sistema de gas Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Interruptores.- (switch) Cada uno de ellos cumple su función específica e importante, para este caso se cuenta con interruptores de alta y baja presión de gas,

cada uno de ellos tiene una alarma y un sistema de apagado completo (shutdown) según se ubica en la figura 3-3.

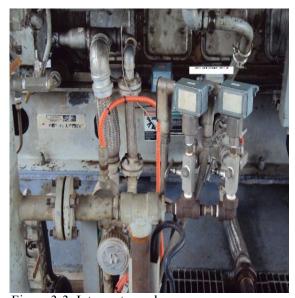


Figura 3-3. Interruptores de gas. Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Válvula de corte de gas.-. La válvula de corte tiene como tarea principal aislar y cortar el suministro del producto inflamable mediante el cierre rápido de su válvula en caso de fuego, este elemento se activa cuando existen condiciones de sobrecarga en la presión de gas del sistema, como se observa en la figura 4-3.

Figura 4-3. Válvula de corte gas Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Regulador de caudal de gas.- Dentro del proceso de combustión del motor, existe un proceso importante, el envío de la cantidad correcta y requerida de combustible hacia

los elementos de combustión del motor, en la siguiente figura se muestran claramente las partes que intervienen en este funcionamiento, ver figura 5-3.

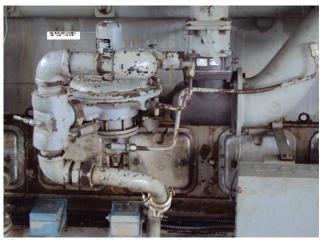


Figura 5-3. Regulador de caudal. Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Filtros de aire.- Su diseño permite ingresar el aire necesario para que se produzca una combustión completa, bloqueando el ingreso de las partículas de polvo, en este caso los filtros de aire se encargan de atrapar las partículas extrañas que se detectan antes de ingresar a la cámara de combustión, según se observa en la figura 6-3.

Figura 6-3. Filtro de aire. Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Enfriador (Intercooler).- Es un elemento de trasferencia de calor, en Dónde el *calor* del agua del radiador calienta eficientemente el aire que ingresa a la cámara de combustión, como se observa en la figura 6-3.

Carburador.- Se encarga de realizar la mezcla correcta de gas y aire que van hacia la cámara de combustión de acuerdo a la carga del motor o potencia requerida por el (woodward) controlador de potencia, se muestra en la figura 7-3.

Figura 7-3. Carburador woodward Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

La función del sistema de combustible es mantener la relación MAC (mezcla aire combustible) a través de las variaciones de carga y revoluciones del motor, en otras palabras mantener la calidad de la mezcla. Este sistema también debe subministrar esta mezcla en las cantidades adecuadas; como se requiere en este estudio 28.0 a 1.

Para realizar la MAC se utiliza la entrada de aire a través de filtros de aire, complementados por los turbos que dan aire a presión hacia el regulador Fisher pasando antes por el enfriador (intercooler).

El actuador (gobernor) recibe señal del controlador de potencia (woodward) y abre o cierra el carburador a través de la barra de acuerdo a la demanda de potencia del motor, a una presión de 20,4 psi, con un caudal de 116 litros, por tanto el "modo de fallo" ocurre cuando esos parámetros de presión y caudal bajan o sobrepasan los límites normales establecidos por el fabricante.

3.1.2 Sistema de enfriamiento

El Sistema de enfriamiento reduce las temperaturas producidas por el movimiento de los elementos mecánicos que existen dentro del Generador; y por la detonación misma de las cámaras de combustión existentes, además mantener la temperatura adecuada según las indicaciones del fabricante; la función propia del refrigerante es transferir el calor lejos de las zonas calientes del motor, el refrigerante también mantiene el interior del sistema de enfriamiento limpio, y lo protege de la escala, la corrosión y la cavitación; el fallo ocurre generalmente cuando estas temperaturas están por arriba del límite establecido por los constructores de WAUKESHA. Estos motores requieren una presión mínima de entrada a la bomba de 2 psi (0,14 bar= la presión manométrica).

Los elementos que forman el sistema de enfriamiento se observan en la figura 8-3.

- Aero enfriadores con sus componentes.
- Tanque de expansión
- Válvulas de alivio
- > Termostáticas

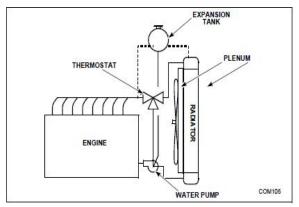


Figura 8-3. Sistema de enfriamiento Fuente: WAUKESHA. Elaborado por Cortez P. (2015)

3.1.3 Función en el sistema eléctrico

La función del sistema eléctrico es, abastecer de energía proveniente de las baterías a los elementos tales como: motor de arranque, bobinas módulo DSM, módulo de Ignición CEC sensores, etc., a un voltaje de 24 V y un amperaje de 6 a 20 A, de manera que el FALLO ocurre cuando esos parámetros de voltaje y amperaje sobrepasan los límites determinados por el fabricante de los motores WAUKESHA. En este sistema los principales fallos han tenido los motores de arranque.

3.1.4 Función sistema de escape

Este sistema se encarga de evacuar los gases producto de la combustión, que ocurre en las cámaras de combustión de los Generadores. Los componentes de este sistema de escape por FALLOS son el cambio de ducto, turbos y el cambio de la válvula de descarga (waste gate).

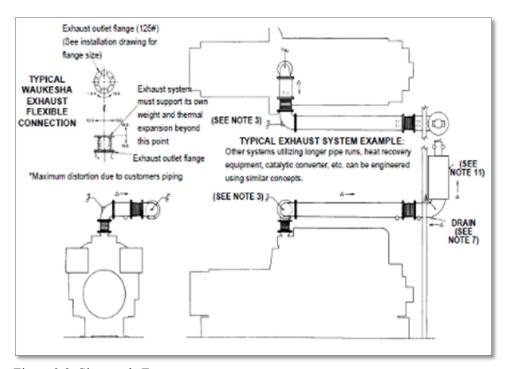


Figura 9-3. Sistema de Escape Fuente: WAUKESHA. Elaborado por Cortez P. (2015)

3.1.5 Función del sistema de ignición

Este sistema provee la chispa para generar la combustión dentro del cilindro por medio de las bujías, va de la mano con la mezcla estequiométrica del combustible y oxígeno, hacia la cámara de combustión, en una relación de 28 a 1 de oxígeno-combustible. Son

parte de este sistema los siguientes elementos: block, cigüeñal, bielas, pistones, cabezotes. Los fallos que se han presentado en este sistema son: daño en cabezotes, detonaciones, cambio de turbo, variación de carga, cambio de cojinetes, rotura de cilindros, entre otros.

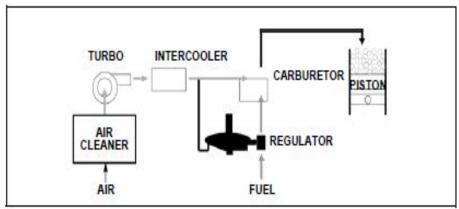


Figura 10-3. Diagrama de flujo del sistema de Ignición

Fuente: WAUKESHA. Elaborado por Cortez P. (2015)

3.1.6 Función sistema de lubricación

Es uno de los sistemas más importantes de un elemento mecánico, depende de éste que las diferentes partes no tengan contacto entre sí; se encarga de abastecer el lubricante necesario hacia las diferentes partes móviles del Generador a una presión y caudal determinados.

El aceite lubricante también es utilizado para enfriar, absorber, transportar y transferir grandes cantidades de calor dentro del sistema del motor; por lo tanto debe tener estabilidad térmica y mantener la viscosidad a temperatura de operación, cuando alguno de los parámetros de presión o caudal no son los adecuados.

El aceite lubricante ayuda a limpiar el sistema, previene la formación de depósitos en los componentes principales del motor y permite transportarlos a los filtros Dónde pueden ser retirados. Es importante utilizar un sello efectivo entre la camisa y los anillos del pistón para evitar la fuga de los gases de combustión en el cárter.

En este sistema se encuentran la bomba de aceite, los filtros, las cañerías, como se observa en la figura 11-3.

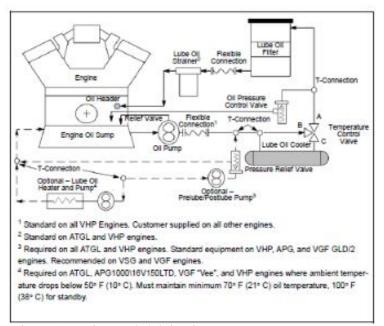


Figura 11-3. Sistema de lubricación Fuente: WAUKESHA. Elaborado por Cortez P. (2015)

3.2 Fallos en los sistemas de los generadores

Previo al análisis de los datos obtenidos en este estudio en lo referente a FALLOS, se realizó una revisión de los distintos tipos de fallos que se ha tenido en cada uno de los sistemas tal como se muestra en la figura 12-3 que pertenecen a los Generadores, entre ellos fallos en el sistema de combustible, de escape, de ignición, de enfriamiento, por mencionar algunos. Esta revisión permitirá identificar claramente los problemas que están afrontando los sistemas de generación de REPSOL ECUADOR.

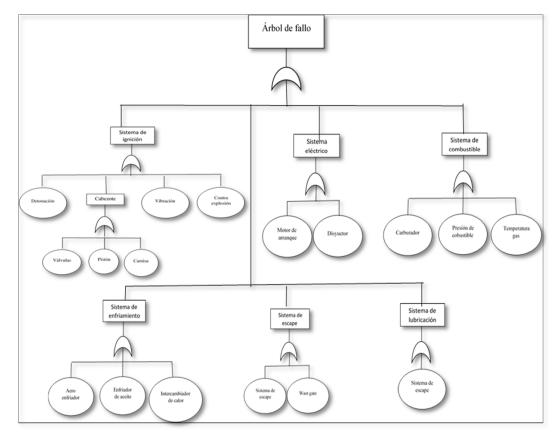


Figura 12-3. Arbol de fallos de los sistemas

Fuente: REPSOL. Elaborado por Cortez P. (2015)

3.2.1 Fallos en el sistema de combustible

Entra en "modo de fallo" cuando el sistema de combustible deja de abastecer el gas combustible hacia la cámara de combustión y debido a esto el Generador pierde potencia o llega a la detención total de funcionamiento.

3.2.2 Fallos en el sistema de enfriamiento

Este problema se origina cuando los intercambiadores de calor dejan de enfriar el líquido refrigerante y éste provoca un sobrecalentamiento en los elementos mecánicos del grupo electrógeno.

Los sensores de vibración entran en "modo de fallo" cuando dejan de alertar las vibraciones de los ventiladores lo que provoca que el sistema pueda entrar en sobre calentamiento,

Como parte de este sistema se encuentran las juntas flexibles, poleas, chumaceras, que trabajan en forma perfecta; y cuando uno de los elementos de este engranaje fallan se producen desperfectos en el funcionamiento del sistema.

3.2.3 Fallos en el sistema eléctrico

El sistema eléctrico entra en "modo de fallo" cuando no abastece la energía requerida para el funcionamiento del grupo electrógeno. De igual forma sus elementos como el motor de arranque entra se detiene cuando no logra iniciar el de funcionamiento del Generador. Las bobinas módulo DSM fallan al no abastecer los 18500 voltios necesarios para la explosión de la mezcla aire combustible.

3.2.4 Fallos en el sistema de escape

Este sistema entre en "modo de fallo" cuando alguno de los ductos de escape de los pistones no evacua esos gases de forma total hacia la los turbos y posteriormente a la atmósfera.

3.2.5 Fallos en el sistema de ignición

El sistema de ignición debe tener un perfecto funcionamiento de sus elementos caso contrario el Generador empezará a consumir más combustible o empezará a perder potencia de generación, para derivar en "modo de fallo".

3.2.6 Fallos en el sistema de lubricación.

Este sistema entra en "modo de fallo" cuando los elementos mecánicos sujetos a fricción entran en contacto directo y provocan que el nivel de temperatura se eleve. El ejemplo de esto es la presencia de partículas metálicas en el aceite extraído del sistema.

3.3 Índices de gestión de equipos

3.3.1 Generador GE-1172A

La tabla 1-3 muestra las horas de mantenimiento correctivo con las fechas en las cuales ocurrieron los fallos y el detalle de esos fallos con sus correspondientes sistemas al que pertenecen.

Tabla 1-3. Fallos del generador WAUKESHA GE-1172-A

Mes/Fechas	Día	Horas mant. correctivo	Falos Principales	Sistema
Enero 9 -17	9	24	Pendiente cambio de ducto de escape	Escape
Enero	18	5	Cambio de ducto de escape y flexible	Escape
Enero	20	4	Cambio de ducto de escape y flexible	Escape
Marzo	6	10	Cambio de partes calientes	Escape
Marzo	8	2	Fuga de gases calientes por waste gate	Escape
Abril	5	3	Corrección de fuga de aceite	Lubricación
Abril	11	2	Revisión por detonación	Ignición
Abril	30	3	Cambio de motor de arranque	Eléctrico
Mayo	4	1	Corrección de fuga de agua por waste gate	Escape
Mayo	10	3	Cambio de waste gate	Escape
Mayo	11	3	Revisión de la unidad por variación de carga	Ignición
Mayo	28	9	Cambio de waste gate	Escape
Junio	1	5	Boroscopia de los cilindros	Ignición
Junio	13	3	Calibración de válvulas de admisión y escape	Ignición
Julio	6	2	Cambio de switch de nivel de agua	Enfriamiento
Agosto	5	2	Cambio empaque wasgate lado derecho	Escape
Septiembre	22	7	Habilitación de intercambiador de calor	Enfriamiento
Noviembre	1	1	Revisión del set de vibración del aero enfriador	Enfriamiento
Noviembre	16	2	Revisión de unidad por perdida de potencia	Ignición
Noviembre	22	1	Revisión de la unidad por baja presión de combustible	Combustible
Diciembre	13	6	Corrección fuga de agua por flexible al enfriador de aceite	Enfriamiento
Diciembre	18	2	Cambio de turbo lado izquierdo	Ignición
Diciembre	20	1	Revisión por detonación	Ignición
Diciembre	27	1	Revisión por detonación	Ignición

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

La tabla 1-3 muestra que el escape es el sistema que más fallos ha tenido a lo largo del periodo analizado, en el ANEXO 1 se muestra los reportes de fallos.

En la tabla 2-3 se observa el número total de fallos ocurridos de los sistemas pertenecientes al Generador WAUKESHA GE-1172A.

Tabla 2-3. Detalle de fallos ocurridos en Generador GE-1172A

Ítem	Sistema	Cantidad de fallos
1		
	Enfriamiento	5
2		
	Ignición	8
3		
	Lubricación	1
4		
	Eléctrico	1
5		
	Escape	17

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

De acuerdo a la tabla 2-3 se observa que el sistema de escape es el que más fallos registra.

3.3.2 Generador GE-1172B

La tabla 3-3 muestra las horas de mantenimiento correctivo con las fechas en las cuales ocurrieron los fallos y el detalle de éstos con sus correspondientes sistemas al que pertenecen.

