

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

FACULTAD DE MECÁNICA ESCUELA DE INGENIERÍA MECÁNICA

"PROYECTO DE FACTIBILIDAD PARA EL USO EFICIENTE DE LA ENERGÍA EN LAS INSTALACIONES DEL COMPLEJO TURÍSTICO VULCANO GREEN DEL CANTÓN PENIPE"

> RUIZ CHIRIBOGA ALEX ERNESTO PACHECO SÁNCHEZ EDDY FERNANDO

TESIS DE GRADO

Previa a la obtención del Título de:

INGENIERO MECÁNICO

RIOBAMBA – ECUADOR

2014

CONTENIDO

		Pág.
1.	INTRODUCCIÓN	
1.1	Antecedentes	1
1.2	Justificación	2
1.3	Objetivos	2
1.3.1	Objetivo general	2
1.3.2	Objetivos específicos	2
		_
_	W 1000 TEÓDICO	
2.	MARCO TEÓRICO	•
2.1	Definiciones	3
2.2	Transferencia de calor	4
2.2.1	Conducción	4
2.2.2	Conveccion	4
2.2.3	Radiacion	5
2.3	Pérdidas de calor en el vaso de la piscina	5
2.3.1	Pérdidas por evaporación	6
2.3.2	Pérdidas por radiación	7
2.3.3	Pérdidas por convección	7
2.3.4	Pérdidas por renovación	8
2.3.5	Pérdidas por conducción o transmisión	8
2.4	Descripción y caracteristicas de los sistemas	9
2.4.1	Piscina	9
2.4.1.1	Definición	9
2.4.1.2	Caracteristicas	9
2.4.1.3	Condiciones generales	10
2.4.1.4	Instalaciones tipicas	10
2.4.1.5	Equipos de recirculación del agua	13
2.4.2	Sauna	18
2.4.2.1	Definición	18
2.4.2.2	Caracteristicas	18
2.4.2.3	Condiciones generales	19
2.4.2.4	Instalaciones tipicas	19
2.4.3	Turco	20
2.4.3.1	Definición	20
2.4.3.2	Definición del número de usuarios	20
2.4.3.3	Condiciones requeridas	20
2.4.3.4	Caracteristicas	20
2.4.3.5	Condiciones generales	21
2.4.3.6	Instalaciones tipicas	21
3.	ANÁLISIS DE LA SITUACIÓN DE CONSUMO ENERGÉTICO DEL	
	COMPLEJO TURÍSTICO VULCANO GREEN DEL CANTÓN PENIPE	
3.1	Descripción y caracteristicas funcionales del complejo	23
3.1.1	Servicios que ofrece el complejo	24
3.2	Análisis energético del complejo	25
3.2.1	Instrumentos a utilizar para evaluación de los sistemas	25
3.2.2	Piscina	26
3.2.2.1	Pérdidas de calor en el vaso de la piscina	26
3.2.2.2	Pérdidas por evaporación	26
3.2.2.3	Pérdidas por radiación	29
3.2.2.4	Pérdidas por convección	29
3.2.2.5	Pérdidas por renovación	30
3.2.2.6	Pérdidas por condución	31
3.2.2.7	Porcentaje de pérdidas de calor en la piscina	33
3.2.3	Cálculo del calor necesario para calentar el agua de la piscina	33

3.2.4	Calor requerido en la piscina	34		
3.2.5	Cálculo del flujo de masa de combustible para el calentamiento de la piscina.	35		
3.2.5.1	Cálculo del flujo de combustible para el calentamiento de recirculación 36			
3.2.5.2	Cálculo del flujo de vapor suministrado al intercambiador de calor			
3.2.5.3	Cálculo del flujo de combustible			
3.2.5.4	Cálculo del flujo de combustible para la el calentamiento de la reposición 3:			
3.2.5.5				
	,			
3.2.6	Cálculo hidráulico			
3.2.6.1	Consideraciones generales40			
3.2.6.2	Pérdidas de carga en la tubería de succión hacia la bomba			
3.2.6.3	Cálculo de la pérdida por longitud de tubería53			
3.2.6.4	Pérdida secundaria en la succión6			
3.2.6.5	Pérdidas totales	71		
3.2.6.6	Pérdidas de carga en la tubería de descarga hacia la piscina	71		
3.2.6.7	Cálculo del caudal que se reparte a cada uno de los inyectores	75		
3.2.7	Turco	83		
3.2.7.1	Condiciones requeridas	83		
3.2.7.2	Cálculo de la cantidad de vapor necesario	83		
3.2.7.3	Cálculo del calor latente	87		
		-		
3.2.7.4	Resumen de pérdidas de energía en el turco	108		
3.2.7.5	Pérdidas en la tubería de vapoir hacia el turco	108		
3.2.7.6	Calor requerido en el turco	114		
3.2.8	Sauna	114		
3.2.8.1	Condiciones requeridas	114		
3.2.8.2	Cálculo del calor sensible	115		
3.2.8.3	Resumen de pérdidas de energía en la sauna	133		
3.2.8.4	Calor disipado por la tubería del intercambiador en la sauna	134		
3.2.8.5	, ,			
3.2.8.6				
3.2.9	Evaluación de la caldera			
3.2.9.1				
3.2.9.2	Cálculo del flujo de vapor necesario para calentar la piscina, sauna y turco 147			
3.2.9.3	Cálculo de la masa de vapor requerida para la piscina, sauna y turco			
0.2.0.0	calcare de la maca de raper requerida para la piccina, cadria y tarceniminin	0		
4.	IDENTIFICAR LAS POSIBLES OPORTUNIDADES DE AHORRO ENERGÉTICO			
4.1	Paneles solares	150		
4.2	Sistema híbrido para calentar el agua de la piscina	154		
4.3	Manta térmica	156		
4.3.1	Tipo de cubierta y orillo cosido	157		
4.3.2	Enrollador para la piscina	158		
4.4	Ahorro de combustible utilizando la manta térmica	159		
4.5	Tanque de combustible	164		
4.5.1	Cálculo de la capacidad del tanque de combustible	164		
4.5.2	Dimensionamiento del tanque de servicio diario	164		
4.5.3		165		
	Dimensionamiento del tanque de reserva			
4.6	Ablandador			
4.6.1	Sistema de tratamiento del agua de alimentación			
4.6.2	Selección del ablandador			
4.7	Mantenimiento de la caldera	170		
4.7.1	Mantenimiento semanal170			
4.7.2	Mantenimiento mensual			
4.7.3	Mantenimiento anual	171		
5.	ANÁLISIS DE LA FACTIBILIDAD ECONÓMICA DE LAS PROPUESTAS			
5.1	Equipo que falta para el sistema atual			
5.2	Equipo para disminuir el consumo de hidrocarburos (paneles solares)			
5.2.1	Costo de materiales, equipos e implementos			

5.2.2	Costos de instalación	178
5.2.2.1	Costos de mano de obra	178
5.2.2.2	Costo de transporte	178
5.2.3	Costos directos de la nueva instalación con paneles solares	178
5.3	Costos de las mejoras del complejo Vulcano Green	179
5.4	Costo total del proyecto	180
5.5	Análisis de costos por operación y mantenimiento	180
5.6	Análisis comparativo entre el sistema actual y el sistema nuevo	181
5.7	Análisis de beneficio/costo	182
5.8	Cálculo de la tasa interna de retorno	183
5.8.1	Análisis de la afluencia de usuarios	183
5.8.2	Salvamento de la inversión en el complejo hidrotermal	184
5.8.3	Depreciación anual del complejo hidrotermal	184
6.	CONCLUSIONES Y RECOMENDACIONES	
6.1	Conclusiones	187
6.2	Recomendaciones	188

BIBLIOGRAFÍA ANEXOS PLANOS

LISTA DE TABLAS

		Pág.
1	Temperaturas recomendadas del agua	10
2	Servicios que ofrece el complejo	24
3	Instrumentos de medición	25
4	Pérdidas de calor en el vaso de la piscina	33
5	Datos necesarios para el calentamiento del agua de la piscina	35
6	Datos del caudal en el complejo Vulcano Green	43
7	Velocidades recomendadas de flujo en tuberías	44
8	Propiedades de la tubería de PVC de 2"	44
9	Diámetros longitudes de tuberías y propiedades del fluido	45
10	Cálculo de caudales y pérdidas tentativas tubería de skimmers – succión Hr3	49
11	Cálculo de caudales y pérdidas tentativas tubería de skimmers – succión Hr4	51
12	Caudales en la tubería – succión skimmers	52
13	Pérdidas reales	55
14	Pérdidas por longitud de tubería reales Hr2	57
15	Caudales y pérdidas en tramo L3 de la tubería de succión- skimmers	59
16	Caudales y pérdidas en tramo L4 de tubería de succión- skimmers	61
17	Pérdidas por longitud de tubería reales H _{rLT}	63
18	Coeficiente de pérdidas secundarias succión tramo "LT"	65
19	Coeficiente de pérdidas secundarias succión tramo "LT"	65
20	Coeficiente de pérdidas secundarias succión tramo "L1"	66
21	Coeficiente de pérdidas longitud equivalente succión tramo "L1"	66
22	Coeficiente de pérdidas tramo "L2"	67
23	Coeficiente de pérdidas secundarias en la succión tramo "L2"	67
24	Coeficiente de pérdidas secundarias en la succión tramo "L3"	68
25	Coeficiente de pérdidas secundarias en la succión tramo "L4"	70
26	Coeficiente de pérdidas secundarias en la succión tramo "L4"	70
27	Diámetro interior, módulo de rugosidad y longitud tubería descarga	71
28	Área – velocidad tubería de descarga bomba	72
29	Pérdidas primarias en la tubería de descarga	72
30	Pérdidas secundarias en el tramo L1	72
31	Pérdidas secundarias en el tramo L2	73
32	Diámetro y longitud, de tubería descarga tramo 3	74
33	Pérdidas secundarias en el tramo 3	75
34	Propiedades de la tubería – caudal hacia inyectores	76
35	Longitudes de tuberías y propiedades del fluido - caudal hacia inyectores	76
36	Diámetro y longitud, de tubería en la descarga tramo 4 y 5	
37	Análisis de pérdidas de descarga en el tramo 4 y 5	77
38	Pérdidas secundarias en el tramo 4 y 5	78
39	Pérdidas secundarias en el tramo 4 y 5	79
40	Pérdidas secundarias en el tramo 4 y 5	79
41	Coeficientes de pérdidas, según Kisiliev	79
42	Dimensiones del Inyector, diámetros comerciales y nominales	80
43	Área de inyectores y sus velocidades	81
44	Diámetro de inyectores	81
45	Pérdidas de energía por transferencia de calor y carga térmica – turco	108
46	Pérdidas de energía por transferencia de calor y carga térmica – sauna	133
47	Método ASME, eficiencia para calderas	146
48	Radiación solar en el Ecuador	151
49	Requerimientos de la piscina	154
50	Requerimientos del equipo calefactor de la piscina	154
51	Resumen del consumo de combustible	156
52	Tipos de mantas para piscinas marca Ingerclima	157
53	Costo de la manta térmica en euros	157
54	Modelos y precios de enrolladores para mantas térmicas	158
55	Pérdidas utilizando la manta térmica	161

56	Resumen del consumo de combustible	163
57	Resumen del consumo de combustible total	163
58	Compuestos químicos	166
59	Factor de conversión	167
60	Costos de materiales, equipos e implementos para la piscina	174
61	Costos de materiales, equipos e implementos de la sauna	174
62	Costos de materiales, equipos e implementos del turco	174
63	Costos de materiales, equipos e implementos para la caldera	175
64	Resumen total de costos de materiales, equipos, implementos	175
65	Costos por mano de obra para la manta térmica	176
66	Costos por mano de obra para el aislamiento sauna y turco	176
67	Costos por mano de obra caldera (tanque combustible y ablandador)	176
68	Resumen total de costos de instalación	176
69	Costo por transporte	176
70	Resumen total de costos directos	177
71	Costos de materiales, equipos e implementos para la piscina	177
72	Costos por mano de obra para la instalación de paneles solares	178
73	Costo por transporte	178
74	Resumen total de costos directos	178
75	Costos de las mejoras del complejo VULCANO GREEN	179
76	Costos indirectos	179
77	Costos Totales	180
78	Costos por consumo de agua	180
79	Costo por consumo de energía eléctrica	180
80	Costo por consumo de combustible	181
81	Costo por mantenimiento	181
82	Resumen total de costos por operación y mantenimiento	181
83	Consumo de combustible	181
84	Ingreso mínimo mensual	183
85	Flujo de caja	185

LISTA DE FIGURAS

		Pag.
1	Esquema pérdidas de calor del vaso	6
2	Sistema básico de recirculación	10
3	Recirculación inversa	11
4	Recirculación mixta	12
5	Recirculación clásica	12
6	Prefiltro del sistema actual	13
7	Skimmer	13
8	Bomba para piscina y sus componentes	15
9	Sistema de filtración	16
10	Filtro de arena	16
11	Válvula selectora para filtros	17
12	Sauna	19
13	Mecanismo para la ventilación del interior de la sauna	19
14	Vista transversal de la pared del sauna	20
15	Esquema del baño turco	21
16	Vista de la pared del turco	22
17	Ubicación del complejo	23
18	Diagrama piscina	31
19	Sistema de distribución de vapor hacia la piscina	35
20	Bomba pentair	41
21	Curva de rendimiento de la serie WhisperFlo - 60Hz	42
22	Filtro de arena	42
23	Distribución de la tubería de succión (bomba)	43
24	Vista de planta tubería de succión	64
25	Coeficiente (Cf) aplicables a la fórmula de Kirschmer	68
26	Dimensiones de skimmers	69
27	Tubería de descarga	71
28	Tramo 3 (agua caliente hacia inyectores)	74
29	Distribución de inyectores tramo 4-5	75
30	Reducción gradual	80
31	Vista isométrica del turco	85
32	Vista seccional de asientos – turco	85
33	Vista de las paredes el turco	88
34	Vista seccional de pared 1 – turco	89
35	Circuito térmico de pared 1 – turco	90
36	Vista seccional de pared 2 – turco	97
37	Circuito térmico de pared 2 - turco	
38	Vista seccional de pared 3 – turco	98
39	Circuito térmico de pared 3 – turco	98
40	Vista seccional de pared 4 – turco	100
41	Circuito térmico de pared 4 – turco	100
42	Vista seccional del piso – turco	102
43	Circuito térmico del piso – turco	102
44	Vista superior del piso	102
45	Vista seccional del techo – turco	104
46	Circuito térmico del techo – turco	104
47	Vista seccional puerta – turco	105
48	Circuito térmico puerta – turco	106
49	Vista seccional tubería de hierro galvanizado	108
50	Circuito térmico tubería hierro galvanizado	109
51	Vista isométrica del sauna	116
52	Vista seccional de los asientos – sauna	117
53	Distribución de paredes – sauna	118
54	Vista seccional de pared 1 – sauna	119
55	Circuito térmico pared 1 – sauna	119

56	Vista seccional de pared 4 – sauna	126
57	Circuito térmico pared 4 – sauna	127
58	Vista seccional de pared 2, y 3	127
59	Circuito térmico pared 2 y 3	127
60	Vista seccional del techo	128
61	Circuito térmico techo sauna	129
62	Vista seccional del piso sauna	129
63	Circuito térmico piso sauna	129
64	Vista superior del piso	130
65	Vista seccional de la puerta del sauna	131
66	Circuito térmico piso sauna	132
67	Vista seccional tubo cilíndrico sin aislamiento tubería de hierro galvanizado	134
68	Circuito térmico de tubería de hierro galvanizado	134
69	Vista seccional tubería de hierro galvanizado	139
70	Circuito térmico tubería hierro galvanizado	140
71	Diagrama de instalación de los paneles solares	150
72	Manta térmica de burbujas de polietileno para cubrir la piscina	156
73	Enrolladora manta térmica piscina	158
74	Condiciones actuales del tanque de combustible	164
75	Esquema de ablandador de agua	169
76	Diagrama de evaluación financiera	185

LISTA DE ABREVIACIONES

ASME Sociedad Americana de Ingenieros Mecánicos

CIATESA Campania Industrial de Aplicaciones Térmicas, S.A RITE Reglamento de Instalaciones Térmicas de Edificios

CONELEC Concejo Nacional de Electricidad

NEC Norma Ecuatoriana de la Construcción

GLP Gas Licuado de Petróleo
PVC Poli (Cloruro de Vinilo)
TIR Tasa Interna de Retorno

VAN Valor Actual Neto
B/C Beneficio / Costo

LISTA DE ANEXOS

- A Temperatura promedio agua de la piscina del Complejo Vulcano Green
- B Temperatura y humedad promedio del aire de la piscina
- C Humedad absoluta del aire saturado
- D Temperatura promedio del cerramiento de la piscina
- E Catálogo Pentair, bombas para piscina
- F Catálogo Pentair, filtros para piscina
- G Catálogo de Mark Peerless
- H Flujo de fluidos en válvulas, accesorios y tuberías de Crane
- Pérdidas secundarias de tubería PVC PLASTIGAMA
- J TECH-C2, coeficientes de resistencia para válvulas y ajustes
- **K** Temperatura y humedad en el interior del turco
- L Densidad del aire a diferentes temperaturas
- M Propiedades termodinámicas de gases a presión atmosférica
- N Propiedades del vapor húmedo
- O Temperatura y humedad en el interior del sauna
- P Poder calorífico de diferentes sustancias
- Q Catálogo MAGEN, eco energy, Heliocol colector solar
- R AQUARENOVABLE precio del panel Heliocol
- S Análisis del agua de abastecimiento para la caldera
- T Análisis del agua de la piscina
- U Ablandador para el agua de alimentación de la caldera
- V Parámetros de control de agua para caldera
- W Aislante térmico de fibra de vidrio

RESUMEN

Se ha realizado el estudio de factibilidad para el uso eficiente de la energía en las instalaciones del complejo turístico Vulcano Green del cantón Penipe, con la finalidad de reemplazar la energía convencional por energía alternativa, para lo cual se realizó el estudio de consumo de energía en cada uno de los diferentes servicios que presta el complejo.

Inicialmente, se procedió a examinar las condiciones actuales de las instalaciones del complejo, con la utilización de instrumentos técnicos de medida de temperatura, presión, humedad, Ph y químicos.

A través del análisis estadístico basado en promedios de consumo energético, se determinó las mayores pérdidas existentes en el complejo; por lo cual, se propone la implementación de un sistema híbrido para el calentamiento de la piscina mediante la utilización de paneles solares y la caldera siendo el más adecuado sistema de energía alternativa; así como también, el uso de la manta térmica para disminuir las pérdidas de evaporación cuando el complejo lo requiera.

Con los resultados obtenidos, podemos ver que las pérdidas de calor por evaporación en la piscina son las de mayor incidencia ya que éstas son alrededor del 82,21 %, en el sauna y en el turco la mayor carga térmica que se necesita es la de los usuarios de este baño, con este estudio nos permite saber que el consumo actual de combustible es de 4,2 gal/h, pero con la implementación de la manta térmica y los paneles solares existirá un ahorro de 1,28 gal/h, permitiéndole ahorrar al complejo USD. 1,31 /h.

Dentro del estudio económico, se hizo la relación beneficio costo del proyecto siendo de 1,17 y la tasa interna de retorno TIR de 22,34 por lo que aplicar el proyecto es factible a un plazo de 5 años.

ABSTRACT

A feasibility study for the use of efficient energy in the installations of the resort Vulcano Green in the city of Penipe has been performed in order to replace conventional energy by alternative energy, to do this. An energetic consume study was performed in each service that this resort has.

First, current conditions of the resort were examined through temperature measure, pressure, humidity, and pH, chemical technical instruments.

The higher losses in the resort were determined through statistics analysis based on the average of energetic consume, so the implementation of a hybrid system for heating swimming pool water through solar panels and boiler are the appropriate system of alternative energy, and also the use of a thermal blanket in order decrease evaporation losses of when the resort needs it.

Based on the results, it is said that heating evaporation losses in the swimming pool are the highest incidence, they are about 82,21% customs of these baths are the higher thermal load needed in the sauna and turkish bath, with the study it is determined that the use of gas is 4,2 gal/h, but there is a saving about 1,28 gal/h with the implantation of thermal blanket and solar panels which means a saving of 1,31/h.

The economic study took into consideration the relation cost-benefit, it is 1,17 and the internal rate of return (IRR) 22,34, so the project must be applied five years up.

CAPÍTULO I

1. INTRODUCCIÓN

1.1 Antecedentes

En la actualidad existen diversos problemas energéticos, para cada forma de vida estos pueden verse atenuados mediante la aplicación de medidas de ahorro. La búsqueda de la eficiencia energética de equipos y el consumo responsable se establecen como las bases de un nuevo punto de vista, cuyo objetivo es el desarrollo energético sostenible, siendo conscientes de que las materias primas son un bien escaso y limitado, sin embargo, deberán cambiar su modelo de consumo cuando las fuentes tradicionales se vuelvan limitadas o bien cuando el impacto ambiental demande un cambio en el modelo de consumo y el descubrimiento de nuevas formas de energía compatibles con el ambiente.

El Complejo Turístico Vulcano Green del Cantón Penipe ofrece sus instalaciones a toda la colectividad penipeña y a muchos visitantes de otras ciudades, cabe aclarar que el complejo enfrenta un conjunto de problemas que ponen en riesgo el normal abastecimiento de energía.

El uso de energía limpia aún no se desarrolla en nuestro medio, debido a la falta de políticas que permitan su uso competitivo y garanticen un financiamiento para complejos turísticos vigentes y/o nuevos.

En la cadena de producción, transformación, transmisión, distribución y uso final de la energía, se beneficiaría no solo al ambiente sino también al usuario y por consiguiente a la sociedad en su conjunto, por lo que se propone realizar un estudio de factibilidad que permita tener análisis y propuestas técnicas debidamente orientadas a reducir gastos de capital, optimizando el uso de los equipos instalados.

1.2 Justificación

El presente proyecto ha sido elaborado para fomentar el buen manejo de la energía, disminuyendo de esta manera el consumo de combustible fósiles y recursos no renovables. Con este estudio nos permite saber que consumos son los más importantes y sobre cuáles hay mayores posibilidades de ahorro de energía.

Hay que señalar la importancia fundamental que tiene la recopilación de información, la toma de datos y mediciones. Efectivamente cuanto más completa y veraz sea la información, facilitará el estudio y análisis para la racionalización del uso energético.

El estudio energético en el Complejo Turístico Vulcano Green es de suma importancia, porque en base a éste se mejorarán o eliminarán las pérdidas de energía, utilizando tecnología actual a corto o mediano plazo, para así tomar una decisión correctamente en caminada, contando con un modelo objetivo, tanto energética como económica del sistema a analizar, que comprenda todas las variables del problema, para generar una solución efectiva bajo un punto de vista profesional.

1.3 Objetivos

1.3.1 Objetivo general. Realizar el estudio de factibilidad para el uso eficiente de la energía en las instalaciones del complejo turístico Vulcano Green del Cantón Penipe.

1.3.2 Objetivos específicos:

Describir el funcionamiento actual del complejo y cuantificar su consumo de energía.

Identificar los posibles sistemas donde se pueda reemplazar la energía convencional por energías alternativas.

Analizar la factibilidad económica, de las propuestas.

CAPÍTULO II

2. MARCO TEÓRICO

2.1 Definiciones

Bienestar térmico. Implica una ausencia de cualquier sensación de incomodidad o malestar térmico producido por exceso de frío o calor.

Confort térmico. Es una sensación neutra de la persona respecto a un ambiente térmico determinado. Según la norma ISO 7730 el confort térmico "es una condición mental en la que se expresa la satisfacción con el ambiente térmico". El confort térmico depende de varios parámetros globales externos, como la temperatura del aire, la velocidad del mismo y la humedad relativa, y otros específicos internos como la actividad física desarrollada, la cantidad de ropa o el metabolismo de cada individuo.

Aislamiento térmico. Es la capacidad de los materiales para oponerse al paso del calor por conducción. Se evalúa por la resistencia térmica que tienen. Se considera material aislante térmico cuando su coeficiente de conductividad térmica: es inferior a <0,085 Kcal / m²°C medido a 20°C (obligatorio) ó 0,10 W/m²K. La resistencia térmica es inversamente proporcional a la conductividad térmica. Todos los materiales oponen resistencia, en mayor o menor medida, al paso del calor a través de ellos. Aquellos materiales que ofrecen una resistencia alta, se llaman aislantes térmicos específicos o, más sencillamente, aislantes térmicos, estos aislantes térmicos específicos pueden ser las lanas minerales (lana de roca y lana de vidrio), las espumas plásticas (EPS, Poliestireno expandido, Polietileno expandido, PUR, Poliuretano expandido), reciclados como los aislantes celulósicos a partir de papel usado, vegetales (paja, virutas madera, fardos de pasto, etc.); entre otros.

Demanda de energía activa. Es aquella demanda de energía que se usa mediante algún equipo que consume energía primaria (calentadores a gas, calefactores a diesel, etc.) o electricidad (aires acondicionados, calefactores eléctricos, sistemas solares con bombeo incorporado). Esta definición se complementa con los sistemas de energía pasivos que usan las condiciones ambientales para alcanzar los grados de confort deseados (Cámara de la Construcción del Ecuador, 2011 págs. 5-6).

2.2 Transferencia de calor

La transferencia de calor es aquella ciencia que busca predecir la transferencia de energía que puede ocurrir entre cuerpos, materiales, como resultado de una diferencia de temperaturas, como también trata de predecir la rapidez a la que se realiza este intercambio.

Existe tres modos de transferencia de calor: conducción, convección y radiación.

2.2.1 Conducción. Es el transporte de energía térmica de una región de alta temperatura a una de baja temperatura entre medios (líquido y gases) que se encuentra en contacto físico directo.

Para expresar el efecto de conducción de calor, utilizamos la ley de Fourier de la conducción de calor que permite determinar la rapidez de transferencia de calor que fluye por unidad de tiempo de una superficie isotérmica (VALENZUELA, 2003 págs. 8-9).

$$q = k.A.\frac{d_T}{d_n} \tag{1}$$

Donde:

q = Rapidez de transferencia de calor, en W.

 $k = Conductividad térmica del material, en W/_{m. °C}$

A = Superficie isotérmica, perpendicular a la dirección de flujo de calor, en m2.

 $\frac{T}{n}$ = Gradiente de temperatura en la dirección de flujo de calor, en $\frac{^{\circ}C}{m}$.

2.2.2 Convección. Es un modo de transferencia de calor cuya energía térmica se transmite de una región de alta temperatura a una de baja temperatura, entre un medio solido con un fluido en contacto físico directo.

Para expresar el efecto de convección de calor, utilizamos la ley de Newton, donde la rapidez de transferencia de calor está relacionada con la diferencia de temperaturas entre la pared y el fluido y el área de la superficie (VALENZUELA, 2003 pág. 14).

$$q = h.A. (T_w - T_\infty) \tag{2}$$

Donde:

q = Rapidez de transferencia de calor, en W.

 $h = \text{Coeficiente convectivo, en } W/_{\text{m}^2.\text{°K}}$

A = Superficie del medio solido en contacto con el fluido, en m².

Tw = Temperatura del medio sólido, en °K.

 $T\infty$ = Temperatura promedio del fluido, en °K.

2.2.3 Radiación. Es el transporte de energía térmica de una región de baja a una de alta temperatura entre medios que se encuentran separados una distancia.

Para expresar el efecto de radiación de calor, utilizamos la ley de Stefan - Boltzman, donde la rapidez de transferencia de calor está relacionada con la diferencia de temperaturas a la cuarta potencia (VALENZUELA, 2003 págs. 10-11).

$$q = \sigma.A.(T_1^4 - T_2^4) \tag{3}$$

Donde:

q = Rapidez de transferencia de calor, en W.

 $\sigma = \text{Constante}$ de Stefan - Boltzman= 5,66 * 10^-8, en $\frac{W}{m^2*K^4}.$

A =Superficie que se tiende a calentar, en m^2 .

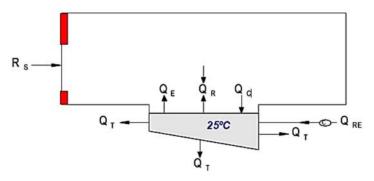
 T_1 = Temperatura de la superficie 1, en °K.

 T_2 = Temperatura de la superficie 2, en °K.

2.3 Pérdidas de calor en el vaso de la piscina

Las pérdidas de calor se pueden producir por diferentes factores tales como:

Q_E = Pérdidas por evaporación.


Q_R = Pérdidas por radiación de calor.

Q_C = Pérdidas por convección de calor.

Q_T = Pérdidas por conducción o transmisión.

Q_{RE} = Pérdidas por renovación del agua del vaso.

Figura 1. Esquema pérdidas de calor del vaso

Fuente: MAILLO Agustín. Climatización de piscinas cubiertas, p.5

2.3.1 Pérdidas por evaporación. El agua al evaporarse del vaso de la piscina se absorbe calor por lo que se produce un enfriamiento del sobrante del agua que no se evapora, es decir, disminuye la temperatura del agua del vaso. Por lo tanto, cuanta más evaporación exista más se enfriará el agua de la piscina y mayores serán las necesidades que habrá que aportar para mantener la temperatura de la misma (MAILLO, 2005 pág. 5).

Para calcular las pérdidas por evaporación emplearemos la siguiente ecuación.

$$Q_E = M_{eTotal} * Cv (4)$$

Donde:

Q_E = Pérdida de calor por la evaporación de agua, en W.

 $M_{eTotal} = Flujo$ másico de evaporación total por unidad de superficie, en $^{kg}/_{hm^2}$.

Cv = Calor latente de evaporación del agua, a la Temperatura del agua, en $\frac{Wh}{kg}$

Existe diversas formas de determinar el flujo másico de evaporación de agua, donde la más utilizada es la ecuación de Bernier que contempla tres parámetros importantes.

- Piscina sin agitación (coeficiente 16).
- Piscina con ocupación (coeficiente 133n).
- Con respecto a los espectadores.

Ecuación de Bernier.

$$M_e = S[(16 + 133n)(W_e - G_a(W_{as}))] + (0.1 N)$$
(5)

Donde:

Me = Flujo másico de agua evaporada, en kg/h.

S = Superficie de la lámina de agua de la piscina, en m².

We= Humedad absoluta del aire saturado a la temperatura del agua de la piscina, en $\frac{kgagua}{kgaire}$

Was= Humedad absoluta del aire saturado a la temperatura del ambiente interior, en $\frac{kgagua}{kgaire}$

Ga = Grado de saturación (Humedad relativa).

n = Número de bañistas.

N = Número total de ocupantes (espectadores).

16 = Coeficiente de evaporación asociada a la piscina sin agitación.

133n = Coeficiente de evaporación asociada a la agitación de los ocupantes.

2.3.2 Pérdidas por radiación. Como se ve en la siguiente fórmula de Stefan Boltzman las pérdidas por radiación están en función de la diferencia, entre la temperatura media de los cerramientos y la del agua, elevada ambas a la cuarta potencia y expresadas en grados Kelvin (°K = °C + 273).

$$Q_R = \sigma(\varepsilon)(T_{agua}^4 - T_c^4) \tag{6}$$

Donde:

 $Q_R = P$ érdidas de radiación por unidad de superficie, en $\frac{W}{m^2}$.

 σ = Constante de Stefan-Boltzman = 5,67(10) ⁻⁸, en W/m²(°K)⁴.

 ε = Emisividad de la superficie = 0,95 (agua).

T_c= Temperatura superficial de los cerramientos, en °K.

Las pérdidas por radiación en algunos casos y en especial cuando se trata de piscinas cubiertas, son despreciables (MAILLO, 2005 págs. 5-6).