Tabla 3-3. Fallos del Generador WAUKESHA GE-1172-B

Mes	Día	Horas mant. correctivo	Fallos principales	Sistema
Febrero	7	2	Revisión de unidad por detonación	Ignición
Febrero	16	2	Cambio retenedor en cabezote	Lubricación
Febrero	17	2	Cambio retenedor en cabezote	Lubricación
Febrero	18	5	Cambio de partes calientes	Escape
Febrero	25	2	Corrección de fuga de aceite por el actuador	Lubricación
Febrero	28	12	Cambio de partes calientes	Escape
Marzo	1	6	Cambio de partes calientes	Escape
Abril	30	1	Calibración de carburadores	Ignición
Junio	10	3	Calibración de válvulas	Ignición
Julio	12	3	Calibración de válvulas	Ignición
Julio	24	3	Revisión de unidad por detonación	Ignición
Octubre	17	2	Revisión de unidad por variación de carga	Ignición

Octubre	29	1	Revisión del switch de vibración del motor	Ignición
Noviembre	6	6	Montaje del turbo derecho	Ignición
Noviembre	14	8	Revisión de unidad por contra explosión	Ignición
Noviembre	15	1	Revisión de unidad por detonación	Ignición
Diciembre	13	6	Corrección fuga de agua por flexible de 3" ingreso al enfriador de aceite	Lubricación
Diciembre	20	1	Revisión de unidad por detonación	Ignición
Diciembre	27	1	Revisión de unidad por detonación	Ignición

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

La tabla 3-3 muestra que el sistema de ignición es el que más fallos ha tenido a lo largo del período analizado, en el ANEXO 2 se muestra los reportes de fallos.

La tabla 4-3 muestra el total de fallos ocurridos de los sistemas pertenecientes al Generador WAUKESHA GE-1172B.

Tabla 4-3. Detalle de fallos ocurridos Generador GE-1172B

Ítem	Sistema	Cantidad de fallos
1		
	Enfriamiento	0
2		
	Ignición	12
3		
	Lubricación	4
4		
	Eléctrico	0
5		
	Escape	3

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

De acuerdo a los datos que muestra la tabla 4-3 se identifica que el sistema de ignición es el sistema que más fallos registra.

3.3.3 Generador GE-1172C

La tabla 5-3 muestra las horas de mantenimiento correctivo de los motores, así como también las fechas en las cuales ocurrieron los fallos y el detalle de ellos con la identificación del sistema al que pertenecen.

Tabla 5-3. Fallos del Generador WAUKESHA GE-1172-C

Mes	Día	Horas correctivo	Fallos principales	Sistema
Febrero	8	4	Revisión del arrancador del motor eléctrico del aeroenfriador	Eléctrico
Febrero	16	4	Cambio de retenedores de aceite en cabezote	Lubricación
Marzo	20-21	34	Rotura de un patín de la excitatriz	Eléctrico
Marzo	22	11	Cambio de excitatriz	Eléctrico
Mayo	4	1	Corrección de fuga de agua por waste gate lado derecho	Escape
Mayo	10	3	Cambio de waste gate	Escape
Mayo	11	3	Revisión de la unidad por variación de carga	Ignición
Mayo	28	9	Cambio de waste gate	Escape
Junio	13	3	Calibración de válvulas de admisión y escape	Ignición
Agosto	21	2	Corrección de fuga de aceite lado del turbo izquierdo	Lubricación
Septiembre	16	2	Cambio turbo izquierdo	Ignición
Septiembre	18-19	32	Cambio de ducto de escape	Escape
Noviembre	18	2	Medición de compresión y cambio de bujías	Ignición
Noviembre	21	1	Medición de compresión de cilindros	Ignición
Diciembre	27-31	36	Revisión cojinetes de bancada	Ignición

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

La tabla 5-3 muestra que el sistema de ignición y el sistema de escape es el sistema que más fallos ha tenido a lo largo del periodo analizado, en el ANEXO 3 se muestra los reportes de fallos.

La tabla 6-3 muestra el total de fallos ocurridos de los sistemas pertenecientes al Generador WAUKESHA GE-1172C.

Tabla 6-3. Detalle de fallos ocurridos en Generador GE-1172C

Ítem	Sistema	Cantidad de fallos
1	Enfriamiento	0
2	Ignición	10
3	Lubricación	2
4	Eléctrico	4
5	Escape	5

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

De acuerdo a la tabla 6-3 se observa que el sistema de ignición es el que más fallos registran seguido por el sistema de escape.

3.3.4 *Generador GE-1172D*

La tabla 7-3 muestra las horas de mantenimiento correctivo con las fechas en las cuales ocurrieron los fallos y el detalle de esos fallos con sus correspondientes sistemas al que pertenecen.

Tabla 7-3. Fallos del Generador WAUKESHA GE-1172-D.

Mes	Día	Horas correctivo	Fallos principales	Sistema
Enero	1 - 31	744	Reparación mayor por rotura de cilindro 11	Ignición
Febrero	1 – 28	672	Reparación mayor por rotura de cilindro 11	Ignición
Marzo	1 - 15	360	Reparación mayor por rotura de cilindro 11	Ignición
Marzo	16	24	Montaje y alineación del motor	Ignición
Marzo	17-21	24	Montaje del Generador eléctrico y alineación con motor	Eléctrico
Marzo	18 - 21	96	Montaje de accesorios en la unidad(partes calientes, enfriador d aceite)	Escape
Marzo	22 - 23	48	Montaje de la unidad	Ignición
Marzo	25	1	Calibración de válvulas cilindro 11	Ignición
Junio	14	1	Calibración de válvulas	Ignición
Agosto	2	8	Revisión por pedida de potencia	Ignición
Septiembre	26	3	Cambio de tubing de waste gate lado izquierdo y compensación de agua en radia Revisión de la unidad por disparo de sobre	Escape
Noviembre	23	1	velocidad	Ignición

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

La tabla 7-3 muestra que el sistema de ignición es el sistema que más fallos ha tenido a lo largo del periodo analizado, en el ANEXO 4 se muestra los reportes de fallos.

La tabla 8-3 muestra el total de fallos ocurridos de los sistemas pertenecientes al Generador WAUKESHA GE-1172D.

Tabla 8-3. Detalle de fallos ocurridos en Generador GE-1172D

Ítem	Sistema	Cantidad de fallos
1	Enfriamiento	0
2	Ignición	81
3	Lubricación	0
4	Eléctrico	1
5	Escape	5

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015) De acuerdo a la tabla 8-3 se observa que el sistema de ignición es el que más fallos registran.

3.3.5 *Generador GE-1172E*

La tabla 9-3 muestra las horas de mantenimiento correctivo, las fechas en las que ocurrieron los fallos y el detalle de esos fallos con sus correspondientes sistemas al que pertenecen.

Tabla 9-3. Fallos del Generador WAUKESHA GE-1172-E

Mes	Día	Horas mant. correctivo	Fallos principales	Sistema
Enero	6	24	Desmontaje de motor eléctrico para cambio de rodamientos	Eléctrico
Enero	7	24	Desmontaje de motor eléctrico para cambio de rodamientos	Eléctrico
Enero	8	24	Desmontaje de motor eléctrico para cambio de rodamientos	Eléctrico
Enero	9	24	Desmontaje de motor eléctrico para cambio de rodamientos	Eléctrico
Enero	10	4	Cambio de polea del aeroenfriador	Enfriamiento
Febrero	2	4	Revisión por detonación	Ignición
Febrero	7	4	Revisión por detonación	Ignición
Febrero	11	3	Boroscopica de cilindros	Ignición
Febrero	14	3	Cambio de waste gate	Escape
Febrero	23	2	Revisión de varillas propulsoras por detonación	Ignición
Abril	27	24	Revisión por detonación	Ignición
Abril	28	11	Revisión por detonación	Ignición
Abril	30	24	Cambio de motor de arranque y calibración de carburadores	Eléctrico
Julio	25	3	Cambio de válvula fisher	Ignición
Octubre	9	24	Revisión por detonación	Ignición
Octubre	10-15	124	Mantenimiento válvula fisher lado derecho / Revisión detonación 4r	Ignición
Diciembre	24	2	Calibración de válvulas	Ignición
Diciembre	25	2	Cambio de acople flexible de línea principal de gas combustible	Ignición

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

La tabla 9-3 muestra que el sistema de ignición es uno de los sistemas que más fallos ha tenido a lo largo del período analizado, en el ANEXO 5 se muestra los reportes de fallos.

La tabla 10-3 muestra el total de fallos ocurridos de los sistemas pertenecientes al Generador WAUKESHA GE-1172E.

Tabla 10-3. Detalle de fallos ocurridos en Generador GE-117E

Ítem	Sistema	Cantidad de fallos
1	Enfriamiento	1
2	Ignición	17
3	Lubricación	0
4	Eléctrico	5
5	Escape	1

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

De acuerdo a la tabla 10-3 se observa que el sistema de ignición es el que más fallos registran.

3.3.6 Generador GE-1172F

La tabla 11-3 presenta información relacionada al número de horas de mantenimiento correctivo con las fechas en las cuales ocurrieron los fallos; además el detalle de fallos con sus correspondientes sistemas a los que pertenecen.

Tabla 11-3. Fallos del Generador WAUKESHA GE-1172-F

Mes	Día	Horas mant.correctivo	Fallos principales	Sistema
Enero	1-2	8	Revisión por detonación	Ignición
Enero	21	6	Cambio de chumaceras eje del aeroenfriador	Enfriamiento
Agosto	22	3	Revisión de unidad por golpeteo de válvulas cilindro 51	Ignición
Agosto	23	4	Calibración de válvulas fisher / Revisión de actuador por variación de velocidad	Ignición
Agosto	24 – 28	25	Revisión de unidad por perdida de potencia	Ignición
Diciembre	16	22	Revisión de unidad por perdida de potencia	Ignición
Diciembre	17 - 22	126	Cambio de cojinetes de bancada	Ignición

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

La tabla 11-3 muestra que el sistema de ignición es el sistema que más fallos ha tenido a lo largo del período analizado, en el ANEXO 6 se muestra los reportes de fallos.

La tabla 12-3 muestra el total de fallos ocurridos de los sistemas pertenecientes al Generador WAUKESHA GE-1172F.

Tabla 12-3. Detalle de fallos ocurridos en Generador GE-117F

Ítem	Sistema	Cantidad de fallos
1		
	Enfriamiento	1
2		
	Ignición	15
3		
	Lubricación	0
4		
	Eléctrico	0
5		
	Escape	0

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

De acuerdo a la tabla 12-3 se observa que el sistema de ignición es el que más fallos registran.

3.3.7 *Generador GE-1172G*

La tabla 13-3 muestra las horas de mantenimiento correctivo con las fechas en las cuales ocurrieron los fallos además del detalle de los fallos con sus correspondientes sistemas al que pertenecen.

Tabla 13-3. Fallos del Generador WAUKESHA GE-1172-F

Mes	Día	Horas mant. correctivo	Fallos principales	Sistema
Marzo	24 -26	72	Pendiente cambio de actuador	Ignición
Junio	28	4	Reparación de motor de arranque	Eléctrico
Julio	27	24	Detonación cilindro	Ignición
Julio	28	24	Detonación cilindro	Ignición
Noviembre	2	3	Revisión de cableado del filtro dsm	Eléctrico
Diciembre	20	4	Calibración de válvulas	Ignición
Diciembre	24	2	Cambio de varillas de propulsión	Ignición

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

La tabla 13-3 muestra que el sistema de ignición es el sistema que más fallos ha tenido a lo largo del período analizado, en el ANEXO 7 se muestra los reportes de fallos.

La tabla 14-3 muestra el total de fallos ocurridos de los sistemas pertenecientes al Generador WAUKESHA GE-1172G.

Tabla 14-3. Detalle de fallos ocurridos en Generador GE-117G

Ítem	Sistema	Cantidad de fallos
1		
	Enfriamiento	0
2		
	Ignición	7
3		
	Lubricación	0
4		
	Eléctrico	2
5		
	Escape	0

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

De acuerdo a la tabla 14-3 se observa que el sistema de ignición es el que más fallos registran.

3.4 Cálculo del tiempo medio entre fallos

Una vez que se han recopilado los datos técnicos sobre los fallos ocurridos en las turbinas, se procede a calcular la frecuencia de ocurrencia; aplicando la fórmula de tiempos medios entre fallo que se detalla a continuación.

$$TMEF = \frac{TTE - HC}{N}$$

Dónde:

TMEF: Tiempo medio entre fallos

TTE: Tiempo de operación esperado

HC: Horas de mantenimiento correctivo

N: Numero de eventos de mantenimiento correctivos.

Una vez establecido los eventos se tuvo los resultados de la tabla 18.

Se detalla en la tabla 15-3 los tiempos medios entre fallos de los equipos electrógenos.

Tabla 15-3. Tiempo medio entre fallos de los sistemas de Los motores WAUKESHA.

	٤		Sistema								
Tipo de Generador (horas)	Combustible	Sistema Eléctrico	Sistema de Enfriamiento	Sistema de Escape	Ignición	Lubricación					
GE-1172 ^a	TMEF	7099,0	7097,0	1416,0	402,8	885,1	7097,0				
GE-1172B	TMEF	8760	8760	8760	2359,0	589,0	1772,0				
GE-1172C	TMEF	8760	1762,8	8760	1411,0	698,1	3547,0				
GE-1172D	TMEF	8760	7076,0	8760	1400,2	64,7	8760				
GE-1172E	TMEF	8760	1396,0	7096,0	7097,0	405,1	8760				
GE-1172F	TMEF	8760	8760	7094,0	8760	460,8	8760				
GE-1172G	TMEF	8760	3546,5	8760	8760	996,3	8760				

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

3.5 Cálculo de mantenibilidad

El cálculo de este índice se lo realiza a través del tiempo medio entre reparaciones con la siguiente formula:

$$TMPR = \frac{HC}{N}$$

Dónde:

TMPR: Tiempo medio para la reparación

HC: Horas de mantenimiento correctivo

N: Número de eventos de mantenimiento correctivos.

Los resultados de los tiempos medios entre reparaciones se lo ven en la tabla 16-3.

Tabla 16-3. Tiempo medio para la reparación.

		Sistema							
Generador	Índice	Combustible	Sistema Eléctrico	Sistema de Enfriamiento	Sistema de Escape	Ignición	Lubricación		
GE-1172A	TMPR (horas)	1,0	3,0	4,0	14,8	2,4	3,0		
GE-1172B	TMPR (horas)	N/A	N/A	N/A	7,7	2,7	3,0		
GE-1172C	TMPR (horas)	N/A	12,3	N/A	9,0	11,9	3,0		
GE-1172D	TMPR (horas)	N/A	24,0	N/A	19,8	23,0	N/A		
GE-1172E	TMPR (horas)	N/A	24,0	4,0	3,0	12,5	N/A		
GE-1172F	TMPR (horas)	N/A	N/A	6,0	N/A	12,5	N/A		
GE-1172G	TMPR (horas)	N/A	3,5	N/A	N/A	18,0	N/A		

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

3.6 Cálculo de confiabilidad

Este índice se lo calcula con la siguiente fórmula:

$$R(t) = e^{-\lambda * t} = e^{-\frac{1}{MTBF} * t}$$

Dónde:

e: euler

λ: 1/MTBF

MTBF: Tiempo medio entre fallos

t: periodo del tiempo para el cálculo

El índice de confiabilidad se lo visualiza en la tabla 17-3 que se detalla a continuación.

Tabla 17-3. Confiabilidad de los grupos electrógenos.