2.3.3 Pérdidas por convección. Al igual que las pérdidas por radiación en el caso de piscinas cubiertas las pérdidas por convección (Qc) también se suelen despreciar, ya que al aplicar la fórmula el valor resultante es pequeño, pues la diferencia de temperaturas también lo es (MAILLO, 2005 pág. 6).

$$Q_C = 0.624 6 (T_{agua} - T_{aire})^{4/3}$$
 (7)

Donde:

 $Q_C = Pérdidas de convección por unidad de superficie. <math>\frac{W}{m^2}$.

 $T_{agua} = Temperatura del agua.$

 $T_{aire} = Temperatura del aire.$

2.3.4 Pérdidas por renovación. En una piscina cubierta, como ya hemos visto, existen pérdidas continuas de agua, desde la evaporada, a la que los propios bañistas sacan del vaso, o la gastada en la limpieza de fondos y filtros. Sin embargo, estas cantidades son muy inferiores al 5% del volumen total del vaso que obligatoriamente por normativa, debido a razones higiénicas sanitarias, debe reponerse diariamente.

Esta renovación conlleva que las pérdidas de calor, por este concepto sean importantes, y en todo caso, dependerán de la temperatura de agua de la red y de la temperatura del agua de la piscina que se pretenda alcanzar. Se puede calcular de la siguiente forma (MAILLO, 2005 pág. 6).

$$Q_{RE} = V_r(D)(C_e) (T_{agua} - T_x)$$
(8)

Donde:

Vr = 5% (Volumen piscina).

D = Densidad del agua, en kg/m³.

Ce = Calor específico del agua = 1,16, en Wh/kg°C.

Tx= Temperatura agua de red – Piscina, en°C.

 $T_{agua} = Temperatura del agua de la piscina, en°C.$

2.3.5 Pérdidas por conducción o transmisión. Dependerán de las características constructivas del vaso (enterrado, visto, etc.) y del coeficiente de transmisión térmica del material empleado. En el caso más habitual de vaso de hormigón construido dentro del propio sótano del recinto las pérdidas por transmisión (Q_T, en W), se calculan con la fórmula (MAILLO, 2005 pág. 7).

$$Q_T = C_T(S) (T_{agua} - T_{ex})$$
(9)

Donde:

 C_T = Coeficiente de transmisión de muros y solería = 1,50, en W / m^2 °C.

 $S = \text{Área de conducción de la piscina, en } m^2$.

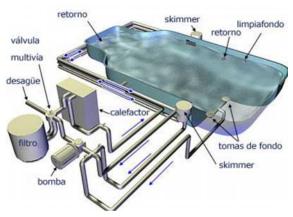
Tagua = Temperatura agua piscina, en°C.

Tex= Temperatura exterior, en°C.

2.4 Descripción y características de los sistemas

2.4.1 Piscina

2.4.1.1 *Definición.* Una piscina es un espacio artificial creado en un terreno en el cual se abre un pozo que se cubre con concreto o con otros materiales firmes y se rellena con agua con fines recreativos (DEFINICIONESabc.com).


2.4.1.2 Características. Las características fundamentales de una piscina, son sin duda sus dimensiones, que son las que determinan su capacidad de agua y como consecuencia, el aforo del vaso, de tal manera que en los momentos de máxima concurrencia de bañistas se disponga como mínimo de 2m² de lámina por cada persona.

El tratamiento del agua tiene como finalidad reducir el potencial de riesgo sanitario derivado el uso y disfrute de las piscinas, y comprende un conjunto de operaciones, a realizar de forma continua y simultánea, que se agrupan en cuatro bloques.

- Recirculación
- Renovación del agua
- Filtración
- Desinfección

El agua de la piscina deberá de ser renovada por recirculación, previa filtración y desinfección de ésta, durante las 24 horas del día, para que en todo momento el agua se encuentre en las condiciones sanitarias apropiadas (CRIOLLO, y otros, 2011).

Figura 2. Sistema básico de recirculación

Fuente: www.depuradoraspiscinas.es/precios/

2.4.1.3 Condiciones generales. En piscinas cubiertas la temperatura del recinto tiene que estar entre uno y dos grados por encima de la temperatura del agua. Por lo que respeta a la humedad relativa del aire, en piscinas cubiertas tiene que estar entre el 65% y el 70%, mientras que en salas y pabellones tiene que ser inferior al 70% (Normativa Técnica de Supervición y Control de Madrid, 2013 pág. 37).

Como condiciones de confort se puede basar en la siguiente tabla.

Tabla 1. Temperaturas recomendadas del agua

Condiciones de confort – temperaturas del agua		
Temperatura del agua	25°C	
Temperatura del aire	27°C	
Humedad relativa	65%	

Fuente: MAILLO Agustín. Climatización de piscinas cubiertas, p. 1

2.4.1.4 Instalaciones típicas

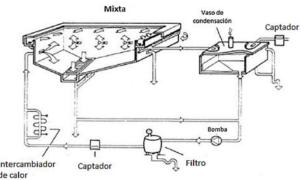
Sistema de recirculación de agua. La recirculación consiste en la recogida del agua del vaso, su tratamiento y retorno de forma rápida y continúa con el fin de eliminar la contaminación aportada por los bañistas. Una correcta recirculación evita un excesivo consumo de agua por renovación y optimiza el tratamiento de desinfección, disminuyendo el aporte de desinfectantes y procurando una distribución homogénea, evitando "zonas muertas" en los ángulos del vaso. Se llama ciclo de recirculación al tiempo que tarda el equipo de filtración en pasar el volumen de la piscina por el mismo siguiendo el ciclo indicado.

Inversa. El agua es impulsada al vaso a través de los difusores del fondo, que lo impulsan en forma de abanico hacia los rebosaderos que bordean el vaso, arrastrando las partículas sobrantes. Las tomas de los sumideros únicamente se utilizan para el vaciado de la piscina.

Inversa Vaso de condensación Captador Intercambiador de calor Bomba

Figura 3. Recirculación inversa

Fuente: ARIAS, G; JULCA, J; OSORIO, F, equipos de recirculación en piscinas, p. 9

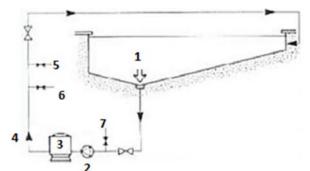

Ventajas. Buena renovación de la superficie de lámina de agua. El caudal desbordado es del 100 %. En las piscinas climatizadas se consigue un mayor aprovechamiento de la energía calorífica aportada.

Inconvenientes. Los depósitos en el fondo del vaso no se eliminan continuamente, pero un buen emplazamiento de los difusores permite limitar la acumulación (ARIAS, y otros, 2013 pág. 9).

Mixta. La entrada del agua tratada se realiza a través de difusores situados en las paredes del vaso a una profundidad adecuada y la recogida del agua contaminada se realiza tanto por la superficie el 75% (skimmers, rebosaderos) como por el fondo el 25%.

La recogida de agua del fondo se realizará mediante sumidero, que para evitar accidentes, la velocidad de aspiración en las ranuras de la rejilla de los sumideros estará comprendida entre los 0,3 y 0,5 m/s.

Figura 4. Recirculación mixta


Fuente: ARIAS, G; JULCA, J; OSORIO, F, equipos de recirculación en piscinas, p. 10

Ventajas. Este sistema permite eliminar al mismo tiempo las impurezas de la lámina superficial y del fondo. A la práctica se recomienda que el volumen de agua eliminado por la superficie sea el más elevado posible.

Inconvenientes. Este tipo de recirculación es más difícil de controlar. El caudal recogido por el fondo es bajo y, por tanto, la recogida de los dispositivos es baja (ARIAS, y otros, 2013 pág. 10).

Clásica. También hay otro sistema, el clásico o antiguo, aunque no está permitido por algunas normativas. El retorno del agua tratada está situado en la pared menos profunda y la recogida del agua solamente es a través del desagüe del fondo, en fuerte depresión.

Figura 5. Recirculación clásica

- 1. Después del fondo del vas
- 2. Bomba de recirculación
- 3. Filtre
- 4. Retorno a la piscina
- 5. Dosificador de desinfectante
- 6. Dosificador de regulador de pH
- 7. Dosificador de floculantes

Fuente: ARIAS, G; JULCA, J; OSORIO, F, equipos de recirculación en piscinas, p. 11

Inconvenientes. No permite la recirculación de la lámina superficial del agua (ARIAS, y otros, 2013 pág. 10).

Un sistema de recirculación – compensación recomendado deberá recoger de la lámina superficial un volumen aproximado del 70% del total del volumen por los skimmers, y un 30% se lo recogerá por la rejilla de fondo.

2.4.1.5 Equipos de recirculación del agua

Prefiltro. Se instala inmediatamente a la entrada de las bombas, para protegerlas mecánicamente de los diversos residuos que puedan ir en el agua de la piscina, y que pueden perjudicar el rendimiento de la instalación.

El prefiltro tiene que ser capaz de retener cabellos, hojas, horquillas, materias fibrosas, etc., llevará un cesto colador y una tapa de apertura con cierre rápido (ARIAS, y otros, 2013 pág. 12).

Figura 6. Prefiltro del sistema actual

Fuente: Autores

Skimmer. Su función es recoger la suciedad que flota en la superficie de la piscina antes de que esta se decante al fondo. Dicha suciedad se deposita en los cestillos situados dentro del skimmer, de donde debe ser retirada periódicamente.

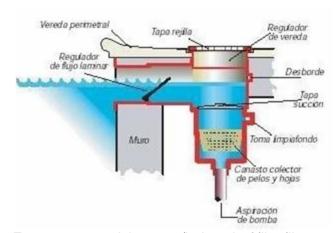
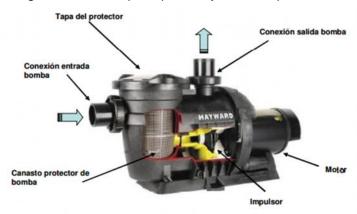


Figura 7. Skimmer

Fuente: www.solvi.com.ar/index.php?file=filtros_2


Características:

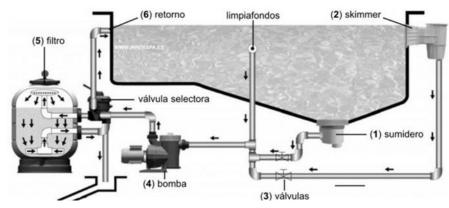
- La velocidad de aspiración en las tuberías no sobrepasará los 1,5m/seg.
- En la reja de protección de los desagües la velocidad de aspiración no sobrepasará los 0,5m/seg.
- Se instalará un skimmer por cada 25 m² o fracción de lámina de agua y la proporción de agua de recirculación será de un mínimo del 75% procedente de los skimmers y un máximo del 25% procedente del fondo. (VÁZQUEZ, 2006 pág. 8)

Bomba para piscinas. Las bombas para piscinas son diferentes a las bombas que se emplean en otros usos, estas bombas deben tener las siguientes características:

- No se requiere que el agua bombeada fluya a muy alta presión pero sí que maneje grandes volúmenes de agua.
- Su diseño y construcción debe ser tal que produzca un alto vacío necesario para la aspiración y limpieza de la alberca.
- Deben estar construidas en materiales resistentes al sol, a la corrosión y a la acción de los químicos que se agregan al agua como lo es el cloro.
- Deben tener un canasto previo a la voluta de la bomba para evitar que hojas y material extraño llegue a la bomba y cause daños en la misma.
- Debe estar construida para uso continuo, intensivo y en condiciones extremas de calor, humedad y temperatura (GEOCITIES.com, 2009).

Figura 8. Bomba para piscina y sus componentes

Fuente: www.oocities.org/edrochac/sanitaria/albercas12.pdf


Filtración. La filtración del agua de las piscinas se realiza mediante un circuito cerrado. En este la bomba de filtración recoge el agua mediante skimmers, boquillas de aspiración y sumideros para introducirla en los filtros, el agua continuara su ciclo para acabarlo en las boquillas de impulsión donde será devuelta a la piscina. El filtrado es una parte muy importante en cuanto a calidad del agua se refiere, ya que este supone un 50% del tratamiento de esta. Mientras mejor filtrado se produzca, menos tratamientos químicos serán necesarios en las piscinas, por lo que gastar el dinero en un buen sistema se puede considerar una inversión a largo plazo, ya que ahorrara en productos químicos.

La filtración se realiza en dos etapas:

Pre filtración. Su objetivo es retener las impurezas más gruesas y duras (cabellos, insectos, piedras, etc.) a fin de proteger el grupo electrobomba. La malla del tramo no debe ser inferior a 3 mm a fin de no crear excesivas pérdidas de carga.

Filtración. Consiste en el paso de agua a través de una masa porosa. El tamaño de los poros determina la capacidad de retención del filtro. El agua llega al filtro por la parte superior, atraviesa lentamente el lecho de arenas, y una vez limpia de material sólidos, saldrá por la parte inferior, para ser enviada a la piscina, previa desinfección que completa la acción (HIDROMAINAKE, 2006).

Figura 9. Sistema de filtración

Fuente: www.solucionesespeciales.net/Index/Nticias/373993-Antes-de- comprar- unfiltro-para-piscina.aspx

Filtro de arena. Este tipo de filtros es ideal para aguas con niveles bajos o medios de contaminación, que requieran la filtración de partículas de hasta 20µ. Este filtro retiene las partículas en suspensión que lleva el agua a través de una capa de arena.

Cuando está cargado de suciedad se regenera mediante un lavado a contra corriente. En los filtros de arena la calidad depende principalmente de la forma de filtro, altura de la capa de arena filtrante, velocidad de filtración y granulometría de la arena.

La fabricación de estos filtros se realiza en diferentes materiales como fibras de vidrio y poliéster, usados principalmente para filtración de aguas de rio y de mar por su gran resistencia a la corrosión. Otros materiales son acero inoxidable o acero al carbono (HIDROMAINAKE, 2006).

Figura 10. Filtro de arena

Fuente: www.piscinas-online.com/filtro-piscina/filtro-sable-oslo.html

Elementos de un filtro de arena:

- 1. Boca de acceso y de carga
- 2. Purga de aire
- 3. Tubería en PVC
- 4. Indicadores de nivel (opcionales)
- 5. Boca lateral (en opción)
- 6. Placa de difusores o de crepinas
- 7. Conexión para el lavado con aire
- 8. Base en poliéster

Válvula selectora para filtros. Es el control de mando de la piscina, ya que indica las funciones a realizar según la posición en que la coloquemos. Para ello dichas funciones deben combinarse con las posiciones de las llaves de los accesorios (FRONTERAS JEEZ, 2013)

La válvula selectora tiene seis vías que corresponden con otras tantas funciones: filtración, lavado, enjuague, desagüe, recirculación, cerrado.

Figura 11. Válvula selectora para filtros

Fuente: www.kripsol.com/división-piscinas/filtros-domesticos/válvula-selectora-de-6-vias1-1-2—59

Posiciones de la llave de 6 vías:

- Cerrado. Posición que debe tener la llave para que el circuito esté en reposo. Es decir, siempre que no se esté realizando ninguna función (INVERNAJE).
- Filtración. Permite el funcionamiento del sistema de depuración (el agua entra por los skimmers, por el sumidero y por el limpia fondos).

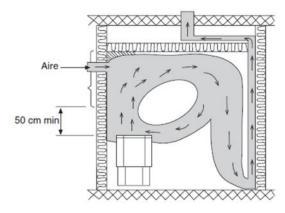
- Lavado o contralavado. Se utiliza para limpiar el filtro. Una vez por semana aproximadamente o cuando la filtración no se haga correctamente.
- Enjuague. Se realiza después del lavado o contralavado y sirve para completar estas operaciones.
- Vaciado o desagüe. Sirve para vaciar el agua de la piscina. Si realizas un invernaje adecuado, sólo tendrás que vaciar la piscina una vez cada 5-6 años.
- Recirculación o by-pass. Permite verificar el funcionamiento del circuito de recirculación sin que el agua pase por el filtro (REI, 2013 pág. 3).

2.4.2 Sauna

- **2.4.2.1** *Definición*. Se denomina sauna a un baño de vapor o sudoración que se realiza en un recinto a muy alta temperatura. Dependiendo de la humedad relativa dentro del recinto la sauna puede ser húmeda o seca. La sauna húmeda, donde la temperatura no supera los 70°C y la humedad relativa es muy alta, es conocida como baño turco. La sauna seca, con temperaturas entre los 80°C y 90°C y una humedad mínima, nunca superior al 20%, se la conoce como "sauna finlandés" o simplemente "sauna" (WIKIPEDIA, 2013).
- **2.4.2.2** Características. La construcción de saunas posee características obligatorias, una de ellas el gabinete, éste se confecciona en madera machihembrada especialmente diseñada para soportar temperaturas altas; esta madera tiene una alta capacidad de absorción de humedad y soporta temperaturas de hasta 230°C.

Para la construcción de las paredes y el techo se utilizan paneles previamente prensados, machihembrados y prolijamente ensamblados entre sí; el aislamiento es parte fundamental en la construcción de saunas, éste debe ser apropiado para evitar que la humedad pueda filtrarse en otros cuartos; lo que preocupa mayormente a los dueños es la transmisión del vapor entre los revestimientos de madera y el aislante (WIKIPEDIA, 2013).

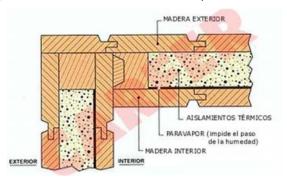
Figura 12. Sauna


Fuente: Autores

2.4.2.3 Condiciones generales. Los baños de calor seco (sauna finlandesa) se utilizan a temperaturas entre 80°C - 100°C a la altura de la cara del bañista, y de 30°C a nivel del suelo, con un nivel bajo de humedad, generalmente del 10 al 20%, que se incrementa periódicamente al echar agua sobre la estufa (NIETO, y otros, 2006).

2.4.2.4 Instalaciones típicas

Recinto. Generalmente se usan instalaciones de madera especialmente preparadas para la práctica de estos baños. El tamaño de la sauna debe ser de al menos 3 m² para favorecer un correcto equilibrio entre el calor, la humedad y la ventilación, no siendo esta última menos importante, aunque no siempre se instale, aconsejándose que se renueve el aire entre 3 y 8 veces por hora, con material aislante en su interior y recubierto por un revestimiento de machihembrado (NIETO, y otros, 2006).


Figura 13. Mecanismo para la ventilación del interior de la sauna

Fuente: GARCIA, N; DELGADO, L; Consideraciones médicas sobre el sauna, p 188

Los módulos deben ser construidos en pino, con una aislación térmica realizada en lana de vidrio de 2"de espesor con barrera de vapor.

Figura 14. Vista transversal de la pared del sauna

Fuente:www.carfer.com/espanol/sauna.html

2.4.3 Turco

2.4.3.1 Definición. El baño de vapor, también llamado "baño turco", forma parte de la antigua tradición de los baños purificadores la acción simultánea del vapor y del calor controlado favorece la circulación sanguínea linfática, diluye las toxinas y ayuda a su eliminación durante la evolución y desarrollo del baño de vapor, y en diferentes zonas, éste se ha conocido con distintas terminologías, así podemos asociar al baño de vapor con: Baño de vapor, Hammam, Baño turco, Baño romano, Steambath (Effegibi.com, 2013).

- **2.4.3.2** Definición del número de usuarios. Definir el número de usuarios es un factor muy importante debido a que en base al número de usuarios se define el volumen de la habitación y tiene una gran influencia en lo que respecta al cálculo de la carga térmica.
- **2.4.3.3** Condiciones requeridas. Tanto las dimensiones como las temperaturas a las que deben ser diseñadas este tipo de habitaciones están estandarizadas según el confort que se debe brindar para los usuarios.
- **2.4.3.4** Características. El baño de vapor es un habitáculo cerrado y estanco, diseñado para ser ocupado por varios usuarios sentados o acostados, construidos con la combinación de diversos materiales cuya característica común es la resistencia a la oxidación y a la temperatura.

Este habitáculo incorpora un equipo eléctrico cuya función principal es la generación e inyección de vapor en el interior de la cabina, controlar y regular la cantidad de vapor y temperatura automáticamente.

Este es el factor más importante de las cabinas de vapor. Al diseñar un baño turco se debe tener siempre presente que lo más importante es el confort para el usuario. Este debe sentirse cómodo, tranquilo y relajado.

Un baño turco es un ambiente húmedo. No se utiliza en el diseño materiales que presenten corrosión o deterioro con el agua.

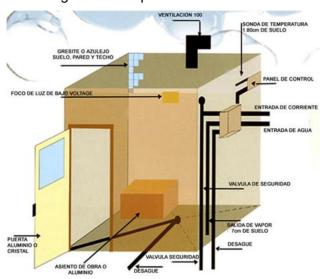


Figura 15. Esquema del baño turco

Fuente: www.equipamientocentrosdeportivos.com/saunas/saunas-de-vapor/cc-m-product-4940198062

2.4.3.5 Condiciones generales. Las condiciones que se requiere en el interior de un turco son:

- La temperatura está en el rango de los 43 46 °C.
- La humedad relativa debe ser del 100% ya que se trabaja con vapor saturado.

2.4.3.6 Instalaciones típicas

Recinto. Las paredes deben ser de materiales cerámicos y en algunos casos también se coloca aislante pero en lo general solamente se coloca la baldosa cerámica después de la pared y después del enlucido de la pared.

Figura 16. Vista de la pared del turco

Fuente: Autores

Equipo generador de vapor. El baño turco requiere de un equipo generador de vapor, en el cual para su ubicación se deben seguir las siguientes recomendaciones:

- Debe ir en una zona adyacente al cuarto a una distancia no superior a 3m del cuarto, y sin superar 15m de recorrido de tubo.
- Por ningún motivo el equipo puede ir ubicado en el interior del baño turco. El equipo contiene componentes eléctricos.
- Debe de ubicarse en un habitáculo de medidas no inferiores a 80cm de ancho,
 50cm de profundidad 170cm de altura.
- El habitáculo donde se instale tiene que estar bien seco y ventilado.
- El equipo puede ser instalado en una planta inferior a la cabina, para ello si se utiliza aroma terapia se ha de implantar una bomba para los aromas.
- El equipo ha de ser instalado en un armario adosado en la fachada de la cabina (GUIJARRO, 2012 págs. 37-41).

CAPÍTULO III

3. ANÁLISIS DE LA SITUACIÓN DE CONSUMO ENERGÉTICO DEL COMPLEJO TURÍSTICO VULCANO GREEN DEL CANTÓN PENIPE

3.1 Descripción y características funcionales del complejo

El "Centro Turístico Vulcano Green", inicia su actividad en el año 2011 como un lugar diferente para el turista nacional y extranjero con el objeto de brindar todas las comodidades para que sus visitantes disfruten de unas vacaciones especiales e inolvidables en la ciudad de Penipe.

Ubicación: barrió el Mirador, Penipe a 20 min de Riobamba.

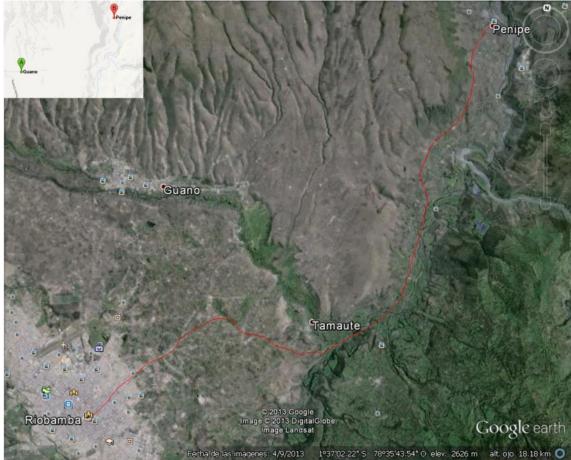


Figura 17. Ubicación del complejo

Fuente: Google Earth/ Riobamba- Penipe

Servicios que ofrece el complejo. En la actualidad el complejo brinda los 3.1.1 servicios de piscina, turco y sauna, con la finalidad de una distracción sana y recreación para los moradores del sector como también a los turistas, que acuden en busca de una nueva alternativa de diversión.

Tabla 2. Servicios que ofrece el complejo

3.2 Análisis energético del complejo

3.2.2.1 Instrumentos a utilizar para evaluación de los sistemas

TERMOCUPLA

TERMOHIGRÓMETRO

CRONÓMETRO

Fuente: Laboratorio de energía EIM - ESPOCH

3.2.2.2 Piscina

3.2.2.1 Pérdidas de calor en el vaso de la piscina

- Evaporación de agua del vaso (Q_E).
- Radiación de calor por diferencias de temperatura (Q_R).
- Convección de calor entre agua y aire (Q_C).
- Renovación del agua del vaso (Q_{RE}).
- Transmisión de calor del agua del vaso (Q_T).
- **3.2.2.2** *Pérdidas por evaporación.* Utilizando la ecuación (4) del capítulo anterior se procede a calcular las pérdidas por evaporación.

$$Q_E = M_{eTotal}(Cv)$$

La ecuación (5) de Bernier nos permitirá determinar la cantidad de agua evaporada.

$$M_e = S[(16 + 133n)(W_e - G_a(W_{as}))] + (0.1 N)$$

La fórmula de Bernier para piscinas cubiertas contempla la suma de tres términos:

- Flujo másico de agua evaporada con la superficie de agua en reposo.
- Flujo másico de agua asociado a la agitación del agua por los bañistas.
- Flujo másico de agua evaporada asociada a los espectadores de la piscina.

Datos obtenidos de la piscina:

Tagua =
$$26,53$$
°C (Anexo A)

$$Hr = 59,79 \% (Anexo B)$$

$$n = 20$$

$$N = 5$$

$$S = 103,47 \text{ m}^2$$

$$V = (103,47) (1,25) \text{ m}^3 = 129,34\text{m}^3$$

Flujo másico de agua evaporada con la superficie en reposo

$$Me_{reposo} = S[16(W_e - G_a(W_{as}))]$$
 (10)

$$T_{\text{agua piscina}} = 26,53 \, ^{\circ}\text{C}$$
 \longrightarrow $W_e = 0,0219 \text{kg}_{\text{agua}}/\text{kg}_{\text{aire}}$ (Anexo C)

$$T_{ambiente interior} = 24,84 \, ^{\circ}\text{C}$$
 \longrightarrow $W_{as} = 0,0198 \text{kg}_{agua}/\text{kg}_{aire}$ (Anexo C)

$$Me_{reposo} = [16((0.0219 \, kgagua/kgaire) - (0.59794)(0.0198kgagua/kgaire))]$$

$$Me_{reposo} = 0.1617 \frac{kgagua}{hm^2}$$

Que para nuestra piscina de superficie 103,47 m² es:

$$Me_{reposo} = 0.16 \frac{kgagua}{hm^2} * 103,47m^2$$

$$Me_{reposo} = 16,73 \frac{kg}{h}$$

Flujo másico de agua asociado a la agitación por los bañistas

$$Me_{banistas} = 133n[(W_e - G_a(W_{as}))]$$
(11)

 $Me_{ba\tilde{n}istas} = (133)(20)[(0,0219 \, kgagua/kgaire - (0,5979)(0,0198 \, kgagua/kgaire)]$

$$Me_{ba\tilde{n}istas} = 1{,}34 \frac{kg}{h} * (20)$$

$$Me_{ba\|istas} = 26,88 \frac{kg}{h}$$

Flujo másico de agua evaporada asociada a los espectadores de la piscina

$$Me_{espectadores} = 0.1 N$$
 (12)

 $Me_{espectadores} = 0.1(5)$

$$Me_{espectadores} = 0.5 \frac{kg}{h}$$

• Flujo de evaporación total de agua en $\frac{kg}{h}$

$$Me_{total} = Me_{reposo} + Me_{banistas} + Me_{espectadores}$$
 (13)

$$Me_{total} = (16,73 + 26,88 + 0,5) \frac{kg}{h}$$

 $Me_{total} = 44,11 \frac{kg}{h}$

Flujo de evaporación total de agua por unidad de superficie

$$Me_{total} = (44,11\frac{kg}{h})/103,47m^{2}$$

$$Me_{total} = 0,426\frac{kg}{hm^{2}}$$

Pérdidas por evaporación

$$Q_E = M_{eTotal}(Cv)$$

Calor latente de evaporización (ZABALA, 2008 pág. 2).

$$Cv = 2434192,34^{J}/k_{g}$$

$$Q_E = \left(0,426 \frac{kg}{hm^2}\right) \left(2\,434\,192,34\,\frac{J}{kg}\right) \left(\frac{1\,h}{3\,600\,s}\right)$$

$$Q_E = 288,21 \frac{W}{m^2}$$

Pérdidas por evaporación (W)

$$Q_E = 288,21 \, \frac{W}{m^2} * 103,47 m^2$$

$$Q_E = 29821,29 W$$

3.2.2.3 *Pérdidas por radiación.* En la piscina del complejo deportivo por tener plástico invernadero como cubierta lo vamos a tomar en cuenta para ver en qué porcentaje influye la pérdida de calor.

Utilizando la ecuación (6) de Stefan Boltsman para el análisis de las pérdidas por radiación.

$$Q_R = \sigma(\varepsilon)(T_{agua}^4 - T_c^4)$$

Donde:

 σ = Constante de Stefan-Boltzman = 5,67(10) $^{-8}$, en W/m²(°K)⁴. ε = Emisividad de la superficie = 0,95 (agua).

$$T_{agua} = 26,53$$
° C \longrightarrow 299,68 °K $T_{cerramientos} = 22,02$ ° C \longrightarrow 295,18 °K (Anexo D)

$$Q_R = \left[5,67 (10)^{-8} {W/_{m^2(°K)^4}}\right] (0,95)[(299,68)^4 - (295,167)^4] (°K)^4$$

$$Q_R = 25,585 \frac{W}{m^2}$$

Pérdidas por radiación en (W)

$$Q_R = 25,585 \frac{W}{m^2} * 103,47m^2$$

 $Q_R = 2647,26 \text{ W}$

3.2.2.4 *Pérdidas por convección.* La diferencia de temperaturas no es muy grande por lo que las pérdidas por convección van a ser mínimo.

Utilizando la ecuación (7) para el análisis de las pérdidas por convección.

$$Q_C = 0.624 6 (T_{agua} - T_{aire})^{4/3}$$

Donde:

$$T_{aguapiscina} = 26,53$$
°C

$$T_{aire} = 24,84^{\circ}C.$$

$$Q_C = 0.6246(26.53^{\circ}\text{C} - 24.837^{\circ}\text{C})^{4/3}$$

 $Q_C = 1.26 \frac{W}{m^2}$

Pérdidas por convección en (W)

$$Q_C = 1.26 \frac{W}{m^2} * 103,47m^2$$

 $Q_C = 130,40 W$

3.2.2.5 *Pérdidas por renovación.* Utilizando la ecuación (8) para el análisis de las pérdidas por renovación:

$$Q_{RE} = V_r(D)(C_e) (T_{aqua} - T_x)$$

Donde:

Vr =5% (Volumen piscina).

 $Vr = 0.05 (129.34m^3) = 6.47 \text{ m}^3.$

D= Densidad del agua = 996,69 kg/m³ (ZABALA, 2008).

Ce= Calor específico del agua = 1,16 (Wh/kg.°C) (ZABALA, 2008).

Tx =Temperatura agua de red – Piscina (°C) = 16°C (medición).

$$T_{\text{agua piscina}} = 26,53$$
°C

$$Q_{RE} = 6,47m^3 (996,69 kg/m3)(1,16Wh/kg^{\circ}C)(26,53-16)^{\circ}C$$

 $Q_{RE} = 78730,12 W - h$

Pérdidas por renovación por unidad de superficie.

$$Q_{RE} = (78730,123 \text{ W} - h)/103,47m^2$$

 $Q_{RE} = 760,90 \frac{\text{W} - h}{m^2}$

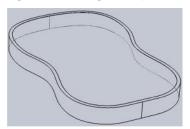
Pérdida diaria.

$$Q_{RE} = 78730,123(W - h) \left(\frac{1 \, dia}{24 \, h}\right)$$

 $Q_{RE} = 3280,42 \, W$

3.2.2.6 *Pérdidas por conducción.* Las pérdidas por conducción se producen tanto en la pared lateral como en el fondo de la piscina.