Confiabilidad	MTBF promedio	λ (1/MTBF)	λ negativo	1000 (horas)	2000 (horas)	3000 (horas)	4000 (horas)	5000 (horas)
GE1172A	3485.68	0.00029	-0.00029	75.06%	56.34%	42.29%	48.81%	23.82%
GE1172B	4512.71	0.00022	-0.00022	80.12%	64.20%	51.44%	57.47%	33.02%
GE1172C	3562.69	0.00028	-0.00028	75.53%	57.04%	43.08%	49.57%	24.58%
GE1172D	4983.66	0.00020	-0.00020	81.82%	66.94%	54.77%	60.55%	36.67%
GE1172E	4845.61	0.00021	-0.00021	81.35%	66.18%	53.84%	59.69%	35.63%
GE1172F	6150.80	0.00016	-0.00016	84.99%	72.24%	61.40%	66.60%	44.36%
GE1172G	5797.01	0.00017	-0.00017	84.16%	70.82%	59.60%	64.97%	42.21%
PROMEDIO								
				80.43%	64.82%	52.35%	58.24%	34.33%

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

3.7 Cálculo de disponibilidad

Disponibilidad inherente o intrínseca (DI).- Este tipo de disponibilidad se utiliza cuando se desea controlar las actividades de mantenimientos no planeados (correctivos y/o modificativos). Sus parámetros son TMDO y TMPR, sólo tienen en cuenta daños, fallas o pérdidas de funcionalidad por razones propias del equipo y no exógenas a él (Mora Gutierrez, 2009 pag.71).

Se lo calcula con ayuda de la siguiente formula:

$$D = \frac{TMDO}{TMDO + TMPR}$$

Dónde:

D: Disponibilidad

TMDO: Tiempo medio de operación

TMPR: Tiempo medio para la reparación

En la tabla 18-3 se observa los valores de disponibilidad de cada uno de los sistemas de los grupos electrógenos que son sujeto de este estudio.

Tabla 18-3. Disponibilidad de los grupos electrógenos

		Disp	onibilidad			
Tipo de Generador	Combustible %	Eléctrico %	Enfriamiento %	Escape %	Ignición %	Lubricación %
GE-1172A	99,9	99,96	99,72	96,57	99,73	99,96
GE-1172B	100	100	100	99,68	99,55	99,83
GE-1172C	100	99,31	100	99,37	98,35	99,92
GE-1172D	100	99,66	100	98,62	79,25	100
GE-1172E	100	98,34	99,94	99,96	97,09	100
GE-1172F	100	100	99,92	100	97,42	100
GE-1172G	100	99,90	100	100	98,26	100

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

3.8 Análisis de las condiciones técnicas del mantenimiento actual en los motores WAUKESHA

La situación actual de la empresa, indica que se hacen labores de mantenimiento correctivo, es decir se espera que ocurra la falla para poder intervenir o verificar algún componente de los sistemas que son parte de los Generadores WAUKESHA.

Esto se evidencia en la Tabla 19-3 que muestra el número de horas que han sido intervenidos en mantenimientos correctivos cada uno de los Generadores.

Tabla 19-3. Horas de fallo de los Generadores.

Generadores	Generador GE-1172A			Generador GE 1172D			
Horas de							
mantenimiento							
s correctivos	323	67	223	2007	340	200	133

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015) Según la tabla 19-3, se aprecia que el número elevado de mantenimientos correctivos ha provocado que uno de los Generadores pertenecientes a la compañía haya dejado de ser operativo por más de 200 horas, dando un promedio de 470 horas de mantenimiento para los Generadores.

El mayor número de horas de mantenimiento correctivo ha recibido el sistema de ignición, por tanto éste requiere un tratamiento prioritario pues podría producirse este tipo de daños en los otros Generadores que posee la empresa.

3.9 Producción económica de generación

Cada Generador descrito en este estudio es requerido para el proceso de producción de entre 10 y 12 pozos de crudo, los cuales se encuentran distribuidos a lo largo de las zonas IRO, AMO, GINTA, y cada uno de ellos rinde entre 250 y 290 barriles de crudo diario; con esta premisa se muestra en la Tabla 20-3 los valores económicos que produce cada uno de los Generadores.

Tabla 20-3. Producción económica diaria de cada Generador.

Generador	Cantidad de pozos	Ubicación	Producción diaria de cada pozo bls	Producción diaria de barriles por Generador bls	Costo de producción barril USD	Total USD.
GE-1172A	12	Iro	290	3480	35	121800
GE-1172B	10	Ginta	270	2700	35	94500
GE-1172C	10	Amo	250	2500	35	87500
GE-1172D	11	Amo	250	2750	35	96250
GE-1172E	10	Iro	280	2800	35	98000
GE-1172F	11	Iro	270	2970	35	103950
GE-1172G	10	Ginta	260	2600	35	91000

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015) Cuando un generador (Tabla 20-3), deja de funcionar por más de 24 horas, las pérdidas económicas para la empresa ascienden a valores desde \$87500 hasta \$121800, así mismo se puede ver que el Generador que más horas de mantenimiento correctivo tiene es el GE-1172D, y éste alimenta al mayor número de pozos que perfora la empresa.

La Tabla 21-3, muestra la producción por hora de cada generador, estos datos se usarán para el análisis comparativo entre el costo de mantenimiento y la pérdida de producción por falta de mantenimiento.

Tabla 21-3. Producción económica por hora de cada generador.

Tipo de Generador	Cantidad de pozos	Ubicación	Producción diaria de cada pozo bls	Total por hora USD
GE-1172A	12	Iro	290	5075,0
GE-1172B	10	Ginta	270	3937,5
GE-1172C	10	Amo	250	3645,8
GE-1172D	11	Amo	250	4010,4
GE-1172E	10	Iro	280	4083,3
GE-1172F	11	Iro	270	4331,3
GE-1172G	10	Ginta	260	3791,7

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

De acuerdo a la tabla 21-3 se tiene que el Generador GE 1172A es el que mayor problemas de pérdidas de producción causa debido a que tiene a su cargo la mayor cantidad de pozos con una producción total de 290 bls.

3.10 Costo económico de mantenimiento correctivo de los Generadores

Cada uno de los fallos que ocurre con los grupos electrógenos causa pérdidas económicas por las reparaciones que conllevan estos fallos.

3.10.1 *Generador GE-1172A*

La tabla 22-3 muestra los costos de reparación de cada uno de los sistemas del Generador GE-1172A.

Tabla 22-3. Costo de mantenimiento correctivo GE-1172A.

Tipo de Generador	Mes	Día	Horas correctivo	Principal	Sistema	Costo día USD
GE-1172A	Enero 9 - 17	9	216	Pendiente cambio de ducto de escape	Escape	8400
GE-1172A	Enero	18	5	Cambio de ducto de escape y flexible	Escape	1750
GE-1172A	Enero	20	4	Cambio de ducto de escape y flexible	Escape	1400
GE-1172A	Marzo	6	10	Cambio de partes calientes	Escape	3500
GE-1172A	Marzo	8	2	Fuga de gases calientes por waste gate	Escape	700
GE-1172A	Abril	5	3	Corrección de fuga de aceite	Lubricación	1050
GE-1172A	Abril	11	2	Revisión por detonación	Ignición	700
GE-1172A	Abril	30	3	Cambio de motor de arranque	eléctrico	1050
GE-1172A	Mayo	4	1	Corrección de fuga de agua por waste gate	Escape	350
GE-1172A	Mayo	10	3	Cambio de waste gate	Escape	1050
GE-1172A	Mayo	11	3	Revisión de la unidad por variación de carga	Ignición	1050
GE-1172A	Mayo	28	9	Cambio de waste gate	Escape	3150
GE-1172A	Junio	1	5	Boroscopia de los cilindros	Ignición	1750
GE-1172A	Junio	13	3	Calibración de válvulas de admisión y escape	Ignición	1050
GE-1172A	Julio	6	2	Cambio de switch de nivel de agua	Enfriamiento	700
GE-1172A	Agosto	5	2	Cambio empaque wasgate lado derecho	Escape	700
GE-1172A	Septiembre	22	7	Habilitación de intercambiador de calor	Enfriamiento	2450
GE-1172A	Octubre	4	4	Revisión set vibración	Enfriamiento	1400
GE-1172A	Noviembre	1	1	Revisión del set de vibración del aeroenfriador	Enfriamiento	350
GE-1172A	Noviembre	16	2	Revisión de unidad por perdida de potencia	Ignición	700
GE-1172A	Noviembre	22	1	Revisión de la unidad por baja presión de combustible	Combustible	750
GE-1172A	Diciembre	13	6	Corrección fuga de agua por flexible al enfriador de aceite	Enfriamiento	2100
GE-1172A	Diciembre	18	2	Cambio de turbo lado izquierdo	Ignición	700
GE-1172A	Diciembre	20	1	Revisión por detonación	Ignición	350
GE-1172A	Diciembre	27	1	Revisión por detonación	Ignición	350

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015) La tabla 22-3 muestra que el sistema de escape ha causado más costos de reparación al Generador GE 1172A.

3.10.2 *Generador GE-1172B*

En la tabla 23-3 se observan los costos de reparación de cada uno de los sistemas del Generador GE-1172B.

Tabla 23-3. Costo de mantenimiento correctivo GE-1172B.

Generador	Mes	Día	Horas correctivo	Principal	Sistema	Costo \$
GE-1172B	Febrero	7	2	Revisión de unidad por detonación	Ignición	700
GE-1172B	Febrero	16 - 17	4	Cambio retenedor en cabezote	Lubricación	700
GE-1172B	Febrero	18	5	Cambio de partes calientes	Escape	1050
GE-1172B	Febrero	25	2	Corrección de fuga de aceite por el actuador	Lubricación	700
GE-1172B	Febrero	28	12	Cambio de partes calientes	Escape	4200
GE-1172B	Marzo	1	6	Cambio de partes calientes	Escape	2100
GE-1172B	Abril	30	1	Calibración de carburadores	Ignición	350
GE-1172B	Junio	10	3	Calibración de válvulas	Ignición	1050
GE-1172B	Julio	12	3	Calibración de válvulas	Ignición	1050
GE-1172B	Julio	24	3	Revisión de unidad por detonación	Ignición	1050
GE-1172B	Octubre	17	2	Revisión de unidad por variación de carga	Ignición	700
GE-1172B	Octubre	29	1	Revisión del switch de vibración del motor	Ignición	350
GE-1172B	Noviembre	6	6	Montaje del turbo derecho	Ignición	2100
GE-1172B	Noviembre	14	8	Revisión de unidad por el contrario explosión	Ignición	2800
GE-1172B	Noviembre	15	1	Revisión de unidad por detonación	Ignición	350
GE-1172B	Diciembre	13	6	Corrección fuga de agua por flexible de 3" ingreso al enfriador de aceite	Lubricación	2100
GE-1172B	Diciembre	20	1	Revisión de unidad por detonación	Ignición	350
GE-1172B	Diciembre	27	1	Revisión de unidad por detonación	Ignición	350

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

La tabla 23-3 muestra que el sistema de escape ha causado más costos de reparación a este Generador GE 1172B.

3.10.3 *Generador GE-1172C*

La tabla 24-3 indica los costos de reparación de cada uno de los sistemas del Generador GE-1172C.

Tabla 24-3 Costo de mantenimiento correctivo GE-1172C

Generador	Mes	Día	Horas correctivo	Principal	Sistema	Costo \$
GE-1172C	Febrero	8	4	Revisión del arrancador del motor eléctrico del aero enfriador	eléctrico	1400
GE-1172C	Febrero	16	4	Cambio de retenedores de aceite en cabezote	lubricación	1400
GE-1172C	Marzo	20	10	Rotura de un patín de la excitatriz	eléctrico	3500
GE-1172C	Marzo	21	24	Rotura de un patín de la excitatriz	eléctrico	8400
GE-1172C	Marzo	22	11	Cambio de excitatriz	eléctrico	3850
GE-1172C	Mayo	4	1	Corrección de fuga de agua por waste gate lado derecho	escape	350
GE-1172C	Mayo	10	3	Cambio de waste gate	escape	1050
GE-1172C	Mayo	11	3	Revisión de la unidad por variación de carga	ignición	1050
GE-1172C	Mayo	28	9	Cambio de waste gate	escape	3150
GE-1172C	Junio	13	3	Calibración de válvulas de admisión y escape	ignición	1050
GE-1172C	Agosto	21	2	Corrección de fuga de aceite lado del turbo izquierdo	lubricación	700
GE-1172C	Septiembre	16	2	Cambio turbo izquierdo	ignición	700
GE-1172C	Septiembre	18	24	Cambio de ducto de escape	escape	8400
GE-1172C	Septiembre	19	8	Cambio de ducto de escape	escape	2800
GE-1172C	Noviembre	18	2	Medición de compresión y cambio de bujías	ignición	700
GE-1172C	Noviembre	21	1	Medición de compresión de cilindros	ignición	350
GE-1172C	Diciembre	27	12	Revisión cojinetes de bancada	ignición	4200
GE-1172C	Diciembre	28-31	96	Revisión cojinetes de bancada	ignición	33600

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

En la tabla 24-3 se evidencia que el sistema de escape ha causado más costos de reparación a este generador GE 1172C.

3.10.4 *Generador GE-1172D*

La tabla 25-3 muestra los costos de reparación de cada uno de los sistemas del generador GE-1172D.

Tabla 25-3. Costo de mantenimiento correctivo GE-1172D.

Generador	Mes	Día	Horas correctivo	Principal	Sistema	Costo USD
GE-1172D	Enero	1-31	744	Reparación mayor por rotura de cilindro 11	Ignición	260400
GE-1172D	Febrero	1-28	672	Reparación mayor por rotura de cilindro 11	Ignición	235200
GE-1172D	Marzo	1-15	360	Reparación mayor por rotura de cilindro 11	Ignición	126000
GE-1172D	Marzo	16-17	48	Montaje y alineación del motor	Ignición	16800
GE-1172D	Marzo	17-21	120	Montaje del Generador eléctrico y alineación con motor	eléctrico	42000
GE-1172D	Marzo	22-23	48	Montaje de la unidad	Ignición	16800
GE-1172D	Marzo	25	1	Calibración de válvulas cilindro 11	Ignición	350
GE-1172D	Junio	14	1	Calibración de válvulas	Ignición	350
GE-1172D	Agosto	2	8	Revisión por pedida de potencia	Ignición	2800
GE-1172D	Septiembre	26	3	Cambio de tubing de waste gate lado izquierdo y compensación de agua en radiador	Escape	1050
GE-1172D	Noviembre	23	1	Revisión de la unidad por disparo de sobre velocidad	Ignición	350

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

La tabla 25-3 muestra que el sistema de escape ha causado más costos de reparación al generador GE 1172D.

3.10.5 *Generador GE-1172E*

La tabla 26-3 muestra los costos de reparación de cada uno de los sistemas del generador GE-1172E.

Tabla 26-3. Costo de mantenimiento correctivo GE-1172E.

Tipo Generador	Mes	Día	Horas Principal		Sistema	Costo USD.
GE-1172E	Enero	6-9	96	Desmontaje de motor eléctrico para cambio de rodamientos	eléctrico	33600
GE-1172E	Enero	10	4	Cambio de polea del aeroenfriador	Enfriamiento	1400

2 7 11 14 23 27 28	4 3 3 2 24	Revisión por detonación Revisión por detonación Boroscopica de cilindros Cambio de waste gate Revisión de varillas propulsoras por detonación Revisión por detonación	Ignición Ignición Ignición Escape Ignición	1400 1400 1050 1050
11 14 23 27	3 3 2 24	Boroscopica de cilindros Cambio de waste gate Revisión de varillas propulsoras por detonación	Ignición Escape Ignición	1050 1050
23 27	2 24	Cambio de waste gate Revisión de varillas propulsoras por detonación	Escape Ignición	1050
23	2 24	Revisión de varillas propulsoras por detonación	Ignición	
27	24	propulsoras por detonación		700
		Revisión por detonación	T	
28		r	Ignición	8400
	11	Revisión por detonación	Ignición	3850
30	24	Cambio de motor de arranque y calibración de carburadores	eléctrico	8400
25	3	Cambio de válvula fisher	Ignición	1050
8	10		Ignición	3500
9	24	Revisión por detonación	Ignición	8400
10	24	Mantenimiento válvula fisher lado derecho / Revisión detonación 4r	Ignición	8400
11-14	96	Revisión por detonación	Ignición	33600
15	4	Revisión por detonación	Ignición	1400
ore 24	2	Calibración de válvulas	Ignición	700
	8 9 10 11-14 15	8 10 9 24 10 24 11-14 96 15 4	8 10 9 24 Revisión por detonación Mantenimiento válvula fisher lado derecho / Revisión detonación 4r 11-14 96 Revisión por detonación 15 4 Revisión por detonación	8 10 Ignición 9 24 Revisión por detonación Ignición Mantenimiento válvula fisher lado derecho / Revisión detonación 4r 11-14 96 Revisión por detonación Ignición 15 4 Revisión por detonación Ignición

La tabla 26-3 indica que el sistema de escape ha causado más costos de reparación al generador GE 1172E.

3.10.6 *Generador GE-1172F*

La tabla 27-3 muestra los costos de reparación de cada uno de los sistemas del generador GE-1172F.

Tabla 27-3. Costo de mantenimiento correctivo GE-1172F.

Generador	Mes	Día	Horas correctivo	Principal	Sistema	Costo USD
GE-1172F	Enero	1	4	Revisión por detonación	Ignición	1400
GE-1172F	Enero	2	4 Revisión por detonación		Ignición	1400
GE-1172F	Enero	21	6	Cambio de chumaceras eje del aeroenfriador	Enfriamiento	2100
GE-1172F	Agosto	22	3	Revisión de unidad por golpeteo de válvulas cilindro 51	Ignición	1050
GE-1172F	Agosto	23	4	Calibración de válvulas fisher / Revisión de actuador por variación de velocidad	Ignición	1400
GE-1172F	Agosto	24	3	Revisión de unidad por perdida de potencia	Ignición	1050
GE-1172F	Agosto	26	8	Revisión de unidad por perdida de potencia	Ignición	2800
GE-1172F	Agosto	27	8	Revisión de unidad por perdida de potencia	Ignición	2800

GE-1172F	Agosto	28	6	Revisión de unidad por perdida de potencia	Ignición	2100
GE-1172F	Diciembre	16	22	Revisión de unidad por perdida de potencia	Ignición	7700
GE-1172F	Diciembre	17	24	Cambio de cojinetes de bancada	Ignición	8400
GE-1172F	Diciembre	18	24	Cambio de cojinetes de bancada	Ignición	8400
GE-1172F	Diciembre	19	24	Cambio de cojinetes de bancada	Ignición	8400
GE-1172F	Diciembre	20	24	Cambio de cojinetes de bancada	Ignición	8400
GE-1172F	Diciembre	21	24	Cambio de cojinetes de bancada	Ignición	8400
GE-1172F	Diciembre	22	6	Cambio de cojinetes de bancada	Ignición	2100

La tabla 27-3 muestra que el sistema de escape ha causado más costos de reparación al Generador GE 1172F.

3.10.7 *Generador GE-1172G*

La tabla 28-3 muestra los costos de reparación de cada uno de los sistemas del generador GE-1172G.

Tabla 28-3 Costo de mantenimiento correctivo GE-1172G.

Tipo Generador	Mes	Día	Horas correctivo	Principal	Sistema	Costo USD
CF 1172 C	Marzo	24-26	72	Pendiente cambio de	Ignición	25200
GE-1172G GE-1172G	Junio	28	4	Reparación de motor de arranque	Eléctrico	25200
GE-1172G	Julio	27-28	48	Detonación cilindro	Ignición	16800
GE-1172G	Noviembre	2	3	Revisión de cableado del filtro dsm	eléctrico	1050
GE-1172G	Diciembre	20	4	Calibración de válvulas	Ignición	1400
GE-1172G	Diciembre	24	2	Cambio de varillas de propulsión	Ignición	700

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

La tabla 28-3 muestra que el sistema de escape ha causado más costos de reparación a este generador GE 1172G.

3.11 Análisis de resultados obtenidos

Se muestra en la tabla 29-3 los tiempos medios entre fallo de cada sistema que corresponden a cada uno de los generadores existentes de Repsol Ecuador.

Tabla 29-3. Resultados obtenidos de MTBF en horas

		TIEMPO ME	DIO ENTRE FALI	LOS						
	SISTEMA									
Generador	Combustible	Eléctrico	Enfriamiento	Escape	Ignición	Lubricación				
GE-1172A	7099.0	7097.0	1416.0	402.8	885.1	7097.0				
GE-1172B	0.0	0.0	0.0	2359.0	589.0	1772.0				
GE-1172C	0.0	1762.8	0.0	1411.0	698.1	3547.0				
GE-1172D	0.0	7076.0	0.0	1400.2	64.7	0.0				
GE-1172E	0.0	1396.0	7096.0	7097.0	405.1	0.0				
GE-1172F	0.0	0.0	7094.0	0.0	460.8	0.0				
GE-1172G	0.0	3546.5	0.0	0.0	996.3	0.0				

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Según lo visto en la tabla 29-3 se evidencia que el sistema con mayor fallo a corto plazo es el sistema de ignición en contraposición a al sistema de combustible que en el periodo analizado de u año (8760 horas) no ha tenido fallo.

3.11.1 Costos de mantenimiento

La tabla 30-3 muestran los costos económicos de los sistemas de combustible, eléctrico, enfriamiento, escape, ignición y lubricación.

Tabla 30-3. Costo de mantenimiento por Generador.

Tipo Generador	Combustible USD.	Sistema Eléctrico USD	Sistema Enfriamiento USD.	Sistema Escape USD.	Sistema Ignición USD.	Sistema Lubricación USD.
GE-1172A	750	1050	7000	88200	6650	1050
GE-1172B	0	0	0	7350	11200	4200
GE-1172C	0	17150	0	15750	41650	2100
GE-1172D	0	8400	0	34650	650650	0
GE-1172E	0	42000	1400	1050	74550	0
GE-1172F	0	0	2100	0	65800	0
GE-1172G	0	2450	0	0	44100	0
TOTALES USD.	750	71050	10500	147000	894600	7350

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Según lo visto en la tabla 30-3, el sistema de ignición es el que más costo económico ha tenido para la empresa.

3.11.2 Cantidad de fallos por sistema

La tabla 31-3 muestra la cantidad de fallos que ha tenido cada uno de los sistemas de los grupos electrógenos que están siendo analizados.

Tabla 31-3. Cantidad de fallos por sistema.

Tipo de Generador	Combustible	Eléctrico	Enfriamiento	Escape	Ignición	Lubricación
GE-1172A	1	1	5	17	8	1
GE-1172B	0	0	0	3	12	4
GE-1172C	0	4	0	5	10	2
GE-1172D	0	1	0	5	81	0
GE-1172E	0	5	1	1	17	0
GE-1172F	0	0	1	0	15	0
GE-1172G	0	2	0	0	7	0
TOTALES	1	13	7	31	150	7

El Generador GE1172 D es aquel que ha presentado mayor número de fallos, con un número de 81 fallos atribuidos al sistema de ignición.

3.11.3 Cantidad de horas perdidas por mantenimiento correctivo

La tabla 32-3 muestra el número de horas que se pierde a causa de los fallos que tienen los Generadores por cada uno de los sistemas analizados.

Tabla 32-3. Horas de pérdida en mantenimientos correctivos.

Generador	Combustible	Eléctrico	Enfriamiento	Escape	Ignición	Lubricación
GE-1172A	1	3	20	252	19	3
GE-1172B	0	0	0	23	32	12
GE-1172C	0	49	0	45	119	6
GE-1172D	0	24	0	99	1859	0
GE-1172E	0	120	4	3	213	0
GE-1172F	0	0	6	0	188	0
GE-1172G	0	7	0	0	126	0
TOTALES	1	203	30	422	2556	21

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

El sistema de ignición del grupo electrógeno GE1172D es el que mayor número de horas en fallo ha estado, lo que trae la perdida de producción.

3.11.4 Pérdidas económicas de producción

La tabla 33-3 indica los costos de perdida de producción a causa de los paros que han tenido los Generadores en el periodo analizado.

Tabla 33-3. Pérdidas económicas por paros en generadores.

14014 33 3.1 0						
Generador	Combustible	Eléctrico	Enfriamiento	Escape	Ignición	Lubricación
GE-1172A	5075,0	15225,0	101500,0	1278900,0	96425,0	15225,0
GE-1172B	0,0	0,0	0,0	90562,5	126000,0	47250,0
GE-1172C	0,0	178645,8	0,0	164062,5	433854,2	21875,0
GE-1172D	0,0	96250,0	0,0	397031,3	7455364,6	0,0
GE-1172E	0,0	490000,0	16333,3	12250,0	869750,0	0,0
GE-1172F	0,0	0,0	25987,5	0,0	814275,0	0,0
GE-1172G	0,0	26541,7	0,0	0,0	477750,0	0,0
TOTALES	5075,0	806662,5	143820,8	1942806,3	10273418,8	84350,0

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

El generador GE1172D es el que más pérdidas económicas ha causado en la producción del campo de REPSOL.

CAPÍTULO IV

4. PROPUESTA DEL PLAN DE MANTENIMIENTO DE LOS MOTORES WAUKESHA

El trabajo de propuesta consiste en mejorar las disponibilidad, confiabilidad, y mantenibilidad, para lo cual se propone realizar las tareas de inspección y mantenimiento previo a la ocurrencia de los fallos tomando como punto de partida los datos obtenidos en el análisis de tiempos medios entre fallos.

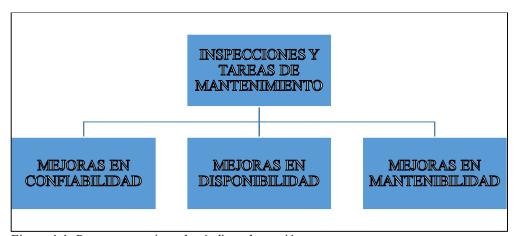


Figura 4-1. Pasos para mejorar los índices de gestión.

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

4.1 Desarrollo de las actividades de inspección

Para dar seguimiento al estado de los equipos, se realizará tareas de inspección a los ítems detallados en la tabla 1-4 al 25% del tiempo medio entre fallo de dicho ítem.

Tabla 1-4. Número de horas a las que se realizara las tareas de inspección.

Generador	Combustible	Eléctrico	Enfriamiento	Escape	Ignición	Lubricación
GE-1172A	1774,8	1774,3	354,0	100,7	221,3	1774,3
GE-1172B	1775,0	1775,0	1775,0	589,8	147,3	443,0
GE-1172C	1775,0	440,7	1775,0	352,8	174,5	886,8
GE-1172D	1775,0	1769,0	1775,0	350,1	16,2	1775,0
GE-1172E	1775,0	349,0	1774,0	1774,3	101,3	1775,0
GE-1172F	1775,0	1775,0	1773,5	1775,0	115,2	1775,0
GE-1172G	1775,0	886,6	1775,0	1775,0	249,1	1775,0

En la tabla 1-4 se describe el tiempo en el cual se deben realizar las inspecciones de los diferentes sistemas, inspecciones que se harán al 25 % del tiempo medio entre fallos.

4.2 Realización del mantenimiento previo al TMEF

Esta investigación está basada en el tiempo que toma realizar una u otra actividad, de manera que es necesario hacer uso de esos tiempos para la ejecución del plan de mantenimiento, porque estos tiempos permiten obtener los datos de confiabilidad, disponibilidad y mantenibilidad, información con la cual se buscará reducir los espacios entre uno y otro mantenimiento para alargar la vida útil del equipo.

La propuesta se centra en no permitir que los sistemas que corresponden a los Generadores lleguen al punto de fallo, es decir que paralicen su funcionamiento, esto se puede lograr si se toma el registro del tiempo medio entre fallas, datos que indican el espacio de tiempo en el que ha fallado alguno de esos componentes del grupo electrógeno.

En la tabla 2-4 se establecen los tiempos a los cuales se deberá realizar el mantenimiento tomando como referencia un 97% del tiempo medio entre fallos de los ítems establecidos en esa tabla.

Tabla 2-4. Número de horas a las que se realizará las tareas de mantenimiento.

Generador	Combustible	Eléctrico	Enfriamiento	Escape	Ignición	Lubricación
GE-1172A	6886,0	6884,1	1373,5	390,7	858,6	6884,1
GE-1172B	6887,0	6887,0	6887,0	2288,2	571,3	1718,8
GE-1172C	6887,0	1709,9	6887,0	1368,7	677,2	3440,6
GE-1172D	6887,0	6863,7	6887,0	1358,2	62,8	6887,0
GE-1172E	6887,0	1354,1	6883,1	6884,1	393,0	6887,0
GE-1172F	6887,0	6887,0	6881,2	6887,0	447,0	6887,0
GE-1172G	6887,0	3440,1	6887,0	6887,0	966,4	6887,0

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

En la tabla 2-4 se describe los tiempos en los cuales se debe realizar las tareas de mantenimiento preventivo a los sistemas de los generadores que será con una holgura del 3% para evitar que llegue a ocurrir el fallo en el sistema.

4.3 Desglose de los elementos reparados o cambiados de cada sistema de los generadores.

Una vez que se cumple el tiempo para realizar el mantenimiento de alguno de los sistemas del Generador se procede a realizarlo; para ello se llevará un registro de los elementos que han sido cambiados y los que han sido reparados en una base de datos, el cual contendrá el detalle del Generador, el sistema, la fecha de reparación o cambio, el tiempo que tomo en realidad realizar el mantenimiento, el tiempo proyectado para realizar el mantenimiento, el detalle del trabajo que se realizó, la persona o grupo que realiza el mantenimiento, tal como se lo puede ver en la tabla 3-4.

Tabla 3-4. Base de datos a ser llenada conforme se realicen los mantenimientos.

Fecha	Generador	Horómetro	Sistema	Elemento	.Cambio / Reparación	Trabajo realizado	Tiempo estimado (horas)	Tiempo real (horas)	Técnico
2016-09-06	GE-1172A	12345	Ignición	Válvula	Inspección	Revisión y limpieza	2	1,5	P.C.

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

4.4 Ajuste de los tiempos medios entre fallas

Debido a que el presente trabajo es una investigación que deberá ser comprobada en el campo, al iniciar la implementación de los tiempos de trabajo referente a mantenimientos, se deberá tomar en cuenta que alguno de los sistemas existentes en el Generador puede llegar a tener un fallo previo a *los tiempos medios* referenciados en este estudio, de manera que esos nuevos datos de Tiempos de Ocurrencia de los fallos serán ubicados dentro de la base de datos y se los volverá a analizar con el objetivo de insertarlos en el proceso de mejora continua.