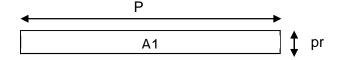
Utilizando la ecuación (9) para el análisis de las pérdidas por conducción:


$$Q_T = C_T(S) \left(T_{aqua} - T_{ex} \right)$$

Donde:

 C_T = coeficiente de transmisión de muros y solería (1,50 W / m^2 °C) (MAILLO, 2005). Tagua = temperatura agua piscina (26,53°C).

Paredes de transferencia de calor.


Figura 18. Diagrama piscina

Fuente: autores

Análisis de pérdidas de conducción por la pared lateral

Para el área de la pared lateral se le considera, el perímetro por la altura de la piscina:

Perímetro (P) = 41,56m

Profundidad (pr) = 1,25m

$$A_1 = P^*pr$$
 $A_1 = (41,56)(1,25) = 51,95 m^2$
 $S = A1 = 51,95 m^2$
 $C_T = 1,50 \text{ (W } / m^2.^{\circ}\text{C)}$
 $Q_T = C_T(S) (T_{agua} - T_{ex})$

$$Q_L = 1,50 W / m^{2} \circ C(51,95m^2)(26,53 - 24,837) \circ C$$

 $Q_L = 131,93 W$

Pérdidas de conducción por unidad de superficie lateral.

$$Q_L = 131,93 \, W/51,95 m^2$$

$$Q_L = 2,54 \frac{W}{m^2}$$

Análisis de pérdidas de conducción por el fondo de la piscina

S = superficie del fondo de la piscina.

$$S = 103,47m^2$$

 $C_T = 1,50 \text{ (W / } m^2 \text{ °C)}$

$$Q_T = C_T(S) (T_{agua} - T_{ex})$$

$$Q_F = 1,50 \text{ W} / m^2 {}^{\underline{o}} C (103,47m^2) (26,53 - 24,837) {}^{\text{o}}C$$

 $Q_F = 262,762 \text{ W}$

Pérdidas de conducción por unidad de superficie en el fondo de la piscina

$$Q_F = 262,762 W/103,47m^2$$

$$Q_F = 2,54 \frac{W}{m^2}$$

Pérdidas de conducción total por unidad de superficie.

$$Q_T = Q_L + Q_F \tag{14}$$

 Q_L = Pérdidas de calor por unidad de superficie lateral

 $Q_F = P$ érdidas de calor por unidad de superficie en el fondo de la piscina

$$Q_T = 2,54 \frac{W}{m^2} + 2,54 \frac{W}{m^2}$$

$$Q_T = 5,08 \frac{W}{m^2}$$

Pérdidas de conducción total (W)

$$Q_T = Q_L + Q_F$$

$$Q_T = 131,93 W + 262,762 W$$

$$Q_T = 394,69 W$$

3.2.2.7 Porcentaje de pérdidas de calor (Q_r) en la piscina

Tabla 4. Pérdidas de calor en el vaso de la piscina

	Totales [W]	%
P. evaporación	29821.29	82.21
P. radiación	2647.26	7.30
P. convección	130.40	0.36
P. renovación	3280.42	9.04
P. conducción	394.69	1.09
Total[W]	36274.07	100
Total[Btu/h]	123772.20	

Fuente: Autores

3.2.3 Cálculo del calor necesario para calentar el agua de la piscina. El calor necesario para calentar el agua establecida según recomendaciones de los fabricantes, se calcula de la siguiente manera (MAILLO, 2005 pág. 8).

$$P_0 = \frac{V(D)(Ce) (T_{ag} - T_X)}{t} [W]$$
 (15)

P₀= Calor necesario para calentar el agua de la piscina, en W

V= Volumen de agua de la piscina (129,34m³).

D = Densidad del agua (998,47kg/m³).

Ce= Calor específico del agua

 T_{ag} = Temperatura de agua de la piscina (26,53°C).

 T_x = Temperatura del agua de suministro (16°C)

t= Tiempo de puesta en régimen

Calor específico promedio a las diferentes temperaturas (ZABALA, 2008 pág. 100).

$$C_{pagua} = 3,478 \, ^{kJ}/_{kg.\,^{\circ}\mathrm{K}} \, a \, la \, Tpc = 26,53 \,^{\circ}\mathrm{C} = 79,754 \,^{\circ}\mathrm{F}$$

$$C_{pagua} = 3,484 \, {}^{kJ}/{}_{kg.\,{}^{\circ}\text{K}} \, a \, la \, Tar = 16 \, {}^{\circ}\text{C} = 60,8 \, {}^{\circ}\text{F}$$

$$C_{pp} = \frac{3,478 + 3,484}{2} = 3,4781 \, {^{kJ}}/{_{kg.} \, {^{\circ}} \text{K}}$$

$$C_{pp} = 0.9646 \frac{Wh}{kg. ^{\circ}C}$$

La piscina del complejo turístico "Vulcano Green" es de hormigón por lo que se tomara en cuenta los siguientes parámetros:

Piscinas de hormigón normales:1°C por cada 2 h

Piscinas de hormigón grandes o pesadas: 1°C por cada 4 h

Como la piscina "Vulcano Green" entraría en el rango de hormigón normal el tiempo de puesta en régimen para un T= (26,53-16) °C sería de 21,06 horas.

t = tiempo de puesta en régimen es 21,06 horas.

Entonces:

$$P_{0} = \frac{V(D)(Ce) (T_{ag} - T_{x})}{t} [W]$$

$$= \frac{129,34m^{3} \left(993,47 \frac{kg}{m^{3}}\right) \left(0,9646 \frac{Wh}{kg} \text{ °C}\right) (26,53 \text{ °C} - 16 \text{ °C})}{21,06 h}$$

 $P_0 = 62285,24 W$

3.2.4 Calor requerido en la piscina (Q_{rp}) . Para el calor requerido en la piscina se debe considerar el calor necesario para calentar el agua de la piscina así como también reponer el calor que se pierde a través de las paredes de la piscina.

$$Q_{rp} = P_o + Q_r \tag{16}$$

Donde:

 $P_o=$ Calor necesario para calentar el agua de la piscina $=62285,24\,W$

 Q_r = Total de pérdidas generadas en la piscina = 36274,07 W

$$Q_{rp} = 62285,24 W + 36274,07 W$$

 $Q_{rp} = 98559,31 W$

 $Q_{rp} = 98,56 \, kW$

3.2.5 Cálculo del flujo de masa de combustible para el calentamiento del agua de la piscina. Para determinar el consumo de combustible para mantener caliente el agua de la piscina se necesita conocer el sistema de distribución de la tubería de vapor para así conocer la caída de presión que va existir por longitud de tubería.

Piscina
Tac = 26,53 C

Agua a 24,5 C

Tpf
Tpf
Tpc
Agua de suministro
Agua a 16 C

Agua de recirculación
Agua a 28 C

Agua de reposición
Agua a 16 C

Figura 19. Sistema de distribución de vapor hacia la piscina

Fuente: Autores

El estudio realizado se compone en dos partes:

- La primera es el estudio del agua de recirculación de la piscina.
- La segunda es el estudio del agua de reposición para la piscina.

Datos:

Tabla 5. Datos necesarios para el calentamiento del agua de la piscina

Temperatura del agua de suministro	Tas	17,0°C
Presión de la caldera	Pk	25psi
Temperatura de saturación de la caldera	Tsk	126,7°C
Presión de vapor	Pv	23psi
Temperatura de saturación de vapor	Tsv	124,8°C
Temperatura del agua de reposición	Tar	16,0°C
Temperatura del agua de la piscina fría	Tpf	24,5°C
Temperatura del agua de la piscina caliente	Трс	28,0°C
Temperatura de agua de la piscina	Tac	26,5 °C
Poder calorífico del combustible (diesel)	h	18397,8 Btu/lb
Presión local de Penipe	Pat	10,42 psi

Fuente: Autores

$$Pva = Pg + Pat (17)$$

Presión de vapor absoluta: Pva

Presión manométrica: Pg Presión local de Penipe: Pat

$$Pva = Pg + Pat$$

$$Pva = 23 + 10,42$$

$$Pva = 33,42 psi$$

3.2.5.1 Cálculo del flujo de combustible para el calentamiento del agua de recirculación

$$Q_{sum.vapor} = \dot{m}_{sv} * h_{fg} = Q_{sum.comb}$$
 (18)

Con la presión de vapor absoluta se determina las siguientes propiedades (ZABALA, 2008 pág. 13).

hf = 225,256 Btu/lb

 $vf = 0.01706 pie^3/lb$

hg = 1166.252 Btu/lb

Se determina la diferencia de entalpias:

$$h_{fg} = hg - hf \tag{19}$$

$$h_{fg} = 1166.252 \frac{Btu}{lb} - 225,256 \frac{Btu}{lb}$$

 $h_{fg} = 940,996 \frac{Btu}{lb}$

Como:

$$Q_{sum.vapor} = \dot{m}_{agua} * C_{pagua} * (T_{pc} - T_{pf})$$
 (20)

$$\dot{m}_{agua} = \rho_{agua} * \dot{V}_{agua} \tag{21}$$

Donde:

 $\rho_{agua} = \text{Densidad del agua de recirculación, en }^{kg}/_{m^3}$

 \dot{V}_{agua} = Caudal volumétrico del sistema, en $m^3/_{s}$

Como el caudal volumétrico que se tiene en el sistema es:

$$\dot{V}_{agua} = 0.00531 \, m^3 /_S$$

Con T_{pf} se determina la densidad del agua (ZABALA, 2008 pág. 2).

$$\rho_{agua} = 997,425 \frac{kg}{m^3} a la Tpf = 24,5$$
°C

Utilizando la ecuación (16) se determina el flujo másico de agua:

$$\dot{m}_{agua} = \rho_{agua} * \dot{V}_{agua}$$

$$\dot{m}_{agua} = 997,425 \frac{kg}{m^3} * 0,00531 \frac{m^3}{s}$$

$$\dot{m}_{agua} = 5,296 \frac{kg}{s} = 11,676 \frac{lb}{s}$$

Calor específico promedio a las diferentes temperaturas (ZABALA, 2008 pág. 100).

$$C_{pagua} = 4,18056 \frac{kJ}{kg. °K}$$
 a la $Tpc = 28 °C = 301,15 °K$
 $C_{pagua} = 4,1914 \frac{kJ}{kg. °K}$ a la $Tpf = 24,5 °C = 297,65 °K$
 $C_{pp} = \frac{4,18056 + 4,1914}{2} = 4,18558 \frac{kJ}{kg. °K}$

3.2.5.2 Cálculo del flujo de vapor suministrado al intercambiador de calor

$$\dot{m}_{sv} = \frac{\dot{m}_{agua} * C_{pagua} * (T_{ac} - T_{ar})}{h_{fg}}$$
(22)

$$\dot{m}_{sv} = \frac{5.3 \frac{kg}{s} * 4.18558 \frac{kJ}{kg. °K} * (299,68 - 297,65) °K}{940,996 \frac{Btu}{lb}}$$

$$\dot{m}_{sv} = \frac{45,0326 \frac{kJ}{s}}{940,996 \frac{Btu}{lb}}$$

$$\dot{m}_{sv} = \frac{42,7342 \frac{Btu}{s}}{940,996 \frac{Btu}{lb}}$$

$$\dot{m}_{sv} = 0,04541 \frac{lb}{s}$$

$$\dot{m}_{sv} = 163,49 \frac{lb}{h}$$

3.2.5.3 Cálculo del flujo de combustible

$$Q_{comt} = \dot{m}_{comt} * \Delta h = Q_{sum.vapor}$$
 (23)

$$\dot{m}_{comb} = \frac{\dot{n}_{sv} * h_{fg}}{\Delta h} \tag{24}$$

El poder calorífico del diesel es (GARCIA L, 2001).

$$\begin{split} &\Delta_h = 10221 \, \frac{kcal}{kg} = 18397.8 \, \frac{Btu}{lb} \\ &\dot{m}_{comt} = \frac{163.49 \, \frac{lb}{h} * 940.996 \, \frac{Btu}{lb}}{18397.8 \, \frac{Btu}{lb}} \\ &\dot{m}_{comt} = 8.362 \, \frac{lb}{h} \end{split}$$

Cálculo del flujo másico del combustible:

$$ho_{diesel} = 837 \; {}^{kg}/{}_{m^3} = 7,044 \; {}^{lb}/{}_{gal} \; (\text{GARCIA L, 2001}).$$

$$\dot{V}_{rec} = \frac{\dot{m}}{\rho} \qquad (25)$$

$$\dot{V}_{rec} = \frac{8,362 \, lb/_h}{7,044 \, lb/_{gal}} = 1,19 \frac{gal}{h}$$

3.2.5.4 Cálculo del flujo de combustible para la el calentamiento del agua de reposición

La cantidad de flujo de agua masa evaporada es: $\dot{m}_{evaporación} = 44,104 \, ^{kg}/_{h}$

La masa que se evapora tiene que ser iguala a la masa que se repone.

$$\dot{m}_{evaporada} = \dot{m}_{reposición} = 44,104 \frac{kg}{h}$$

$$Q_{aguarepo} = \dot{m}_{repo} * C_{pp} * (T_{ac} - T_{arep})$$

$$Q_{comt} = \dot{m}_{comt} * \Delta h = Q_{aguarepo}$$

Calor específico promedio a las diferentes temperaturas (ZABALA, 2008 pág. 100).

$$C_{pagua} = 3,478 \, ^{kJ}/_{kg.\,^{\circ}K} \, a \, la \, Tac = 26,53 \,^{\circ}C = 299,68 \,^{\circ}K$$
 $C_{pagua} = 3,484 \, ^{kJ}/_{kg.\,^{\circ}K} \, a \, la \, Tar = 16 \,^{\circ}C = 289,15 \,^{\circ}K$
 $C_{pp} = \frac{3,478 + 3,484}{2} = 3,48105 \, ^{kJ}/_{kg.\,^{\circ}K}$

Cálculo del calor suministrado para el calentamiento del agua de reposición.

$$Q_{aguarepo} = \dot{m}_{repo} * C_{pp} * (T_{ac} - T_{arep})$$
(26)

$$Q_{aguarepo} = 44,104 \frac{kg}{h} * 3,48105 \frac{kJ}{kg. \kappa} * (299,68 - 289,15) \kappa$$

$$Q_{aguarepo} = 1616,652 \, {^kJ}/_h = 0,4491 \, {^kJ}/_S = 0,474 \, {^Btu}/_S = 1706,97 \, {^Btu}/_h$$

Cálculo del flujo de combustible.

$$Q_{comt} = \dot{m}_{comt} * \Delta h = Q_{aguarepo}$$

$$\dot{m}_{comt} = \frac{Q_{aguarepo}}{\Delta h}$$

Si el poder calorífico del diesel es: Δ_h = 10221 $^{kcal}/_{kg}$ = 18397,8 $^{Btu}/_{lb}$

$$\dot{m}_{comt} = \frac{1706,97^{Btu}/h}{18397,8^{Btu}/lh}$$

$$\dot{m}_{comt} = 0.093 \frac{lb}{h}$$

Cálculo del flujo másico del combustible.

$$\rho_{diesel} = 837 \frac{kg}{m^3} = 7,044 \frac{lb}{gal}$$

$$\dot{V}_{rep} = \frac{\dot{m}_{comb}}{\rho} = \frac{0.093 \, lb/h}{7.044 \, lb/gal}$$

$$\dot{V}_{rep} = 0.013 \; \frac{gal}{h}$$

3.2.5.5 Flujo total de consumo de combustible para el calentamiento del agua de la piscina

$$\dot{V_T} = V_{rep} + V_{rec} \tag{27}$$

$$\dot{V_T} = (0.013 + 1.19)^{gal}/_h = 1.199^{gal}/_h = 1.2^{gal}/_h$$

3.2.6 Cálculo hidráulico

3.2.6.1 Consideraciones generales

- Forma curva.
- Fondo estándar.
- Área piscina = $103,47 m^2$
- Volumen piscina = $(103,47)(1,25) = 129,34 m^3$

- Temperatura de agua de suministro = 16 °C (medición).
- Temperatura piscina = 26,53 °C.
- Una bomba centrífuga

Marca: PentairWhisperFlo/WF-28/011774 (Anexo E).