La mejora continua es parte del día a día que la empresa REPSOL implementa como política de trabajo, de forma que al momento de conocer los datos de los diferentes mantenimientos que se han realizado en el periodo de dos años (2017-2018), éstos se ajustarán a los *Tiempos Medios* entre fallas que corresponden a los diferentes elementos

que componen los sistemas, de forma que los trabajos de mantenimiento se implementen antes que ocurra el fallo; es pertinente indicar que los ajustes e implementaciones se los realizarán únicamente si los fallos llegaran a ocurrir previo a los tiempos medios entre falla.

De igual forma se ajustarán los tiempos de realización de los mantenimientos, pues es posible que en campo se realice el trabajo de mantenimiento en menor tiempo de lo establecido en este estudio, debido a que el mantenimiento estará planificado, y no será algo que se improvise.

4.5 Mejora de mantenibilidad

La estrategia de mantenimiento obtenida por el estudio de RAM de los activos para cumplir la función de la planta de generación, se basa en la filosofía de trabajar con un mantenimiento planeado, minimizando el mantenimiento no planeado o reactivo.

El índice de mantenibilidad propuesto se muestra en la tabla 4-4.

Tabla 4-4. Mejora en índice mantenibilidad

Generador	Combustible	Eléctrico	Enfriamiento	Escape	Ignición	Lubricación
GE-1172A	1,00	1,00	2,00	5,00	1,00	1,00
GE-1172B	0,00	0,00	0,00	3,00	1,00	1,00
GE-1172C	0,00	5,00	0,00	3,00	4,00	1,00
GE-1172D	0,00	8,00	0,00	7,00	8,00	0,00
GE-1172E	0,00	8,00	2,00	1,00	5,00	0,00
GE-1172F	0,00	0,00	2,00	0,00	5,00	0,00
GE-1172G	0,00	2,00	0,00	0,00	6,00	0,00

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Según la tabla 4-4, las tareas de mantenimiento correctivo se reducen a tareas de mantenimiento preventivo y por sobre todo a tareas de inspección.

4.6 Mejora en la confiabilidad

Permitió definir una estrategia de mantenimiento basada en la confiabilidad de los equipos, que permita maximizar el tiempo de uso entre fallos de los equipos

En la tabla 5-4 se ve el aumento en la confiabilidad de los sistemas de los grupos electrógenos.

Tabla 5-4. Mejora en índice de confiabilidad.

Confiabilidad	MTBF promedio	λ (1/MTBF)	λ negativo	1000	2000	3000	4000	5000
GE1172A	7100.00	0.00014	-0.00014	86.86%	75.45%	65.54%	70.32%	49.45%
GE1172B	7100.00	0.00014	-0.00014	86.86%	75.45%	65.54%	70.32%	49.45%
GE1172C	7100.00	0.00014	-0.00014	86.86%	75.45%	65.54%	70.32%	49.45%
GE1172D	7100.00	0.00014	-0.00014	86.86%	75.45%	65.54%	70.32%	49.45%
GE1172E	7100.00	0.00014	-0.00014	86.86%	75.45%	65.54%	70.32%	49.45%
GE1172F	7100.00	0.00014	-0.00014	86.86%	75.45%	65.54%	70.32%	49.45%
GE1172G	7100.00	0.00014	-0.00014	86.86%	75.45%	65.54%	70.32%	49.45%
PROMEDIO				86.86%	75.45%	65.54%	70.32%	49.45%

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

4.7 Mejora en la disponibilidad

Jerarquización de los equipos o sistemas críticos: permitió conocer la proporción con la cual los equipos o sistemas estudiados afectan la disponibilidad de la instalación. De esta manera, se puede saber qué equipo o sistema es más importante al momento de estudiar la disponibilidad, y se puede optimizar la estrategia de mantenimiento para los distintos equipos o sistemas.

La disponibilidad de los equipos de generación también se ven en aumento con la aplicación de las tareas de mantenimiento e inspección que se proponen en este estudio.

Tabla 6-4. Mejora en índice disponibilidad

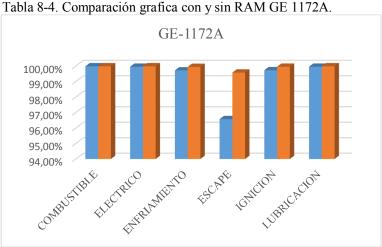
Generador	Combustible %	Eléctrico %	Enfriamiento %	Escape %	Ignición %	Lubricación %
GE-1172A	99,99	99,99	99,94	99,58	99,96	99,99
GE-1172B	0,00	0,00	0,00	99,96	99,94	99,97
GE-1172C	0,00	99,86	0,00	99,92	99,78	99,99
GE-1172D	0,00	99,89	0,00	99,80	97,05	0,00
GE-1172E	0,00	99,78	99,97	99,99	99,58	0,00
GE-1172F	0,00	0,00	99,97	0,00	99,65	0,00
GE-1172G	0,00	99,97	0,00	0,00	99,75	0,00

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

4.8 Comparación de análisis de mantenimiento antes y después de la metodología RAM.

4.8.1 Disponibilidad con y sin RAM de GE-1172A

La tabla 7-4 muestra el incremento en la disponibilidad de los sistemas del Generador GE-1172A.


Tabla 7-4. Disponibilidad con y sin RAM en GE-1172A

Sistema	Combustible %	Eléctrico %	Enfriamiento %	Escape %	Ignición %	Lubricación %
SIN RAM	99,99	99,96	99,72	96,57	99,73	99,96
CON RAM	99,99	99,99	99,94	99,58	99,96	99,99

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

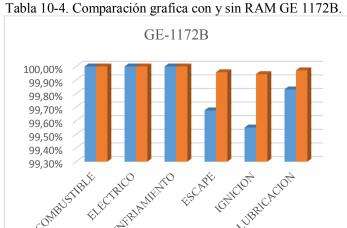
Según la tabla 7-4 el sistema que mayor aumento presenta con la aplicación del análisis RAM es el sistema de escape.

La tabla 8-4 muestra gráficamente el incremento que se tiene en la disponibilidad de los sistemas de del Generador GE11-72A.

Según la tabla 8-4 el sistema de combustible es el que menor aumento presenta pero los demás componentes aumentan su disponibilidad.

4.8.2 Disponibilidad con y sin RAM de GE-1172B

La tabla 9-4 muestra el incremento en la disponibilidad de los sistemas del Generador GE-1172B.


Tabla 9-4. Disponibilidad con y sin RAM en GE-1172B

Sistema	Combustible %	Eléctrico %	Enfriamiento %	Escape %	Ignición %	Lubricación %
SIN RAM	100	100	100	99,68	99,55	99,83
CON RAM	100	100	100	99,96	99,94	99,97

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Según la tabla 9-4 el sistema presenta un incremento significativo con la aplicación del análisis RAM es el sistema de ignición.

En la tabla 10-4 muestra gráficamente un aumento en lo referente a la disponibilidad de los sistemas del Generador GE11-72B.

Según la tabla 10-4 el sistema de combustible, enfriamiento y el eléctrico son los que menor aumento presentan pero los demás componentes aumentan su disponibilidad.

4.8.3 Disponibilidad con y sin RAM de GE-1172C

En la tabla 11-4 se observa el incremento en la disponibilidad de los sistemas del Generador GE-1172C.

Tabla 11-4. Disponibilidad con y sin RAM en GE-1172C

Sistema	Combustible %	Eléctrico %	Enfriamiento %	Escape %	Ignición %	Lubricación %
SIN RAM	100	99,31	100	99,37	98,35	99,92
CON RAM	100	99,86	100	99,92	99,78	99,99

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Según la tabla 11-4 el sistema que mayor aumento presenta con la aplicación del análisis RAM es el sistema de escape.

La tabla 12-4 muestra gráficamente el incremento que se tiene en la disponibilidad de los sistemas de del Generador GE11-72C.

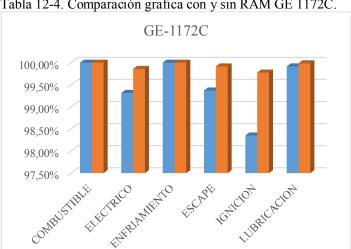


Tabla 12-4. Comparación grafica con y sin RAM GE 1172C.

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Según la tabla 12-4 el sistema de combustible y enfriamiento muestran un decremento comparado con los demás componentes los cuales aumentan su disponibilidad.

4.8.4 Disponibilidad con y sin RAM de GE-1172D

La tabla 13-4 muestra el incremento en la disponibilidad de los sistemas del Generador GE-1172D.

Tabla 13-4. Disponibilidad con y sin RAM en GE-1172D

Sistema	Combustible %	Eléctrico %	Enfriamiento %	Escape %	Ignición %	Lubricación %
SIN RAM	100	99,66	100,00	98,62	79,25	100
CON RAM	100	99,89	100,00	99,80	97,05	100

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Según la tabla 13-4 el sistema que mayor aumento presenta con la aplicación del análisis RAM es el sistema de ignición.

La tabla 14-4 muestra gráficamente el incremento que se tiene en la disponibilidad de los sistemas del Generador GE11-72D.

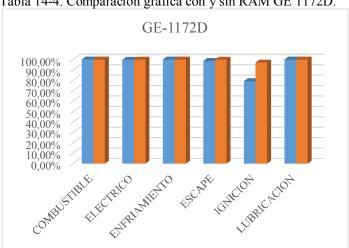


Tabla 14-4. Comparación grafica con y sin RAM GE 1172D.

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Según la tabla 14-4 el sistema de combustible, lubricación y enfriamiento son los que menor aumento presentan, pero los demás componentes aumentan su disponibilidad.

4.8.5 Disponibilidad con y sin RAM DE GE-1172E

La tabla 15-4 muestra el incremento en la disponibilidad de los sistemas del Generador GE-1172E.

Tabla 15-4. Disponibilidad con y sin RAM en GE-1172E

Sistema	Combustible %	Eléctrico %	Enfriamiento %	Escape%	Ignición %	Lubricación %
SIN RAM	100	98,34	99,94	99,96	97,09	100
CON RAM	100	99,78	99,97	99,99	99,58	100

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Según la tabla 15-4 el sistema que mayor aumento presenta con la aplicación del análisis RAM es el sistema de ignición.

La tabla 16-4 muestra gráficamente el incremento que se tiene en la disponibilidad de los sistemas de del Generador GE11-72E.

Tabla 16-4. Disponibilidad con y sin RAM en GE-1172E

GE-1172E

100,00%
99,50%
98,50%
98,00%
97,50%
97,00%
96,50%
96,50%
95,50%

Litter Republik Control of the Control of

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Según la tabla 16-4 el sistema de combustible y lubricación son los que menor aumento presentan pero los demás componentes aumentan su disponibilidad.

4.8.6 Disponibilidad con y sin RAM de GE-1172F

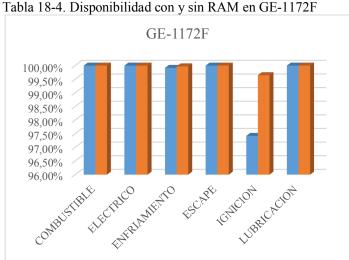

La tabla 17-4 muestra el incremento en la disponibilidad de los sistemas del Generador GE-1172F.

Tabla 17-4. Disponibilidad con y sin RAM en GE-1172F

Sistema	Combustible %	Eléctrico %	Enfriamiento %	Escape %	Ignición %	Lubricación %
SIN RAM	100	100	99,92	100	97,42	100
CON RAM	100	100	99,97	100	99,65	100

Según la tabla 17-4 el sistema que mayor aumento presenta con la aplicación del análisis RAM es el sistema de ignición.

La tabla 18-4 muestra gráficamente el incremento que se tiene en la disponibilidad de los sistemas de del Generador GE11-72F.

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Según la tabla 18-4 el sistema de combustible, escape, eléctrico y lubricación son los que menor aumento presentan pero los demás componentes aumentan su disponibilidad.

4.8.7 Disponibilidad con y sin RAM de GE-1172G

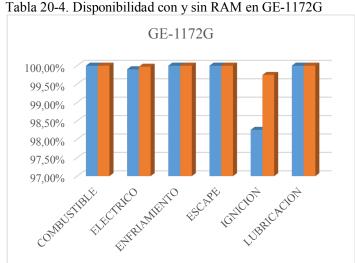

La tabla 19-4 muestra el incremento en la disponibilidad de los sistemas del Generador GE-1172G.

Tabla 19-4. Disponibilidad con v sin RAM en GE-1172G

Sistema	Combustible %	Eléctrico %	Enfriamiento %	Escape %	Ignición %	Lubricación %
SIN RAM	100	99,90	100	100	98,26	100
CON RAM	100	99,97	100	100	99,75	100

Según la tabla 19-4 el sistema que mayor aumento presenta con la aplicación del análisis RAM es el sistema de ignición.

La tabla 20-4 muestra gráficamente el incremento que se tiene en la disponibilidad de los sistemas de del Generador GE11-72G.

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Según la tabla 20-4 el sistema de combustible, enfriamiento, escape y lubricación son los que menor aumento presentan pero los demás componentes aumentan su disponibilidad.

4.8.8 Comparación con y sin RAM entre el promedio de disponibilidad de cada Generador

En la tabla 21-4 se recopila los incrementos de disponibilidad que se dan con la aplicación del análisis RAM a los Generadores de la empresa REPSOL, en esta tabla se podrá ver que el aumento promedio de las disponibilidad es para todos los Generadores y no solo para alguno en solitario.

Tabla 21-4. Comparación con y sin RAM entre el promedio de disponibilidad de cada Generador

Generador	GE- 1172A	GE- 1172B	GE- 1172C	GE- 1172D	GE- 1172E	GE- 1172F	GE- 1172G
CD LD A M	06.57	00.55	00.25	70.25	07.00	07.42	00.26
SIN RAM	96,57	99,55	98,35	79,25	97,09	97,42	98,26
CON RAM	99,91	99,98	99,92	99,46	99,89	99,94	99,95

Según la tabla 21-4 el Generador que mayor aumento representa al análisis realizado en los grupos electrógenos es en el GE-1172D.

En la tabla 22-4 se aprecia cuan significativo es el aumento porcentual de la disponibilidad de los equipos de generación con la aplicación del análisis RAM.

Tabla 22-4. Disponibilidad promedio de los Generadores con y sin RAM.

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

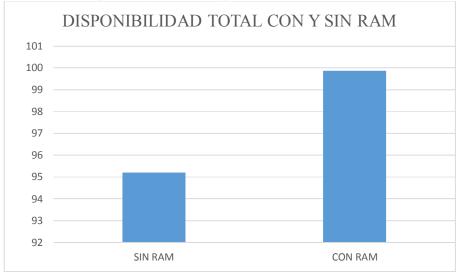
Según se aprecia en la tabla 22-4 la disponibilidad aumenta considerablemente en los Generadores GE-1172D y el Generador GE-1172E.

4.8.9 Comparación de disponibilidad total con y sin RAM

Una vez que se tiene realizado el análisis individual de disponibilidad se procede a realizar un comparativo global de la disponibilidad total del sistema de generación de

REPSOL en cuanto a Generadores WAUKESHA se refiere, este análisis mencionado se lo ve en la tabla 23-4.

Tabla 23-4. Comparación de disponibilidad total con y sin RAM


Generador	Promedio
SIN RAM	95.21
CON RAM	99.86

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

El aumento total de disponibilidad del sistema de generación de motores WAUKESHA está alrededor del 4.65%.

Este aumento se aprecia gráficamente en la tabla 24-4 que se muestra a continuación.

Tabla 24-4. Comparación grafica de disponibilidad total con y sin RAM

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

El análisis propuesto para el mantenimiento de los equipos de generación de REPSOL trae como consecuencia el aumento de disponibilidad de los equipos de generación tal como se puede ver en la tabla 24-4.

4.9 Propuesta de un Plan de Mantenimiento

Una vez que se calcularon los tiempos de ocurrencia de los fallos ocurridos en los motores WAUKESHA se procede a elaborar el plan para que estos fallos puedan ser prevenidos.

4.9.1 Plan de mantenimiento sistema de combustible.

Este plan que se aplica al sistema de combustible, se lo realiza en base a cada sistema de los motores y a cuatro tipos de mantenimiento que van de la mano con los tiempos medios entre fallos tal como se lo ve en la tabla 25-4.

Tabla 25-4. Plan de mantenimiento sistema de combustible.

Sistema	Item Mantenible	Número de tarea PMO	Tarea	Frecuencia horas	Duración Tarea (horas)	Personas	Material y herramientas
Combustible	Filtros de aire	4726	Limpiar el pre- filtro y filtro de aire	1770	1,0	1	Herramientas especiales listadas en el manual del fabricante.
Combustible	Turboalimentador	4731	Verificar que no existan roces de la turbina con la carcasa lado del compresor.	1770	0,5	1	Herramientas especiales listadas en el manual del fabricante.
Combustible	Filtros de aire	4725	Cambiar pre- filtro y filtro de aire.	3550	1,0	1	Herramientas especiales listadas en el manual del fabricante.
Combustible	Filtros de aire	4726	Limpiar el pre- filtro y filtro de aire	3550	1,0	1	Herramientas especiales listadas en el manual del fabricante.
Combustible	Turboalimentador	4731	Verificar que no existan roces de la turbina con la carcasa lado del compresor.	3550	0,5	1	Herramientas especiales listadas en el manual del fabricante.
Combustible	Filtros de aire	4725	Cambiar pre- filtro y filtro de aire.	5320	1,0	1	Herramientas especiales listadas en el manual del fabricante.
Combustible	Filtros de aire	4726	Limpiar el pre- filtro y filtro de aire	5320	1,0	1	Herramientas especiales listadas en el manual del fabricante.
Combustible	Turboalimentador	4731	Verificar que no existan roces de la turbina con la carcasa lado del compresor.	5320	0,5	1	Herramientas especiales listadas en el manual del fabricante.

Combustible	Carburadores	4712	Realizar cambio de kit de reparación de carburadores.	5320	4,0	1	Herramientas especiales listadas en el manual del fabricante.
Combustible	Filtros de aire	4725	Cambiar pre- filtro y filtro de aire.	7100	1,0	1	Herramientas especiales listadas en el manual del fabricante.
Combustible	Filtros de aire	4726	Limpiar el pre- filtro y filtro de aire	7100	1,0	1	Herramientas especiales listadas en el manual del fabricante.
Combustible	Turboalimentador	4731	Verificar que no existan roces de la turbina con la carcasa lado del compresor.	7100	0,5	1	Herramientas especiales listadas en el manual del fabricante.
Combustible	Carburadores	4712	Realizar cambio de kit de reparación de carburadores.	7100	4,0	1	Herramientas especiales listadas en el manual del fabricante.

4.9.2 Plan de mantenimiento sistema de eléctrico.

Este plan se lo realiza en base a cada uno de los sistemas de los motores y a cuatro tipos de mantenimiento que van de la mano con los tiempos medios entre fallos tal como se lo muestra en la tabla 26-4.

Tabla 26-4. Plan de mantenimiento sistema eléctrico.

Sistema	Item Mantenible	Número de tarea PMO	Tipo de tarea	Tarea	Frecuencia horas	Duración Tarea (horas)	Personas	Material Y Herramientas
Eléctrico	Generador	6371	Preventivo	Revisar la calibración de medidores de Energía y Combustible. Esta actividad está incluida en el MP: E-RL- 10 del Área ASEP	7100	1,0	1	Equipo de prueba, herramientas estándar
Eléctrico	Cargador de Baterías	4932	Preventivo	Efectuar mantenimiento del cargador de baterías.	1770	0,3	2	Equipo de prueba, herramientas estándar
Eléctrico	Cargador de Baterías	5293	Preventivo	Medir el voltaje de cada batería, si el voltaje es inferior a 8 Voltios reemplazar las dos baterías.	7100	0,3	1	Equipo de prueba, herramientas estándar

			1	I A *			1	lr · ı
Eléctrico	Cargador de Baterías	4933	Preventivo	Ajustar bornes de batería y del cargador	1770	0,3	2	Equipo de prueba, herramientas estándar
Eléctrico	Cargador de Baterías	4936	Preventivo	Inspeccionar parámetros de operación del cargador.	1770	0,1	1	Equipo de prueba, herramientas estándar
Eléctrico	Cargador de baterías	5259	Preventivo	Limpiar superficie interelectrodos, bornes y área circundante del banco de baterías.	1770	0,5	1	Equipo de prueba, herramientas estándar
Eléctrico	Cargador de Baterías	5263	Preventivo	Medir rizado de voltaje del cargador.	1770	0,1	1	Equipo de prueba, herramientas estándar
Eléctrico	Enfriamiento	5264	Preventivo	Limpiar y ajustar las conexiones eléctricas del arrancador del motor del enfriador.	1770	0,5	1	Equipo de prueba, herramientas estándar
Eléctrico	Enfriamiento	5265	Preventivo	Probar el estado de aislamiento del bobinado del motor del enfriador.	1770	0,3	1	Equipo de prueba, herramientas estándar
Eléctrico	Enfriamiento	5266	Preventivo	Medir la corriente de operación del motor.	1770	0,2	1	Equipo de prueba, herramientas estándar
Eléctrico	Generador	5267	Preventivo	Medir aislamiento del cable de fuerza y armadura del Generador.	3550	0,5	2	Equipo de prueba, herramientas estándar
Eléctrico	Generador	5268	Preventivo	Barnizar las cabezas de bobinas Generador y excitatriz del rotor y estator.	3550	2,0	1	Equipo de prueba, herramientas estándar
Eléctrico	Generador	5269	Preventivo	Cambiar el rodamiento del Generador.	3550	8,0	2	Equipo de prueba, herramientas estándar
Eléctrico	Generador	5272	Preventivo	Inspeccionar visualmente el aislamiento de las bobinas del Generador.	3550	0,3	1	Equipo de prueba, herramientas estándar
Eléctrico	Generador	5273	Preventivo	Inspeccionar, limpiar y reajustar los diodos rectificadores y el Varistor.	3550	0,3	1	Equipo de prueba, herramientas estándar

	,	1		1			1	
Eléctrico	Generador	5294	Preventivo	Limpiar y barnizar bobinas de campo y armadura del Generador	7100	8,0	2	Equipo de prueba, herramientas estándar
Eléctrico	Generador	5276	Preventivo	Limpiar las cabezas de las bobinas del estator y rotor del Generador (lado libre)	3550	1,0	2	Equipo de prueba, herramientas estándar
Eléctrico	Generador	5277	Preventivo	Lubricar rodamiento del Generador	3550	0,1	1	Equipo de prueba, herramientas estándar
Eléctrico	Generador	5278	Preventivo	Limpiar y reajustar conexiones de la puesta a tierra.	3550	0,3	1	Equipo de prueba, herramientas estándar
Eléctrico	Generador	5280	Preventivo	Montar rotor de la excitatriz	5320	2,0	2	Equipo de prueba, herramientas estándar
Eléctrico	Generador	5281	Preventivo	Realizar pruebas de funcionamiento al Generador	5320	0,3	1	Equipo de prueba, herramientas estándar
Eléctrico	Generador	5282	Preventivo	Inspeccionar y reajustar las conexiones eléctricas de potencia y control del Generador	5320	0,3	1	Equipo de prueba, herramientas estándar
Eléctrico	Generador	5286	Preventivo	Inspeccionar y probar el funcionamiento de Heaters	5320	0,2	1	Equipo de prueba, herramientas estándar
Eléctrico	Lubricación	5283	Preventivo	Realizar pruebas de funcionamiento del motor eléctrico de la bomba de pre- post- lubricación	5320	0,2	1	Equipo de prueba, herramientas estándar
Eléctrico	Lubricación	5285	Preventivo	Realizar pruebas de aislamiento al motor eléctrico de la bomba de pre-post- lubricación	5320	0,3	1	Equipo de prueba, herramientas estándar
Eléctrico	Panel de Control	5287	Preventivo	Inspeccionar y ajustar contactos eléctricos en los dispositivos de protección (CT, PT, RELES)	5320	0,3	1	Equipo de prueba, herramientas estándar
Eléctrico	Panel de Control	5288	Preventivo	Limpiar y lubricar contactos eléctricos del disyuntor.	5320	0,3	1	Equipo de prueba, herramientas estándar

Eléctrico	Panel de Control	5289	Preventivo	Limpiar y lubricar mecanismo del disyuntor	7100	0,2	1	Equipo de prueba, herramientas estándar
Eléctrico	Panel de Control	5290	Preventivo	Limpiar celda de conexión @ 5kV	7100	0,3	2	Equipo de prueba, herramientas estándar
Eléctrico	Panel de Control	5291	Preventivo	Realizar pruebas de apertura y cierre del disyuntor.	7100	0,2	2	Equipo de prueba, herramientas estándar
Eléctrico	Panel de Control	5292	Preventivo	Probar aislamiento de los contactos al vacío (botellas) del disyuntor.	7100	0,3	2	Equipo de prueba, herramientas estándar

4.9.3 Plan de mantenimiento sistema de enfriamiento.

Este plan se desarrolla en base a cada sistema de los motores y a cuatro tipos de mantenimiento que van de la mano con los tiempos medios entre fallos tal como se ve en la tabla 27-4.

Tabla 27-4. Plan de mantenimiento sistema enfriamiento.

Sistema	Item mantenible	Número de tarea pmo	Tipo de tarea	Tarea	Frecuencia horas	Duración tarea (horas)	Personas	Material y herramient as
Enfriamiento	Accesorios	4744	Preventivo	Tensionar bandas de la bomba de agua principal	1770	0,5	1	Herramient as especiales listadas en el manual del fabricante.
Enfriamiento	Accesorios	4745	Preventivo	Tensionar bandas de la bomba de agua auxiliar	1770	0,5	1	Herramient as especiales listadas en el manual del fabricante.
Enfriamiento	Radiadores	4747	Preventivo	Lubricar chumaceras de ventilador	1770	0,2	1	Herramient as especiales listadas en el manual del fabricante.
Enfriamiento	Bomba de agua	4781	Preventivo	Lubricar rodamientos de bombas principal y auxiliar de	1770	0,2	1	Herramient as especiales listadas en el manual

				agua de enfriamiento				del fabricante.
Enfriamiento	Accesorios	4744	Preventivo	Tensionar bandas de la bomba de agua principal	3550	0,5	1	Herramient as especiales listadas en el manual del fabricante.
Enfriamiento	Accesorios	4745	Preventivo	Tensionar bandas de la bomba de agua auxiliar	3550	0,5	1	Herramient as especiales listadas en el manual del fabricante.
Enfriamiento	Radiadores	4747	Preventivo	Lubricar chumaceras de ventilador	3550	0,2	1	Herramient as especiales listadas en el manual del fabricante.
Enfriamiento	Bomba de agua	4781	Preventivo	Lubricar rodamientos de bombas principal y auxiliar de agua de enfriamiento	3550	0,2	1	Herramient as especiales listadas en el manual del fabricante.
Enfriamiento	Accesorios	4742	Preventivo	Cambiar Bandas de la bomba de agua principal	5320	1,0	1	Herramient as especiales listadas en el manual del fabricante.
Enfriamiento	Accesorios	4744	Preventivo	principal	5320	0,5	1	Herramient as especiales listadas en el manual del fabricante.
Enfriamiento	Accesorios	4745	Preventivo	Tensionar bandas de la bomba de agua auxiliar	5320	0,5	1	Herramient as especiales listadas en el manual del fabricante.
Enfriamiento	Accesorios	4746	Preventivo	Cambiar bandas de la bomba de agua auxiliar	5320	1,0	1	Herramient as especiales listadas en el manual del fabricante.

				Lubricar				Herramient
Enfriamiento	Radiadores	4747	Preventivo	chumaceras de ventilador	5320	0,2	1	as especiales listadas en el manual del fabricante.
Enfriamiento	Bomba de agua	4781	Preventivo	Lubricar rodamientos de bombas principal y auxiliar de agua de enfriamiento	5320	0,2	1	Herramient as especiales listadas en el manual del fabricante.
Enfriamiento	Accesorios	4742	Preventivo	Cambiar Bandas de la bomba de agua principal	7100	1,0	1	Herramient as especiales listadas en el manual del fabricante.
Enfriamiento	Accesorios	4744	Preventivo	Tensionar bandas de la bomba de agua principal	7100	0,5	1	Herramient as especiales listadas en el manual del fabricante.
Enfriamiento	Accesorios	4745	Preventivo	Tensionar bandas de la bomba de agua auxiliar	7100	0,5	1	Herramient as especiales listadas en el manual del fabricante.
Enfriamiento	Accesorios	4746	Preventivo	Cambiar bandas de la bomba de agua auxiliar	7100	1,0	1	Herramient as especiales listadas en el manual del fabricante.
Enfriamiento	Radiadores	4747	Preventivo	Lubricar chumaceras de ventilador	7100	0,2	1	Herramient as especiales listadas en el manual del fabricante.
Enfriamiento	Bomba de agua	4781	Preventivo	Lubricar rodamientos de bombas principal y auxiliar de agua de enfriamiento	7100	0,2	1	Herramient as especiales listadas en el manual del fabricante.

4.9.4 Plan de mantenimiento sistema de escape.

Este plan es realizado con base en cada sistema de los motores y en cuatro tipos de mantenimiento que van de la mano con los tiempos medios entre fallos, como se observa en la tabla 28-4.

Tabla 28-4. Plan de mantenimiento sistema enfriamiento.

Sistema	Item Mantenible	Número de tarea PMO	Tipo de tarea	Tarea	Frecuencia	Duración Tarea (horas)	Personas	Material y Herramientas
Escape	Válvula Wasgate	4788	Preventivo	Inspeccionar válvulas Wasgate.	1770	0,2	1	Herramientas especiales listadas en el manual del fabricante.
Escape	Válvula Wasgate	4788	Preventivo	Inspeccionar válvulas Wasgate.	3550	0,2	1	Herramientas especiales listadas en el manual del fabricante.
Escape	Válvula Wasgate	4788	Preventivo	Inspeccionar válvulas Wasgate.	5320	0,2	1	Herramientas especiales listadas en el manual del fabricante.
Escape	Cabezotes	4770	Preventivo	Calibrar válvulas de escape	5320	6,0	1	Herramientas especiales listadas en el manual del fabricante.
Escape	Cabezotes	4770	Preventivo	Calibrar válvulas de escape	7100	6,0	1	Herramientas especiales listadas en el manual del fabricante.
Escape	Válvula Wasgate	4788	Preventivo	Inspeccionar válvulas Wasgate.	7100	0,2	1	Herramientas especiales listadas en el manual del fabricante.