Caudal: 25,5 $m^3/_h$

Voltaje: 115/230 voltios.

Potencia: 2 hp = 1,5 kW

Revoluciones: 3450 rpm.

Hmáx: 15 m.c.a

Figura 20. Bomba pentair

Fuente: PENTAIR, bombas para piscinas

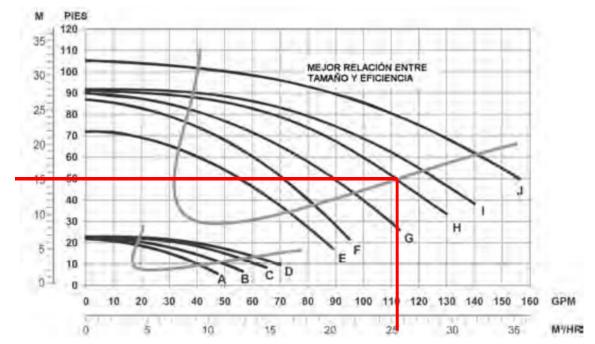


Figura 21. Curva de rendimiento de la serie WhisperFlo - 60Hz

Fuente: Catálogo Pentair p.119

• Un filtro de arena

Marca: Triton II, Pentair (Anexo F)

Área de Filtración: 7,06 pie 2 = 0,66 m^2

Modelo: TR 140

Figura 22. Filtro de arena

Fuente: Catálogo PENTAIR, p 66

- Número de skimmers = 2
- Número de inyectores = 9
- Tiempo de filtración = 6 horas (filtración piscinas públicas).

Se determina el caudal volumétrico de la bomba de la piscina por medio de toma de datos.

Tabla 6. Datos del caudal en el complejo Vulcano Green

# DATOS	CAUDAL (It/s)
1	5.455
2	5.357
3	5.172
4	5.172
5	5.172
6	5.172
7	5.455
8	5.172
9	5.769
10	5.172
PROMEDIO	5.307

Fuente: Autores

3.2.6.2 Pérdida de carga en la tubería de succión hacia la bomba

Rejilla de fondo

Skimmer

Skimmer

Skimmer

L1

L2

Skimmer

Skimmer

Figura 23. Distribución de la tubería de succión (bomba)

Fuente: Autores

Tabla 7. Velocidades recomendadas de flujo en tuberías

Velocidades utilizadas para el flujo de agua en tuberías					
		Velocid	ades		
Servicio	Desde Hasta Desde H				
	[m/s]	[m/s]	[ft/s]	[ft/s]	
Alimentación de calderas	2,4	4,6	8	15	
Succión de bombas y línea de descarga	1,2	2,1	4	7	
Servicios generales	1,2	3	4	10	
Distribución de agua potable	2,1 7				

Fuente: Mecánica de fluidos CRANE, capitulo 3 pág. 10

Tabla 8. Propiedades de la tubería de PVC de 2"

DATOS DE LA TUBERÍA							
Datos		Unidades	Valores	Referencias			
Tubería de succión	Ø	[m]	0.06	Catálogo de MARK			
PVC 2"	interior	[m] 0,06 PEERLESS (Anexo G).					
Módulo de							
rugosidad relativa		[mm]	0,0015	Tomado de Mecánica fluido de			
PVC				Crane A.41 (Anexo I).			

Fuente: Documentos de la asignatura de Mecánica de Fluidos

Área de la tubería:

$$A = \pi \frac{\phi^2}{4} \tag{28}$$

$$A = \pi \frac{(0.06m)^2}{4}$$

 $Area = 0.00283m^2$

El caudal que ingresa a la bomba.

$$Q = 5,3070 \ l/_S \rightarrow 0,005307 \ m^3/_S$$

Así como su velocidad a la entrada de la bomba; mediante la ecuación de continuidad.

$$v = \frac{Q}{A} \tag{29}$$

$$v = \frac{0,00531 \frac{m^3}{s}}{0,00283 m^2}$$

$$v = 1,875 \, m/s$$

Si comparamos con la tabla de velocidades nos podemos dar cuenta que se encuentra entre el limite recomendado para succión de bombas y líneas de descarga.

Tabla 9. Diámetros longitudes de tuberías y propiedades del fluido

<u></u>					
Hr3 = pérdidas primarias por longitud de tubería en el tramo 3					
Hr4 = pérdidas primarias por longitud de tubería en el tramo 4					
L3 = longitud de tubería del tram-	0 3				
L4 = longitud de tubería del tram-	o 4				
Hr3=Hr4	Por estar en	paralelo las			
Hr3' =Hr4'	tuberías				
L2	[m]	18.00			
Ø3=Ø4	[m]	0.06			
L3	[m]	1.50			
L4	[m]	8.50			
Temperatura del agua piscina	[°C] 26.53				
Viscosidad cinemática ()	[m²/s] 8.674E-07				
Densidad del agua()	[kg/m³]	996.641			
Peso específico	[kN/m³]	9.78			

Fuente: Autores

Viscosidad cinemática (v) (HIDRAULICA, 2010). Densidad del agua (ZABALA, 2008).

• Determinamos el caudal Q_2 . Destinado para los skimmers, se toma el 70% del caudal de succión de la piscina.

$$Q_2 = \frac{Q_T * 70\%}{100} \tag{30}$$

$$Q_2 = \frac{19,116 \frac{m^3}{h} * 70\%}{100}$$

$$Q_2 = 13,374 \frac{m^3}{h} = 3,72x10^{-3} \frac{m^3}{s}$$

Donde la velocidad V2 en el tramo 2 de succión es:

$$V_2 = \frac{Q_2}{A}$$

$$V_2 = \frac{0.00372 \frac{m^3}{s}}{0.00283m^2}$$

$$V_2 = 1.314 \text{ m/s}$$

Caudal para el tramo L3.

$$Q_3' = \frac{Q_2}{N^0 detuberias enperalelo}$$

$$Q_3' = \frac{0,00372 \frac{m^3}{s}}{2}$$

$$Q_3' = 0,00186 \frac{m^3}{s}$$

Donde la velocidad en V₃' es:

$$V_3' = \frac{Q_3'}{A}$$

$$V_3' = \frac{0,00186 \frac{m^3}{s}}{0,002 \ 83m^2}$$

$$V_3{}' = 0,657 \; m/s$$

• Calculamos las pérdidas por longitud de tubería (Hr')

Mediante la ecuación de Darcy Weisbach calculamos las pérdidas por longitud de tubería (pérdidas primarias).

$$H_{rp} = \lambda \frac{L}{\phi_i} \frac{v^2}{2g} \tag{32}$$

Donde:

 H_{rp} = Pérdida de carga primaria, en m.c.a.

 λ = Coeficiente de pérdida de carga primaria (adimensional).

L = Longitud de la tubería, en m.

 ϕ_i = Diámetro interior de la tubería, en m.

v = Velocidad del flujo, en m/s.

 $g = Gravedad, en m/s^2$.

Asumimos un $\lambda = 0.02$, recomendado para el cálculo hidráulico y aplicando la ecuación (32) se obtiene que:

$$H_{r3}{}' = \lambda \frac{L_3}{\emptyset_3} \frac{{v_3}'^2}{2g}$$

$$H_{r3}' = 0.02 \frac{1.5m}{0.06m} \frac{(0.657m/s)^2}{2(9.8m/s^2)}$$

 $H'_{r3} = 0.01100 \, m. \, c. \, a$

Calculamos el coeficiente de pérdidas λ ; para lo cual necesitamos conocer el coeficiente de fricción y Reynolds.

$$R_e = \frac{v.\emptyset}{\gamma} \tag{33}$$

Donde:

 $v = \text{Velocidad del fluido, en } \frac{m}{s}$.

Ø = Diámetro de la tubería, en m.

 γ = viscosidad cinemática, en m²/s.

$$R_e = \frac{V_3' * \emptyset_3}{\gamma}$$

$$R_e = \frac{\left(0.657 \frac{m}{s}\right) (0.06 m)}{8.674 (10)^{-7} m^2/s}$$

$$R_e = 4,544 (10)^4$$

El módulo de la rugosidad relativa.

$$R_r = \frac{\varepsilon}{\emptyset} \tag{34}$$

Donde:

 $R_r = \text{M\'odulo de rugosidad relativa}.$

 $\varepsilon = \text{M\'odulo de rugosidad absoluta, en mm}$

$$R_r = \frac{0,001\;5\;mm}{60\;mm}$$

 $R_r = 0.000025$

Una vez determinado Reynolds y el módulo de la rugosidad relativa, mediante la ecuación de Funny se determina el coeficiente de pérdidas primarias:

$$\lambda = \frac{0.25}{\left[log\left(\frac{R_r}{3.7} + \frac{5.74}{R_e^{0.9}}\right)\right]^2} \tag{35}$$

Para calcular el coeficiente de pérdidas primero debe cumplir las siguientes condiciones:

$$(10)^{-3} \le Re \le 1 (10)^8$$

 $1 (10)^{-6} \le R_r \le 1 (10)^{-2}$

Como:

$$R_e = 4,544 (10)^4$$

 $R_r = 2,5 (10)^{-5}$

$$\lambda_3' = \frac{0,25}{\left[log\left(\frac{0,000\ 025}{3,7} + \frac{5,74}{[4,544(10)^4]^{0,9}}\right)\right]^2}$$
$$\lambda_3' = 0,0213$$

Determinamos el error:

$$E \% = \frac{|\lambda - \lambda_3'|}{\lambda}$$

$$E \% = \left(\frac{|0,02 - 0,0213|}{0,02}\right) (100\%)$$
(36)

E% = 6.5%

Como el error no tiene una precisión de 1 (10)⁻⁵ se procede a una segunda iteración; para lo cual se emplea una hoja electrónica de Excel.

Tabla 10. Cálculo de caudales y pérdidas tentativas tubería de Skimmers – succiónHr3

Iteraciones	Q3'	V3'	Hr3'	Re3'	⁄3 '	Error
110100101100	[m³/s]	[m/s]	m.c.a	Adimens.	Adimens.	%
1	0.00186	0.657	0.01100	45441.759	0.0213	6.6065
2	0.00100	0.007	0.01172	45441.759	0.0213	0.0000

Fuente: Autores

$$H_{r3}' = \lambda \frac{L_3}{\emptyset_3} \frac{V_3'^2}{2g}$$

$$H_{r3}' = 0.0213 \frac{1.5m}{0.06} \frac{(0.657m/s)^2}{2(9.81m/s^2)}$$

$$H_{r3}' = 0.01172 \, m.c. \, a$$

Determinamos la velocidad en la tubería 4

Como Hr3 = 0,01172 m.c.a.; entonces también obtenemos Hr4, debido a que las tuberías están en paralelo como se mencionó anteriormente; entonces:

Hr4 = 0,01172 m.c.a, lo cual nos permitirá conocer la V₄:

$$V_4' = \sqrt{\frac{(H_{74}')(\emptyset)(2g)}{(\lambda)(L_4)}} \tag{37}$$

$$V_4' = \sqrt{\frac{(0,011725m)(0,06m)(2*(9,81m/s^2))}{(0,02)(8,5m)}}$$

$$V_4' = 0.2849 \ m/s$$

Determinamos Reynolds para calcular el coeficiente de fricción en el tramo 4, y posteriormente determinar el caudal Q₄:

$$R_e = \frac{V_4'. \, \emptyset_4}{\gamma}$$

$$R_e = \frac{\left(0.2849 \frac{m}{s}\right) (0.06 m)}{(8.67(10)^{-7})m^2/s}$$

$$R_e = 1.97 (10)^4$$

Y el módulo de la rugosidad relativa.

$$R_r = \frac{0,001\ 5\ mm}{60\ mm}$$

$$R_r = 0.000025$$

Una vez teniendo Reynolds y el módulo de la rugosidad relativa, mediante la ecuación de Funny determinamos el coeficiente de pérdidas primarias:

$$\lambda = \frac{0.25}{\left[log\left(\frac{R_r}{3.7} + \frac{5.74}{R_e^{0.9}}\right)\right]^2}$$

Para calcular el coeficiente de perdidas primero debe cumplir las siguientes condiciones:

$$5 (10)^{-3} \le Re \le 1 (10)^{8}$$

 $1 (10)^{-6} : R_r \le 1 (10)^{-2}$

Como:

$$R_e = 1.97 (10)^4$$

$$R_r = 2.5 (10)^{-5}$$

$$\lambda_4' = \frac{0.25}{\left[log\left(\frac{0.000 \ 0.025}{3.7} + \frac{5.74}{(1.97 \ (10)^4)^{0.9}}\right)\right]^2}$$

$$\lambda_4' = 0.0259$$

Determinamos el error:

$$E \% = \frac{\left|\lambda - \lambda_4'\right|}{\lambda}$$

$$E \% = \left(\frac{\left|0,02 - 0,0259\right|}{0,02}\right) (100\%)$$

$$E = 29.8\%$$

Tabla 11. Cálculo de caudales y pérdidas tentativas tubería de Skimmers – succiónHr4

Hr4'	V4'	Re4'	л4 '	Error
Adimens.	[m/s]	Adimens.	Adimens.	%
0.01172	0.2849	1.97098E+04	0.0259770	2.98848E+01
	0.2500	1.72943E+04	0.026846	3.34729E+00
	0.2459	1.70120E+04	0.026959	4.19570E-01
	0.2454	1.69764E+04	0.026974	5.33241E-02
	0.2454	1.69719E+04	0.026975	6.78898E-03
	0.2453	1.69713E+04	0.026976	8.64534E-04
	0.2453	1.69712E+04	0.026976	1.10096E-04
	0.2453	1.69712E+04	0.026976	1.40205E-05

Fuente: Autores

Cálculo del caudal Q4, después de obtener un error del 1,402 (10)⁻⁵:

$${Q_4}'={V_4}'*A$$

$$Q_4' \approx 0.2453 \quad 0.00283$$

$$Q_4' \approx 0.000694 \frac{m^3}{s} = 2.484 \frac{m^3}{h}$$

• Sumamos los caudales tentativos:

$$\sum Q' = Q_3' + Q_4' \tag{38}$$

$$\sum_{i} Q' = (0,00186 + 0,000694) \, m^3/s$$

$$\sum_{i} Q' = 0,00255 \, m^3/s$$

Corregimos los caudales Q₃ y Q₄:

$$Q_2 = 0.003715 \frac{m^3}{s}$$

$$Q_3 = Q_3' \frac{Q_2}{\sum Q_1'}$$
(39)

$$Q_4 = Q_4' \frac{Q_2}{\sum Q_1'} \tag{40}$$

$$Q_3 = 0,00186 \frac{m^3}{s} * \frac{0,003715 \frac{m^3}{s}}{0,00255 \frac{m^3}{s}}$$

$$Q_3 = 0.00271 \, m^3/s$$

$$Q_4 = 0,000694 \frac{m^3}{s} * \frac{0,003715 \frac{m^3}{s}}{0,00255 \frac{m^3}{s}}$$

$$Q_4 = 0.00101 \, m^3/s$$

Como se tiene Q_3 y Q_4 , se procede a calcular V_3 y V_4 :

 $A = 0.00283 m^2$

$$V_3 = \frac{Q_3}{A}$$

$$V_4 = \frac{Q_4}{A}$$

$$V_{3} = \frac{0,002705 \ m^3/s}{0,002 \ 83m^2}$$

$$V_{3} = 0.956 m/s$$

$$V_4 = \frac{0.00101 \ m^3/s}{0.00283 m^2}$$

$$V_{4} = 0.3572 \, m/s$$

Verificamos el caudal Q2:

$$Q_2 = Q_3 + Q_4 \tag{41}$$

$$Q2 = (0.00271 + 0.00101)m^3/s$$
$$Q2 = 0.00372m^3/s$$

Tabla 12. Caudales en la tubería – succión skimmers

Q3		Q4		Q3 + Q4	= Q2
[m ³ /s]	GPM	[m ³ /s]	GPM	[m ³ /s]	GPM
0,00271	42,95	0,00101	16,01	0,00372	58,96

Fuente: Autores

3.2.6.3 Cálculo de la pérdida por longitud de tubería

Tramo "L1"

Como la tubería del tramo está destinada para la tubería de succión de la rejilla de fondo se toma el 30% del caudal total para la succión de la rejilla.