4.9.5 Plan de mantenimiento sistema de ignición.

Este plan se realiza en base a cada sistema de los motores y a cuatro tipos de mantenimiento que van de la mano con los tiempos medios entre fallos tal como se lo ve en la tabla 29-4.

Tabla 29-4. Plan de mantenimiento sistema de ignición.

l abla 29-4. Plan de mantenimiento sistema de ignición.									
Sistema	Item Mantenible	Número de tarea pmo	Tipo de tarea	Tarea	Frecuencia	Duración Tarea (horas)	Personas	Material y herramientas	
Ignición	Bloque Motor	4748	Preventivo	Realizar boroscopia de camisas, pistones y válvulas de cabezote.	1000	2,0	1	Herramientas especiales listadas en el manual del fabricante.	
Ignición	Bloque Motor	4753	Preventivo	Revisar los cojinetes de biela y bancada	1000	8,0	2	Herramientas especiales listadas en el manual del fabricante.	
Ignición	Bloque Motor	4754	Preventivo	Medir la compresión de los cilindros del motor.	1000	1,0	1	Herramientas especiales listadas en el manual del fabricante.	
Ignición	Bobinas	4718	Preventivo	Inspeccionar cables, protector de bujía y Bobinas de ignición.	1000	1,0	1	Herramientas especiales listadas en el manual del fabricante.	
Ignición	Bujías	4719	Preventivo	Cambiar Bujías de encendido	1000	2,0	1	Herramientas especiales listadas en el manual del fabricante.	
Ignición	Timing Disc	4723	Preventivo	Inspeccionar y limpiar el Pick up	1000	0,0	1	Herramientas especiales listadas en el manual del fabricante.	

4.9.6 Plan de mantenimiento sistema de lubricación.

El plan es hecho en base a cada sistema de los motores y a cuatro tipos de mantenimiento que van de la mano con los tiempos medios entre fallos, como se lo ve en la tabla 30-4.

Tabla 30-4. Plan de mantenimiento sistema de lubricación.

Sistema	Ítem mantenible	Número de tarea pmo	Tipo de tarea	Tarea	Frecuencia	Duración tarea (horas)	Personas	Material y herramienta
Lubricación	Aceite	4795	Preventivo	Cambiar aceite del motor. (GEOTEX LA sae 40)	7100	1,0	1	Herramientas especiales listadas en el manual del fabricante.
Lubricación	Accesorios	4797	Preventivo	Realizar la limpieza de los depurador es de aceite del Carter.	7100	1,0	1	Herramientas especiales listadas en el manual del fabricante.
Lubricación	Carter	4802	Preventivo	Ajustar los pernos del Carter	7100	1,0	2	Herramientas especiales listadas en el manual del fabricante.
Lubricación	Carter	4804	Preventivo	Limpiar y cambiar empaques del colador	7100	3,0	1	Herramientas especiales listadas en el manual del fabricante.
Lubricación	Carter	4805	Preventivo	Limpieza interna del Carter	7100	2,0	1	Herramientas especiales listadas en el manual del fabricante.
Lubricación	Filtros de aceite	4807	Preventivo	Cambiar filtros de aceite motor	7100	1,5	1	Herramientas especiales listadas en el manual del fabricante.
Lubricación	Filtros de aceite	4808	Preventivo	Limpiar strainer de ingreso de aceite al motor	7100	1,0	1	Herramientas especiales listadas en el manual del fabricante.

4.10 Costos de mantenimiento con RAM

Se estableció el costo de realizar cada una de las tareas propuestas en el plan de mantenimiento y los costos de los materiales que intervienen en cada una de las tareas mencionadas.

4.10.1 Costos plan de mantenimiento sistema de combustible

Los costos de mantenimiento del sistema de combustible se han elaborado en base a los costos de personal en 21.5 USD la hora-hombre y los costos de materiales que se detallan en la tabla 31-4.

Tabla 31-4. Costos de mantenimiento RAM en sistema de combustible.

Tarea	Frecuencia (horas)	Duración tarea (horas)	Personas	Costo materiales USD	Costos con RAM USD
Limpiar el pre-filtro y filtro de aire	1770	1,0	1	23	44,5
Verificar roces de turbina con carcasa de compresor.	1770	0,5	1	15	25,75
Cambiar pre-filtro y filtro de aire.	3550	1,0	1	89	110,5
Limpiar el pre-filtro y filtro de aire	3550	1,0	1	23	44,5
Verificar roces de turbina con carcasa de compresor.	3550	0,5	1	15	25,75
Cambiar pre-filtro y filtro de aire.	5320	1,0	1	89	110,5
Limpiar el pre-filtro y filtro de aire	5320	1,0	1	23	44,5
Realizar cambio de kit de reparación de carburadores.	5320	4,0	1	217	303
Cambiar pre-filtro y filtro de aire.	7100	1,0	1	89	110,5
Limpiar el pre-filtro y filtro de aire	7100	1,0	1	23	44,5
Verificar roces de turbina con carcasa de compresor.	7100	0,5	1	15	25,75
Realizar cambio de kit de reparación de carburadores.	7100	4,0	1	217	303
	I			TOTAL	1218,5

4.10.2 Costos plan de mantenimiento sistema de eléctrico.

Los costos de mantenimiento del sistema eléctrico está realizado con los costos de personal en 21.5 USD la hora-hombre y los costos de materiales que se detallan en la tabla 32-4.

Tabla 32-4. Costos de mantenimiento RAM en sistema de eléctrico.

Tarea	Frecuencia horas	Duración tarea (horas)	Personas	Costo materiales USD	Costos con RAM USD
Revisar la calibración de medidor de Energía y Combustible.	7100	1,0	1	35,0	56,5
Efectuar mantenimiento del cargador de baterías.	1770	0,3	2	35,0	45,8
Medir el voltaje de cada batería, si el voltaje es inferior a 8 Voltios reemplazar las dos baterías.	7100	0,3	1	35,0	40,4
Ajustar bornes de batería y del cargador	1770	0,3	2	25,0	35,8
Inspeccionar parámetros de operación del cargador.	1770	0,1	1	35,0	36,8
Limpiar superficie interelectrodos, bornes y área circundante del banco de baterías.	1770	0,5	1	25,0	35,8
Medir rizado de voltaje del cargador.	1770	0,1	1	35,0	36,8
Limpiar y ajustar las conexiones eléctricas del arrancador del motor del enfriador.	1770	0,5	1	25,0	35,8
Probar el estado de aislamiento del bobinado del motor del enfriador.	1770	0,3	1	35,0	40,4
Medir la corriente de operación del motor.	1770	0,2	1	35,0	38,6
Medir aislamiento del cable de fuerza y armadura del Generador.	3550	0,5	2	35,0	56,5
Barnizar las cabezas de bobinas Generador y excitatriz del rotor y estator.	3550	2,0	1	194,0	237,0
Cambiar el rodamiento del Generador.	3550	8,0	2	15000,0	15344,0
Inspeccionar visualmente el aislamiento de las bobinas del Generador.	3550	0,3	1	35,0	40,4

Inspeccionar, limpiar y reajustar los diodos rectificadores y el Varistor.	3550	0,3	1	25,0	30,4
Limpiar y barnizar bobinas de campo y armadura del Generador	7100	8,0	2	25,0	369,0
Limpiar las cabezas de las bobinas del estator y rotor del Generador (lado libre)	3550	1,0	2	25,0	68,0
Lubricar rodamiento del Generador	3550	0,1	1	25,0	26,8
Limpiar y reajustar conexiones de la puesta a tierra.	3550	0,3	1	25,0	30,4
Montar rotor de la excitatriz	5320	2,0	2	35,0	121,0
Realizar pruebas de funcionamiento al Generador	5320	0,3	1	35,0	40,4
Inspeccionar y reajustar las conexiones eléctricas de potencia y control del Generador	5320	0,3	1	35,0	40,4
Inspeccionar y probar el funcionamiento de Heaters	5320	0,2	1	35,0	38,6
Realizar pruebas de funcionamiento del motor eléctrico de la bomba de pre-post- lubricación	5320	0,2	1	35,0	38,6
Realizar pruebas de aislamiento al motor eléctrico de la bomba de pre-post-lubricación	5320	0,3	1	35,0	40,4
Inspeccionar y ajustar contactos eléctricos en los dispositivos de protección (CT, PT, RELES)	5320	0,3	1	35,0	40,4
Limpiar y lubricar contactos eléctricos del disyuntor.	5320	0,3	1	194,0	199,4
Limpiar y lubricar mecanismo del disyuntor	7100	0,2	1	194,0	197,6
Limpiar celda de conexión @ 5kV	7100	0,3	2	25,0	35,8
Realizar pruebas de apertura y cierre del disyuntor.	7100	0,2	2	35,0	42,2
Probar aislamiento de los contactos al vacío (botellas) del disyuntor.	7100	0,3	2	35,0	45,8
Courter DEDCOL Diagram 16				TOTAL	17485,1

4.10.3 Costos plan de mantenimiento sistema de enfriamiento.

Los costos de mantenimiento del sistema de enfriamiento está realizado con los costos de personal en 21.5 USD la hora-hombre y los costos de materiales que se detallan en la tabla 33-4.

Tabla 33-4. Costos de mantenimiento RAM en sistema de eléctrico.

Tarea	Frecuencia horas	Duración tarea (horas)	Personas	Costo materiales USD	Costos con RAM USD
Tensionar bandas de la bomba de agua principal.	1770	0,5	1	35,0	45,8
Tensionar bandas de la bomba de agua auxiliar.	1770	0,5	1	35	45,8
Lubricar chumaceras de ventilador.	1770	0,2	1	75	78,6
Lubricar rodamientos de bombas de agua de enfriamiento.	1770	0,2	1	75	78,6
Tensionar bandas de la bomba de agua principal.	3550	0,5	1	35	45,8
Tensionar bandas de la bomba de agua auxiliar.	3550	0,5	1	35	45,8
Lubricar chumaceras de ventilador	3550	0,2	1	75	78,6
Lubricar rodamientos de bombas de agua de enfriamiento.	3550	0,2	1	75	78,6
Cambiar Bandas de la bomba de agua principal	5320	1,0	1	375	396,5
Tensionar bandas de la bomba de agua principal	5320	0,5	1	35	45,8
Tensionar bandas de la bomba de agua auxiliar	5320	0,5	1	35	45,8
Cambiar bandas de la bomba de agua auxiliar	5320	1,0	1	375	396,5
Lubricar chumaceras de ventilador	5320	0,2	1	75	78,6
Lubricar rodamientos de bombas de agua de enfriamiento.	5320	0,2	1	75	78,6
Cambiar Bandas de la bomba de agua principal	7100	1,0	1	375	396,5
Tensionar bandas de la bomba de agua principal	7100	0,5	1	35	45,8
Tensionar bandas de la bomba de agua auxiliar	7100	0,5	1	35	45,8

Cambiar bandas de la bomba de agua auxiliar	7100	1,0	1	375	396,5
Lubricar chumaceras de ventilador	7100	0,2	1	75	78,6
Lubricar rodamientos de bombas de agua de enfriamiento.	7100	0,2	1	75	78,6
				TOTAL	2580,7

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

4.10.4 Costos plan de mantenimiento sistema de escape.

Los costos de mantenimiento del sistema de escape está realizado con los costos de personal en 21.5 USD la hora-hombre y los costos de materiales que se detallan en la tabla 34-4.

Tabla 34-4. Costos de mantenimiento RAM en sistema de escape.

Tarea	Frecuencia	Duración Tarea (horas)	Personas	Costo materiales USD	Costos con RAM USD
Inspeccionar válvulas Wasgate.	1770	0,2	1	75,0	78,6
Inspeccionar válvulas Wasgate.	3550	0,2	1	75	78,6
Inspeccionar válvulas Wasgate.	5320	0,2	1	75	78,6
Calibrar válvulas de escape	5320	6,0	1	275	404,0
Calibrar válvulas de escape	7100	6,0	1	275	404,0
Inspeccionar válvulas Wasgate.	7100	0,2	1	75	78,6
				850,0	1122,3

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

4.10.5 Costos plan de mantenimiento sistema de ignición.

Los costos de mantenimiento del sistema de ignición está realizado con los costos de personal en 21.5 USD la hora-hombre y los costos de materiales que se detallan en la tabla 35-4.

Tabla 35-4. Costos de mantenimiento RAM en sistema de ignición.

Tarea	Frecuencia	Duración Tarea (horas)	Personas	Costo Materiales USD	Costos con RAM USD
Medir la compresión de los cilindros del motor.	250	1,0	1	35,0	56,5
Realizar boroscopia de camisas, pistones y válvulas de cabezote.	500	2,0	1	35	78,0
Medir la compresión de los cilindros del motor.	500	1,0	1	35	56,5
Calibrar válvulas de admisión	500	6,0	1	35	164,0
Inspeccionar cables, protector de bujía y bobinas de ignición.	500	1,0	1	35	56,5
Cambiar bujías de encendido	500	2,0	1	1140	1183,0
Realizar boroscopía de camisas, pistones y válvulas de cabezote.	750	2,0	1	35	78,0
Medir la compresión de los cilindros del motor.	750	1,0	1	35	56,5
Calibrar válvulas de admisión	750	6,0	1	35	164,0
Inspeccionar cables, protector de bujía y bobinas de ignición.	750	1,0	1	35	56,5
Cambiar bujías de encendido	750	2,0	1	1140	1183,0
Realizar boroscopia de camisas, pistones y válvulas de cabezote.	1000	2,0	1	35	78,0
Revisar los cojinetes de biela y bancada	1000	8,0	2	35	379,0
Medir la compresión de los cilindros del motor.	1000	1,0	1	35	56,5
Inspeccionar cables, protector de bujía y bobinas de ignición.	1000	1,0	1	35	56,5
Cambiar bujías de encendido	1000	2,0	1	1140	1183,0
Inspeccionar y limpiar el Pick up	1000	0,0	1	35	35,0
	•			TOTAL	4920,5

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

4.10.6 Costos plan de mantenimiento sistema de lubricación.

Los costos de mantenimiento del sistema de lubricación está realizado con los costos de personal en 21.5 USD la hora-hombre y los costos de materiales que se detallan en la tabla 36-4.

Tabla 36-4. Costos de mantenimiento RAM en sistema de ignición.

Tarea	Frecuencia	Duración Tarea (horas)	Personas	Costo Materiales USD	Costos con RAM USD
Cambiar aceite del motor. (GEOTEX LA SAE 40)	1770	1,0	1	850,0	871,5
Realizar la limpieza de los depuradores de aceite del Carter.	1770	1,0	1	287	308,5
Limpiar y cambiar empaques del colador	1770	3,0	1	150	214,5
Cambiar filtros de aceite motor	1770	1,5	1	210	242,3
Limpiar strainer de ingreso de aceite al motor	1770	1,0	1	75	96,5
Cambiar aceite del motor. (GEOTEX LA sae 40)	3550	1,0	1	850	871,5
Realizar la limpieza de los depuradores de aceite del Carter.	3550	1,0	1	287	308,5
Limpiar y cambiar empaques del colador	3550	3,0	1	150	214,5
Cambiar filtros de aceite motor	3550	1,5	1	210	242,3
Limpiar strainer de ingreso de aceite al motor	3550	1,0	1	75	96,5
Cambiar aceite del motor. (GEOTEX LA sae 40)	5320	1,0	1	850	871,5
Realizar la limpieza de los depuradores de aceite del Carter.	5320	1,0	1	287	308,5
Limpiar y cambiar empaques del colador	5320	3,0	1	150	214,5
Cambiar filtros de aceite motor	5320	1,5	1	210	242,3
Limpiar strainer de ingreso de aceite al motor	5320	1,0	1	75	96,5
Cambiar aceite del motor. (GEOTEX LA sae 40)	7100	1,0	1	850	871,5
Realizar la limpieza de los depuradores de aceite del Carter.	7100	1,0	1	287	308,5
Ajustar los pernos del Carter	7100	1,0	2	15	58,0
Limpiar y cambiar empaques del colador	7100	3,0	1	150	214,5

Limpieza interna del Carter	7100	2,0	1	75	118,0
Cambiar filtros de aceite motor	7100	1,5	1	210	242,3
Limpiar strainer de ingreso de aceite al motor	7100	1,0	1	75	96,5
				TOTAL	7109,0

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

4.10.7 Costos de mantenimiento generales

Una vez que se tiene el costo de cada una de las tareas se lo traslada a cada uno de los Generadores quedando los totales como se menciona en la tabla 37-4.

Tabla 37-4. Costos generales de mantenimiento con RAM.

Generador	Sistema combustible USD	Sistema eléctrico USD	Sistema enfriamiento USD	Sistema escape USD	Sistema ignición USD	Sistema lubricación USD	Total USD
GE-1172A	1218,5	17485,1	2580,7	1122,3	4920,5	7109,0	34436,1
GE-1172B	1218,5	17485,1	2580,7	1122,3	4920,5	7109,0	34436,1
GE-1172C	1218,5	17485,1	2580,7	1122,3	4920,5	7109,0	34436,1
GE-1172D	1218,5	17485,1	2580,7	1122,3	4920,5	7109,0	34436,1
GE-1172E	1218,5	17485,1	2580,7	1122,3	4920,5	7109,0	34436,1
GE-1172F	1218,5	17485,1	2580,7	1122,3	4920,5	7109,0	34436,1
GE-1172G	1218,5	17485,1	2580,7	1122,3	4920,5	7109,0	34436,1
Total USD.	8529,5	122395,9	18064,7	7856,3	34443,5	49763,0	241052,9

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

4.10.8 Comparación de costos de mantenimiento con y sin análisis RAM.

A continuación se muestra en las tablas 38-4 y 39-4 una comparación entre los costos que significaron la intervención en mantenimientos correctivos y los mantenimientos planificados de acuerdo al análisis RAM.

Tabla 38-4. Comparación grafica costos con y sin análisis RAM

	Combustible USD	Eléctrico USD	Enfriamiento USD	Escape USD	Ignición USD	Lubricación USD	Total USD	%
Sin								
RAM	750,0	71050,0	10500,0	147000,0	894600,0	7350,0	1131250,0	100,0%
Con								
RAM	8529,5	122395,9	18064,7	7856,3	34443,5	49763,0	241052,9	21,3%

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

Según la tabla 38-4 la reducción de costos de mantenimiento en relación a los correctivos realizados anteriormente al análisis RAM es al 21%.

La siguiente gráfica de la tabla 39-4 muestra las variaciones que tienen en cuanto a los costos de cada uno de los sistemas de los Generadores de la empresa REPSOL.

COMPARACION COSTOS CON Y SIN RAM 900000,0 800000,0 700000,0 600000,0 500000,0 400000,0 300000,0 200000,0 100000,0 ■SIN RAM ■CON RAM

Tabla 39-4. Comparación grafica costos con y sin análisis RAM

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

De acuerdo a lo mostrado en la tabla 39-4 la reducción en los costos de mantenimiento es significativo especialmente en el sistema de ignición pasando de \$894600 a \$34443.

4.11 Comprobación de la Hipótesis

Para la comprobación de la hipótesis en la presente investigación se emplea la prueba estadística Chi-cuadrado la cual permite comprobar la diferencia entre los datos obtenidos en el mantenimiento actual con los datos esperados en los motores WAUKESHA.

En la tabla 40-4 se tiene los datos observados en el estudio y los datos esperados.

Tabla 40-4. Datos observados y esperados

			1			
Sin análisis	Con análisis	Total	Esperado	Sin análisis	Con análisis	Total
298	88	386	GE-1172A	331.898	54.102	386.000
67	25	92	GE-1172B	79.105	12.895	92.000
219	74	293	GE-1172C	251.933	41.067	293.000
1982	191	2173	GE-1172D	1868.433	304.567	2173.000
340	104	444	GE-1172E	381.769	62.231	444.000
194	43	237	GE-1172F	203.782	33.218	237.000
133	2	135	GE-1172G	116.078	18.922	135.000
3233	527	3760	Total	3233.000	527.000	3760.000

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2015)

$$X^2 = \sum (Fo - Fe)^2 / \text{Fe}$$
 Ecuación (12)

Dónde:

*X*²= Chi cuadrado

 Σ = Sumatoria

Fo= Frecuencia observada de la realización de un acontecimiento observado

Fe= Frecuencia esperada

Tabla 41-4. Calculo de Chi cuadrado

Cálculo de la fórmula	Frecuencia observada	Frecuencia esperada	Total
GE-1172A	3.462	21.240	
GE-1172B	1.852	11.364	
GE-1172C	4.305	26.411	
GE-1172D	6.903	42.347	
GE-1172E	4.570	28.035	
GE-1172F	0.470	2.881	
GE-1172G	2.467	15.133	Chi cuadrado
Total	24.029	147.410	171.439

Fuente: REPSOL Bloque 16. Elaborado por Cortez P. (2016) Los grados de libertad son una función del número de casillas en una tabla, es decir los grados de libertad reflejan el tamaño de la tabla 41-4. Los grados de libertad de la columna son el número de filas menos 1. Los grados de libertad de cada fila es igual al número de columnas menos 1, o bien, El efecto neto es que el número de grados de libertad para la tabla es el producto de (número de filas -1) por (número de columnas -1).

Por lo tanto con 2 filas y 7 columnas, los grados de libertad es (2-1)(7-1) = 6.

El valor de 0,05 es un valor establecido de acuerdo al nivel de confianza que queremos tener es decir del 95%.

Si p > 0,05 el resultado no es significativo, es decir, aceptamos la hipótesis nula de independencia y por lo tanto concluimos que ambas variables estudiadas son independientes, no existe una relación entre ellas. Esto significa que existe más de un 5% de probabilidad de que la hipótesis nula sea cierta en nuestra población y lo consideramos suficiente para aceptar.

La prueba chi cuadrado requiere la comparación del **\frac{2}{prueba} con el **\frac{2}{2} fabla Si el valor estadístico de prueba es menor que el valor tabular, la hipótesis nula es aceptada, caso contrario, H0 es rechazada.

Tabla 42-4. Distribución Chi cuadrado

v/p	0,001	0,0025	0,005	0,01	0,025	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5
1	10,8274	9,1404	7,8794	6,6349	5,0239	3,8415	2,7055	2,0722	1,6424	1,3233	1,0742	0,8735	0,7083	0,5707	0,4549
2	13,8150	11,9827	10,5965	9,2104	7,3778	5,9915	4,6052	3,7942	3,2189	2,7726	2,4079	2,0996	1,8326	1,5970	1,3863
3	16,2660	14,3202	12,8381	11,3449	9,3484	7,8147	6,2514	5,3170	4,6416	4,1083	3,6649	3,2831	2,9462	2,6430	2,366
4	18,4662	16,4238	14,8602	13,2767	11,1433	9,4877	7,7794	6,7449	5,9886	5,3853	4,8784	4,4377	4,0446	3,6871	3,356
5	20,5147	18,3854	16,7496	15,0863	12,8325	11,0105	9,2363	8,1152	7,2893	6,6257	6,0644	5,5731	5,1319	4,7278	4,351
6	22,4575	20,2491	18,5475	16,8119	14,4494	12,5916	10,6446	9,4461	8,5581	7,8408	7,2311	6,6948	6,2108	5,7652	5,348
7	24,3213	22,0402	20,2777	18,4753	16,0128	14,0671	12,0170	10,7479	9,8032	9,0371	8,3834	7,8061	7,2832	6,8000	6,345
8	26,1239	23,7742	21,9549	20,0902	17,5345	15,5073	13,3616	12,0271	11,0301	10,2189	9,5245	8,9094	8,3505	7,8325	7,344
9	27,8767	25,4625	23,5893	21,6660	19,0228	16,9190	14,6837	13,2880	12,2421	11,3887	10,6564	10,0060	9,4136	8,8632	8,342

Fuente: http://labrad.fisica.edu.uy/docs/tabla_chi_cuadrado.pdf

Según la tabla 42-4 nuestro caso *chi* tabulado es 12.59 y *chi* calculado es 171.43, como este valor es mayor determinamos que la hipótesis es nula por lo tanto nuestra hipótesis es aceptada.

CONCLUSIONES

La normativa MIL-STD-2173 establece que la gestión del mantenimiento está basado en la confiabilidad, mantenibilidad y disponibilidad sigue estrictamente el establecimiento de los ítems pertenecientes al equipo, la descripción de sus funciones, la descripción de los fallos, la descripción delos modos de fallo, el análisis de los fallos ocurridos en los equipos en un período determinado y la propuesta de alternativas que prevengan la ocurrencia de aquellos fallos analizados.

De acuerdo al análisis realizado el mantenimiento actual que se realiza en la empresa es netamente correctivo provocando que la disponibilidad de energía del bloque en cuanto a generación otorgada por motores WAUKESHA se refiere esté en el 95,21%.

De los Generadores analizados, el Generador que mayor número de eventos registra es el GE1172D, con 87 eventos de fallo ocurridos y dan un total de 1.982 horas en fallo de la máquina. El número de eventos que mayor se registra es en el sistema de ignición con 150 eventos de fallo, seguido del sistema de escape con 31 eventos a continuación el sistema eléctrico con 13 eventos, el sistema de enfriamiento y el sistema de lubricación con 7 eventos cada uno y el sistema de combustible con un evento registrado.

Las actividades de mantenimiento que se han dado en el período analizado destacan que el Generador que mayor problemas de fallos ha tenido es el GE1172D con una disponibilidad total de tan solo el 79.25% a lo largo del periodo analizado, seguido del Generador GE 1172A que tuvo una disponibilidad del 96.57%, a continuación está el Generador GE 1172E el cual tuvo una disponibilidad de 97.09%, luego está el Generador GE1172C con el 98,35% de disponibilidad, a continuación el Generador GE1172F el cual tuvo una disponibilidad de 97.42%, a continuación esta la disponibilidad del Generador GE1172G con el 98.26%, y el Generador que menos horas de fallo tuvo es el GE1172B con el 99,55% de disponibilidad.

El sistema que mayor hora de fallos ha tenido de los analizados es el sistema de ignición con un total de 2.556 horas que estuvo en reparación es decir en mantenimiento

correctivo, seguido del sistema de escape con 422 horas, el sistema eléctrico con 203 horas de fallo, el sistema de enfriamiento con 30 horas de fallo, el sistema de lubricación con 21 horas de fallo y el sistema que menor horas de fallo ha tenido es el sistema de combustible.

El plan de mantenimiento propuesto contempla la realización de mantenimientos e inspección preventiva es decir que se lo realice antes de que pueda ocurrir el fallo, esto se logra gracias a que se realizó el cálculo del tiempo de ocurrencia entre un fallo y otro del mismo tipo. Con la aplicación de la propuesta se lograron mejoras en la disponibilidad del Generador GE1172A aumenta al 99,91%, al igual que la del Generador GE1172B que pasa al 99,98%, la del Generador GE1172C pasa al 99,92% de disponibilidad, la del Generador GE1172D pasa al 99,46%, el Generador GE1172E pasa a tener una disponibilidad de 99,89%, la disponibilidad del Generador GE1172F pasa al 99,94% y la disponibilidad del Generador GE1172G pasa a tener 99,95%.

Los costos de mantenimiento correctivo se reducen a tan solo el 21% de lo que representaron realizar estas tareas de mantenimientos correctivos si se aplica el mantenimiento RAM, esta reducción se debe a que se realiza tareas de mantenimiento preventivo y con esto se evita que el equipo caiga en modo de fallo en los ítems analizados.

RECOMENDACIONES

Aplicar el plan de mantenimiento establecido en este estudio con la realización de estos a los intervalos establecidos para cada sistema como se indica a continuación: para el sistema de combustible, eléctrico, escape, enfriamiento y lubricación en intervalos de 1770 horas, 3550 horas, 5320 horas y 7100 horas con los ítems de mantenimiento que se establecen en este estudio, y para el sistema de ignición realizar el plan de mantenimiento cada 250 horas, 500 horas 750 horas y 1000 horas con los ítems de mantenimiento que se dan en este estudio.

Agregar los tiempos calculados en este estudio al sistema de mantenimiento de la empresa para que las tareas de mantenimiento puedan ser alertadas con anterioridad a la ocurrencia del fallo.

Desarrollar el estudio de RAM para los demás sistemas y componentes que posee la empresa como activos sujetos a mantenimiento en especial turbinas de generación y sistemas de separación de crudo.

BIBLIOGRAFÍA

- Aguila, M. A. (2012). Propuesta de mejora de la gestión de mantenimiento basado en la mantenibilidad de equipos de acarreo de una empresa minera de cajamarca. propuesta de mejora de la gestión de mantenimiento basado en la mantenibilidad de equipos de acarreo de una empresa minera de cajamarca. perú.
- Assolini , A., Zambolino, A., & López, E. (2010). Presentación Planta Generación a Crudo. Quito.
- Enríquez, C., & Araujo, A. (22 de Agosto de 2011). Repsol busca ampliar sus operaciones. *EL COMERCIO*.
- Gutierrez, M. (2009).
- L.F., S. (23 de Febrero de 2005). *Mantenimiento Mundial*. Obtenido de www.mantenimientomudial.com.
- LOPEZ. (10 de 10 de 2012). FIABILIDAD. FIABILIDAD. QUITO.
- Marquez, A. C. (2010). Gestión del mantenimiento. *Gestión del mantenimiento*. ESPAÑA
- MORA, A. (2009). MANTENIMIENTO ESTRATÉGICO PARA EMPESAS INDUSTRIALES. Mexico: Alfaomega.
- PEMEX. (2006). RAM. VILLA HERMOSA TABASCO.
- Repsol Ecuador. (2012). Informe de Responsabilidad Corporativa. Quito: PROSAR.
- REPSOL ECUADOR. (07 de 12 de 2015). PROCESO DE GENERACIÓN ELÉCTRICA WAUKESHA. *PROCESO DE GENERACIÓN ELÉCTRICA WAUKESHA*. ORELLANA, ORELLANA, ECUADOR.
- SEXTO, L. F. (15 de 10 de 2014). INGENIERÍA DE LA FIABILIDAD.

 INGENIERÍA DE LA FIABILIDAD.
- Torres, L. (2010). Mantenimiento. Su implementación y gestión. Argentina.
- UNE-EN. (2011). Mantenimiento. Terminología del mantenimiento. *Mantenimiento*. *Terminología del mantenimiento*.
- UNEFA. (2011). Estructura de la unidad de mantenimiento y gestión del mantenimiento. Estructura de la unidad de mantenimiento y gestión del mantenimiento. VENEZUELA.
- UTALCA. (s.f.). *RCM*. CHILE.

VILLAGARCIA, T. (12 de 05 de 2015). FIABILIDAD. *FIABILIDAD*. QUITO, PICHINCHA, ECUADOR.