Caudal de la rejilla de fondo:

$$Q_{rej} = 30\% \quad Q_T \tag{42}$$

$$Q_{rej} = 30\% \quad 0,00531 \frac{m^3}{s}$$

$$Q_{rej} = QT_1 = 0,00159 \frac{m^3}{s}$$

$$v_1 = \frac{Q_{T_1}}{A} \tag{43}$$

$$v_1 = \frac{0.00159 \ m^3/_S}{0.00283 \ m^2}$$

$$v_1 = 0.563 \frac{m}{s}$$

Determinamos las perdidas en el tramo 1:

$$H_{r1} = \lambda \frac{L_1}{\emptyset_1} \frac{{v_1}^2}{2g}$$

Se considera $\lambda = 0.02$:

$$H_{r1} = \frac{0,02 \quad 15,65m * (0,563m/s^2)^2}{0,06m * 2 * 9,81m/s^2}$$

$$H_{r1} = 0.084 \, m.c. \, a$$

Se calcula λ ; para lo cual se determina Reynolds para calcular el coeficiente de fricción y poder determinar las pérdidas que se produce por longitud de tubería:

$$R_e = \frac{\vartheta_1' \emptyset_1}{\gamma}$$

$$R_e = \frac{\left(0,563 \frac{m}{s}\right) (0,06 m)}{(8,67(10)^{-7})m^2/s}$$

$$R_e = 3.90 (10)^4$$

Y el módulo de la rugosidad relativa:

$$R_r = \frac{0.0015 mm}{60 mm}$$

$$R_r = 0.000025$$

Una vez teniendo Reynolds y el módulo de la rugosidad relativa, mediante la ecuación de Funny determinamos el coeficiente de pérdidas primarias:

$$\lambda = \frac{0.25}{\left[log\left(\frac{R_r}{3.7} + \frac{5.74}{R_e^{0.9}}\right)\right]^2}$$

Para calcular el coeficiente de pérdidas primero debe cumplir las siguientes condiciones:

$$5 (10)^{-3} \le Re \le 1 (10)^{8}$$

 $1 (10)^{-6} : R_r \le 1 (10)^{-2}$

Como:

$$R_e = 3.90 (10)^4$$

$$R_r = 2.5 (10)^{-5}$$

$$\lambda 1 = \frac{0,25}{\left[log\left(\frac{0,000\ 025}{3,7} + \frac{5,74}{(3,90\ (10)^4)^{0.9}}\right)\right]^2}$$

$$\lambda 1 = 0.0221$$

Tabla 13. Pérdidas reales

Pérdidas por longitud de tubería reales						
Iteraciones	Hr "1 real"	Reynolds	Error	λ		
	m.c.a	Adimen.	%	Adimen.		
1	0.0843	3.90E+04	10	0.0221		
2	0.0931	3.90E+04	0	0.0221		

Fuentes: Autores

Cálculo de la pérdida por longitud de tubería:

$$H_{r1} = \lambda \frac{L_1}{\emptyset_1} \frac{{v_1}^2}{2g}$$

$$H_{r1} = (0.0221) \left(\frac{15,65m}{0.06m} \right) \left[\frac{(0.563m/s)^2}{2(9.81m/s^2)} \right]$$

$$H_{r1} = 0.0931 \ m.c.a$$

Tramo "L2"

Como la tubería del tramo está destinada para la tubería de succión de los skimmers se toma el 70% del caudal total:

Caudal para los skimmers:

$$Q_S = 70\% \quad Q_T \tag{44}$$

$$Q_s = 70\% \quad 0.00531 \frac{m^3}{s}$$

$$Q_s = Q_2 = 0.003715 \frac{m^3}{s}$$

$$v_2 = \frac{Q_{T_2}}{A} \tag{45}$$

$$v_2 = \frac{0.003715 \frac{m^3}{s}}{0.00283 m^2}$$

$$v_2 = 1.31 \frac{m}{s}$$

Determinamos las pérdidas en el tramo 2:

$$H_{r2} = \lambda \frac{L_2}{\emptyset_2} \frac{{v_2}^2}{2g}$$

Asumimos $\lambda = 0.02$

$$H_{r2} = \frac{0.02 \quad 18m * (1.31\text{m/s})^2}{2 \quad 9.81m/s^2 * 0.06m}$$

$$H_{r2} = 0.5279 \, m. \, c. \, a$$

Se calcula λ ; para lo cual se determina Reynolds para calcular el coeficiente de fricción y poder determinar las pérdidas que se produce por longitud de tubería:

$$R_e = \frac{\vartheta_2' \emptyset_2}{\gamma}$$

$$R_e = \frac{\left(1{,}31\frac{m}{s}\right)(0{,}06\,m)}{(8{,}64(10)^{-7})m^2/s}$$

$$R_e = 9.09 (10)^4$$

El módulo de la rugosidad relativa:

$$R_r = \frac{0,001\ 5\ mm}{60\ mm}$$

$$R_r = 0.000025$$

Una vez determinado Reynolds y el módulo de la rugosidad relativa, mediante la ecuación de Funny determinamos el coeficiente de pérdidas primarias:

$$\lambda = \frac{0.25}{\left[log\left(\frac{R_r}{3.7} + \frac{5.74}{R_e^{0.9}}\right)\right]^2}$$

Para calcular el coeficiente de pérdidas primero debe cumplir las siguientes condiciones:

$$5 (10)^{-3} \le Re \le 1 (10)^{8}$$

 $1 (10)^{-6} : R_r \le 1 (10)^{-2}$

Como:

$$R_e = 9.09 (10)^4$$

 $R_r = 2.5 (10)^{-5}$

$$\lambda 2 = \frac{0,25}{\left[log\left(\frac{0,000\,025}{3,7} + \frac{5,74}{(9,09\,(10)^4)^{0,9}}\right)\right]^2}$$

$$\lambda 2 = 0.0184$$

Tabla 14. Pérdidas por longitud de tubería reales Hr2

Pérdidas por longitud de tubería reales					
Iteraciones	Hr "2 real"	Reynolds	Error	λ	
	m.c.a	Adimen.	%	Adimen.	
1	0.5279	9.09E+04	8	0.0184	
2	0.4852	9.09E+04	0	0.0184	

Fuente: Autores

Cálculo de la pérdida por longitud de tubería:

$$H_{r2} = \lambda \frac{L_2}{\emptyset_2} \frac{{v_2}^2}{2g}$$

$$H_{r2} = (0.0184) \left(\frac{18m}{0.06m} \right) \left[\frac{(1.31m/s)^2}{2(9.8m/s^2)} \right]$$

$$H_{r2} = 0.4852 \, m.c. a$$

Tramo "L3"

$$H_{r3} = \lambda \frac{L_3}{\emptyset_3} \frac{{v_3}^2}{2g}$$

Asumimos un $\lambda = 0.02$, recomendado para el cálculo hidráulico:

$$H_{r3} = (0.02) \left(\frac{1.5m}{0.06m} \right) \left[\frac{(0.956m/s)^2}{2(9.3m/s^2)} \right]$$

$$H_{r3} = 0.023 \ m.c. \ a$$

Determinamos Reynolds para calcular el coeficiente de fricción y poder conocer el error en el cálculo inicial de las pérdidas por longitud de tubería:

$$R_e = \frac{v_1 \phi_1}{\gamma}$$

$$R_e = \frac{\left(0.956 \frac{m}{s}\right) (0.06 m)}{\left[8.67(10)^{-7}\right] m^2/s}$$

$$R_e = 6.62 (10)^4$$

El módulo de la rugosidad relativa:

$$R_r = \frac{\varepsilon}{\sigma}$$

$$R_r = \frac{0,001 \ 5 \ mm}{60 \ mm}$$

$$R_r = 0,000 \ 025$$

Una vez teniendo Reynolds y el módulo de la rugosidad relativa, mediante la ecuación de Funny determinamos el coeficiente de pérdidas primarias:

$$\lambda = \frac{0.25}{\left[log\left(\frac{R_r}{3.7} + \frac{5.74}{R_e^{0.9}}\right)\right]^2}$$

Para calcular el coeficiente de pérdidas primero debe cumplir las siguientes condiciones:

$$5 (10)^{-3} \le Re \le 1 (10)^{8}$$

 $1 (10)^{-6} : R_r \le 1 (10)^{-2}$

Como:

$$R_e = 6,62(10)^4$$

$$R_r = 2,5 (10)^{-5}$$

$$\lambda_3 = \frac{0,25}{\left[log\left(\frac{0,000 \cdot 025}{3,7} + \frac{5,74}{[6,62(10)^4]^{0.9}}\right)\right]^2}$$

$$\lambda_3 = 0,0196$$

Determinamos el error:

$$E \% = \frac{\left|\lambda - \lambda_1'\right|}{\lambda}$$

$$E \% = \left(\frac{|0,02 - 0,0196|}{0,02}\right) (100\%)$$
$$E \% = 2$$

Como el error no tiene una precisión de 1 (10)⁻⁵ se procede a una segunda iteración; para lo cual se emplea una hoja electrónica de Excel:

Tabla 15. Caudales y pérdidas en tramo L3 de la tubería de succión-skimmers

Pérdidas por longitud de tubería reales					
Iteraciones	Hr "3 real"	Reynolds	Error	λ	
	m.c.a	Adimen.	%	Adimen.	
1	0.0233	6.62E+04	2	0.0196	
2	0.0229	6.62E+04	0	0.0196	

Fuente: Autores

Por lo tanto:

Hr3 = 0.0229 m.c.a

Tramo "L4"

$$H_{r4} = \lambda \frac{L_4}{\emptyset_4} \frac{{v_4}^2}{2g}$$

Asumimos un $\lambda = 0.02$, recomendado para el cálculo hidráulico:

$$H_{r4} = (0.02) \left(\frac{8.5m}{0.06m} \right) \left[\frac{(0.3572m/s)^2}{2(9.8m/s^2)} \right]$$

$$H_{r4} = 0.0184 \, m.c. a$$

Determinamos Reynolds para calcular el coeficiente de fricción y poder conocer el error en el cálculo inicial de las pérdidas por longitud de tubería:

$$R_e = \frac{\vartheta \emptyset}{\gamma}$$

$$R_e = \frac{v_4 \emptyset_4}{\gamma}$$

$$R_e = \frac{\left(0.3572 \frac{m}{s}\right) (0.06 \text{ m})}{\left[8.67 (10)^{-7}\right] \frac{m^2}{s}}$$

$$R_e = 2.47 (10)^4$$

El módulo de la rugosidad relativa:

$$R_r = \frac{\varepsilon}{\phi}$$

$$R_r = \frac{0,001\ 5\ mm}{60\ mm}$$

$$R_r = 0.000025$$

Una vez teniendo Reynolds y el módulo de la rugosidad relativa, mediante la ecuación de Funny determinamos el coeficiente de pérdidas primarias:

$$\lambda = \frac{0.25}{\left[\log\left(\frac{R_r}{3.7} + \frac{5.74}{R_e^{0.9}}\right)\right]^2}$$

Para calcular el coeficiente de pérdidas primero debe cumplir las siguientes condiciones:

$$5 (10)^{-3} \le Re \le 1 (10)^{8}$$

 $1 (10)^{-6} : R_r \le 1 (10)^{-2}$

Como:

$$R_e = 2.47 (10)^4$$

$$R_r = 2.5 (10)^{-5}$$

$$\lambda_4 = \frac{0,25}{\left[log\left(\frac{0,000\,025}{3,7} + \frac{5,74}{[2,47\,(10)^{-5}]^{0,9}}\right)\right]^2}$$

$$\lambda_4 = 0.0226$$

Determinamos el error:

$$E \% = \frac{\left|\lambda - \lambda_1'\right|}{\lambda}$$

$$E \% = \left(\frac{|0,02 - 0,0226|}{0,02}\right) (100\%)$$
$$E \% = 23$$

Como el error no tiene una precisión de 1 (10)⁻⁵ se procede a una segunda iteración; para lo cual se emplea una hoja electrónica de Excel.

Tabla 16. Caudales y pérdidas en tramo L4 de tubería de succión- skimmers

Pérdidas por longitud de tubería reales					
Iteraciones	Hr "4 real"	Reynolds	Error	λ	
	m.c.a	Adimen.	%	Adimen.	
1	0.0184	2.47E+04	23	0.0245	
2	0.0226	2.47E+04	0	0.0245	

Fuente: Autores

Por lo tanto:

Hr4 = 0,0226 m.c.a

Tramo "LT"

Pérdida de longitud de tubería en la succión de la bomba.

Caudal:

$$Q_{LT} = Q_T = 0,00531 \frac{m^3}{s}$$

$$v = \frac{Q_T}{A}$$

$$v_{LT} = \frac{0,00531}{0,00283}$$

$$v_{LT} = 1.877 \frac{m}{s}$$

Determinamos las pérdidas en el tramo LT:

$$H_{rLT} = \lambda \frac{L_{LT}}{\phi_{LT}} \frac{v_{LT}^2}{2g}$$

Asumimos un $\lambda = 0.02$

$$H_{rLT} = \frac{0.02 \quad 0.64 \text{m} * (1.877 m/s)^2}{2 \quad 9.81 m/s^2 * 0.06 m}$$

$$H_{rLT} = 0.0383 \ m.c.a$$

Se calcula λ ; para lo cual se determina Reynolds para calcular el coeficiente de fricción y poder determinar las pérdidas que se produce por longitud de tubería:

$$R_e = \frac{V_{LT}' \emptyset_{LT}}{\gamma}$$

$$R_e = \frac{\left(1,877 \frac{m}{s}\right) (0,06 m)}{(8,67(10)^{-7})m^2/s}$$

$$R_e = 1,30(10)^5$$

Y el módulo de la rugosidad relativa:

$$R_r = \frac{0,001 \ 5 \ mm}{60 \ mm}$$

$$R_r = 0,000 \ 025$$

Una vez teniendo Reynolds y el módulo de la rugosidad relativa, mediante la ecuación de Funny determinamos el coeficiente de pérdidas primarias:

$$\lambda = \frac{0.25}{\left[log\left(\frac{R_r}{3.7} + \frac{5.74}{R_e^{0.9}}\right)\right]^2}$$

Para calcular el coeficiente de pérdidas primero debe cumplir las siguientes condiciones:

$$5 (10)^{-3} \le Re \le 1 (10)^{8}$$

 $1 (10)^{-6} : R_r \le 1 (10)^{-2}$

Como:

$$R_e = 1,30 (10)^5$$

$$R_r = 2,5 (10)^{-5}$$

$$\lambda_{LT} = \frac{0,25}{\left[log\left(\frac{0,000 \ 025}{3,7} + \frac{5,74}{(1,30(10)^5)^{0.9}}\right)\right]^2}$$

$$\lambda_{LT} = 0,0171$$

Tabla 17. Pérdidas por longitud de tubería reales H_{rLT}

Pérdidas por longitud de tubería reales					
Iteraciones	Hr "LT real"	Reynolds	Error	λ	
	m.c.a	Adimen.	%	Adimen.	
1	0.0383	1.30E+05	14	0.0171	
2	0.0328	1.30E+05	0	0.0171	

Fuente: Autores

Cálculo de la pérdida por longitud de tubería:

$$H_{rLT} = \lambda \frac{L_{LT}}{\phi_{LT}} \frac{v_{LT}^2}{2g}$$

$$H_{rLT} = (0.0171) \left(\frac{0.64m}{0.06m} \right) \left[\frac{(1.877m/s)^2}{2(9.8m/s^2)} \right]$$

$$H_{rLT} = 0.0328 \, m. \, c. \, a$$

Determinado tanto la pérdida por longitud de tubería en el fondo como en el tramo de tubería de succión se calcula el total de pérdidas primarias en la succión de la bomba uno:

$$H_{rp} = H_{r1} + H_{r2} + HrT \tag{46}$$

$$H_2 = H_{r3} + H_{r4} + H_{r2}' (47)$$

$$H_2 = 0.0229 \, m.c. \, a + 0.0226 \, m.c. \, a + 0.4852 \, m.c. \, a$$

 $H_2 = 0.5307 \, m.c. \, a$

$$H_{rp} = (0.0931 + 0.5307 + 0.0328) m.c.a$$

 $H_{rp} = 0.6566 m.c.a$

3.2.6.4 Pérdidas secundarias en la succión

L1

Codo a 90

L1

Rejilla de fondo

Skimmer

Skimmer

L4

7 m

7 m

Figura 24. Vista de planta tubería de succión

Fuente: Autores

Para determinar las pérdidas secundarias se tomará en cuenta los diferentes accesorios que se encuentran en la tubería de succión, su equivalencia de pérdida en metros de tubería de PVC. (PLASTIGAMA, 2013)

Ecuación de fórmula general para pérdidas locales (secundarias) generalizada:

$$H_{rs} = K \frac{Q_T^2}{2gA^2} \tag{48}$$

Donde:

∑ K =Sumatoria de pérdidas debido a los accesorios en la succión-Bomba

 Q_T =Caudal en la succión-Tomado con el flujómetro, en $\frac{m^3}{s}$

 $\mathbf{A} = \mathbf{\hat{A}}$ rea interior de la tubería, en m

g = Gravedad, en m/s^2

Ecuación de pérdidas secundarias por longitud equivalente.

$$H_{sec Leq} = \lambda \frac{\sum L_{eq} V^2}{D}$$
 (49)

TRAMO LT

Tabla 18. Coeficiente de pérdidas secundarias succión tramo "LT"

Accesorio	Diámetro nominal [in]	Número Accesorios	Leq [m] (Anexo I)	Leq [m]
T en bifurcación	2	1	2,2062	2,2062
			Total	2,2062

Fuente: Autores

$$H_{sec\,Leq} = \lambda \frac{\sum L_{eq}}{D} \frac{V^2}{2g}$$

$$H_{secLeq} = (0.0171) \left(\frac{2,2062m}{0,06m} \right) \left[\frac{(1.877m/s)^2}{2(9.8m/s^2)} \right]$$

 $H_{secLeq} = 0.11303m.c.a$

Tabla 19. Coeficiente de pérdidas secundarias succión tramo "LT"

Acceptio	Diámetro	Número	Pérdida [K]	Pérdidas
Accesorio	nominal [in]	Accesorios	(Anexo J)	totales [K]
Unión	2	1	0,053	0,053
	•	•	Total	0,053

Fuente: Autores

$$H_{rs} = \sum K \frac{Q_T^2}{2gA^2}$$

$$H_{rs"T"} = 0.053 \left[\frac{(0.0053m^3/s)^2}{2(9.8m/s^2)(0.00283m^2)^2} \right]$$

 $H_{rs"T"} = 0.00952 \, m.c.a$

$$H_{sec"T"} = H_{secLeq} + H_T ag{50}$$

 $H_{sec"T"} = 0,11303 \ m. \ c. \ a + 0,00952 \ m. \ c. \ a$

 $H_{sec"T"} = 0.1225 \, m.c.a$

TRAMO L1

Tabla 20. Coeficiente de pérdidas secundarias succión tramo "L1"

Accesorio	Diámetro Número nominal [in] Accesorios		Pérdida [K]	Pérdidas totales [K]
Rejillas de fondo	8	1	1,22	1,22
Uniones (Anexo J)	2	2	0,053	0,106
			Total	1,326

Fuente: Autores

Para las pérdidas en las rejillas de fondo se considerará mediante la ecuación de Creager (LÓPEZ A, 2007 pág. 44).

$$K = 1,45 - 0.45 \left(\frac{A_n}{A_b}\right) - \left(\frac{A_n}{A_b}\right)^2 \tag{51}$$

Donde:

 $A_n = \text{Es el área neta de paso entre las rejillas}$

 $A_b = \text{Es el área bruta de la estructura de rejillas}$

$$K = 1,45 - 0.45 \left(\frac{15,35m^2}{50,27m^2} \right) - \left(\frac{15,35m^2}{50,27m^2} \right)^2$$

K = 1,22

$$H_{rs} = \sum K \frac{{Q_1}^2}{2gA^2}$$

$$H_{rs"1"} = 1,325 \left[\frac{(0,00159m^3/s)^2}{2(9,8m/s^2)(0,00283m^2)^2} \right]$$

 $H_{rs"1"} = 0.214 \, m. \, c. \, a$

Tabla 21. Coeficiente de pérdidas longitud equivalente succión tramo "L1"

Accesorio	Diámetro nominal [in]	Número accesorios	Leq [m]	Leq [m]
T bifurcación	2	1	2,2062	2,2062
Codo 90	2	2	3,2123	6,4246
Válvula globo	2	1	35,9292	35,9292
			Total	44,560

$$H_{secLeq} = \lambda \frac{\sum L_{eq}}{D} \frac{V^2}{2g}$$

$$H_{sec\,Leq} = (0.0221) \left(\frac{44,560m}{0.06m} \right) \left[\frac{(0.56309m/s)^2}{2(0.8m/s^2)} \right]$$

 $H_{sec\,Leq} = 0.26497 \, m.c. \, a$

Pérdidas secundarias totales en el tramo 1:

$$H_{sec"1"} = H_{rs} + H_{secLeq}$$
 (52)

 $H_{sec"1"} = 0.214 \, m.c. \, a + 0.26497 \, m.c. \, a$

 $H_{sec"1"} = 0.28639 \, m.c.a$

TRAMO L2

Tabla 22. Coeficiente de pérdidas tramo "L2"

Accesorio	Diámetro [in]	Número accesorios	Pérdida [k]	Pérdidas totales [K]
Uniones	2	2	0,053	0,106
			Total	0,106

Fuente: Autores

$$H_{rs} = \sum K \frac{Q_T^2}{2gA^2}$$

 $H_{rs"2"} = 0.00933 \, m.c.a$

Tabla 23. Coeficiente de pérdidas secundarias en la succión tramo "L2"

Accesorio	Diámetro [in]	Número accesorios	Leq [m]	Leq [m]
Codos cortos 90°(Anexo I)	2	2	3,2123	6,425
T Bifurcación(Anexo I)	2	2	2,2062	4,412
Válvula globo(Anexo I)	2	1	35,9292	35,9292
			TOTAL	46,766

$$H_{secLeq} = \lambda \frac{\sum L_{eq}}{D} \frac{V^2}{2g}$$

 $H_{sec Leq} = 1,2606 m.c.a$

Pérdidas secundarias totales en el tramo 2.

$$H_{sec"2"} = H_{rs} + H_{secLeq} \tag{53}$$

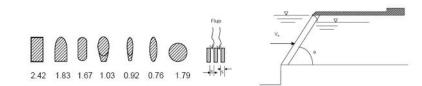
 $H_{sec"2"} = 0.00933 \, m.c.a + 1.2606 \, m.c.a$

 $H_{sec"2"} = 1,26992 \, m. \, c. \, a$

TRAMO L3

Tabla 24. Coeficiente de pérdidas secundarias en la succión tramo "L3"

Accesorio	Diámetro [in]	Número accesorios	Pérdida [k]	Pérdidas totales [K]
Skimmers	2	1	2,42	2,42
			Total	2,42


Fuente: Autores

En este caso para el cálculo del coeficiente de pérdidas de los skimmers se realizará mediante la ecuación de Kirschmer, debido a que están parcialmente sumergidos y sobresalen de la superficie del agua; la misma que es la siguiente:

$$K = Cf(\frac{s}{h})^{4/3}\sin\theta\tag{54}$$

Coeficiente (Cf) aplicables a la fórmula de Kirschmer (LÓPEZ A, 2007 pág. 44).

Figura 25. Coeficiente (Cf) aplicables a la fórmula de Kirschmer

Fuente: LOPEZ Enrique, Hidráulica General, pág. 44

Las rejas de limpieza manual se instalan con una inclinación de $30 a 60^{\circ}$ con respecto alplano horizontal, en cambio, las rejas de limpieza mecánica tienen una inclinación mayor, que va de $60 a 90^{\circ}$. Las barras de las rejas, comúnmente rectas, pueden tener una separación grande, de 5 a 10 cm, o pequeña, de 2 a 4 cm (LÓPEZ A, 2007).

Para lo cual se escoge un skimmer con las siguientes dimensiones tomadas del catálogo de WHITE GOODS FOR POOLS AND SPAS.

U3 Skimmer for concrete

Figura 26. Dimensiones de skimmers

Fuente: WHITE GOODS FOR POOLS AND SPAS

$$\theta = 60^{\circ} y 90^{\circ}$$

 $\frac{s}{h} = 1$; Debído a que es una superficie totalmente plana

Cf = 2,42; Tiene la forma, más próxima para nuestro cálculo

$$K_{\theta=60^{\circ}} = Cf(\frac{s}{h})^{4/3} \sin \theta$$

$$K_{\theta=60^{\circ}} = 2.42 (1)^{4/3} \sin 60^{\circ}$$

$$K_{\theta=60^{\circ}} = 2,096$$

$$K_{\theta=90^{\circ}} = 2.42 (1)^{4/3} \sin 90^{\circ}$$

$$K_{\theta=90^{\circ}}=2.42$$

En este caso tomamos el $K_{\theta=90^{\circ}}=2,42$; por ser el más crítico para el cálculo.

$$H_{rs} = \sum K \frac{Q_T^2}{2gA^2}$$

$$H_{s3} = 0.11288 \, m. \, c. \, a$$

TRAMO L4

Tabla 25. Coeficiente de pérdidas secundarias en la succión tramo "L4"

Accesorio	Diámetro [in]	Número accesorios	Pérdida [k]	Pérdidas totales [K]
Skimmers	2	1	2,42	2,42
Unión (Anexo J)	2	1	0,053	0,053
	1	1	Total	2,473

Fuente: Autores

$$H_{rs} = \sum K \frac{Q_T^2}{2gA^2}$$

 $H_{s4} = 0.00758 m.c.a$

Tabla 26. Coeficiente de pérdidas secundarias en la succión tramo "L4"

Accesorio	Diámetro [in]	Número accesorios	Leq [m]	Leq [m]
Codos 90°(Anexo I)	2	1	3,2123	3,2123
	I	J.	Total	3,2123

Fuente: Autores

$$H_{sec\,Leq} = \lambda \frac{\sum L_{eq}}{D} \frac{V^2}{2g}$$

 $H_{sec\,Leq} = 0.00856\,m.c.\,a$

Pérdidas secundarias totales en el tramo 4

$$H_{sec"4"} = H_{rs} + H_{secLeq} \tag{55}$$

 $H_{sec"4"} = 0.00758 \, m. \, c. \, a + 0.00856 \, m. \, c. \, a$

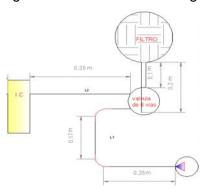
 $H_{sec"4"} = 0.01614 \, m.c.a$

3.2.6.5 Pérdidas totales

Por lo tanto las pérdidas totales en la tubería de succión son:

$$H_{rsB} = H_{primariasTOTALES} + H_{secundariasTOTALES}$$
 (56)

$$H_{rsB} = 0.6566 \, m. \, c. \, a + (0.123 + 0.2864 + 1.2699 + 0.1129 + 0.0161) \, m. \, c. \, a$$


 $H_{rsB} = 2,465 \, m.c. a$

Gravedad

3.2.6.6 Pérdida de carga en la tubería de descarga hacia la piscina

Pérdidas por longitud de tubería

Figura 27. Tubería de descarga

Fuente: Autores

Tabla 27. Diámetro interior, módulo de rugosidad y longitud tubería descarga

DATOS DE LA TUBERÍA				
Datos		Unidades	Valores	Referencias
Tubería de descarga PVC 2 in	Ø interior	[m]	0.06	Catálogo de MARK PEERLESS (Anexo G)
Módulo de rugosidad relativa PVC		[mm]	0.0015	Tomado de CRANE A.41 (Anexo H)
Longitud de tubería	L1	[m]	0.62	Dato del complejo " Vulcano Green"
Longitud de tubería	L2	[m]	0.55	Dato del complejo " Vulcano Green"
Temperatura del agua	Т	[°C]	26.53	Dato del complejo " Vulcano Green" (Anexo A)
Viscosidad cinemática		[m²/s]	8.67E-07	
Peso específico	x	[kN/m³]	9.78	

Fuente: Autores

9.81

 $[m/s^2]$

G

Tabla 28. Área – velocidad tubería de descarga bomba

Área de la tubería L1 = L2:	0,00283 _{m²}
Velocidad en la tubería L1 = L2	1,877 m/s

Tabla 29. Pérdidas primarias en la tubería de descarga

Tramo "L1"	$H_{rpl1}^{n la tubería}$ 18 m.c.a
Tramo "L2"	$H_{rpl2} = 0.03$ 82 m.c.a
Pérdida primaria total	$H_{\text{FTOTAL}}^{\text{FDL2}} = 0.0282$ 99 m.c.a

Fuente: Autores

• Pérdidas secundarias

TRAMO L1

Tabla 30. Pérdidas secundarias en el tramo L1

Accesorio	Diámetro [in]	# Accesorios	Leq [m]	Leq [m]	
Codos largos 90°	2	1	1,206	1,206	
Codos cortos 90°	2	1	3,2123	3,2123	
Válvula multipaso	2	1	35,2123	35,2123	
Accesorio	Medida	# Accesorios	Pérdida [K]	Pérdidas totales [K]	
Uniones roscadas de PVC	2	1	0,053	0,053	

Fuente: Autores

 $H_{rdsL1}=2,0397\,m.\,c.\,a$

TRAMO L2

Tabla 31. Pérdidas secundarias en el tramo L2

Accesorio	Diámetro [in]	# Accesorios	Pérdida [K]	Pérdidas totales [K]
Uniones roscadas PVC	2	2	0,053	0,106
			Total	0,106
Accesorio	Diámetro [in]	# Accesorios	Leq [m]	Leq [m]
Válvula globo	2	1	35,2123	35,2123
Filtro de arena		1	3,5	3,5
			Total	38,712

Fuente: Autores

 $H_{rdsL2}=1,993\,m.\,c.\,a$

Pérdidas secundarias totales:

$$H_{Sec\ TOTALES} = H_{Sec\ "L1"} + H_{Sec\ "L2"}$$
 (57)

 $H_{sec\ TOTALES} = 2,0397\ m.c.a + 1,9927\ m.c.a$

 $H_{secTOTALES} = 4,0324 \, m.c. a$

Las pérdidas totales en la tubería de descarga correspondientes a la bomba son:

$$H_{rdB} = H_{primariasTOTALES} + H_{secundariasTOTALES}$$
 (58)

 $H_{rdB} = 0.0599 \, m.c. \, a + 4.0324 m.c. \, a$

 $H_{rdB}=4,\!0923\,m.\,c.\,a$

Tee SALIDADE AGUA CALIENTE DEL I.C DEL I.CALOR

E CODO A 45

Figura 28. Tramo 3 (agua caliente hacia inyectores)

Tabla 32. Diámetro y longitud, de tubería descarga tramo 3

DATOS DE LA TUBERÍA						
Datos		Unidades	Valores	Referencias		
Tubería de descarga PVC 2 in	Ø	[m]	0,06	Catálogo de MARK		
Tubella de descalga FVC 2 III	interior	[m]	0,00	PEERLESS, (Anexo G)		
Módulo de rugosidad relativa		[mm]	0,0015	Tomado de CRANE		
PVC		[IIIIII]	0,0013	A.41 (Anexo H)		
				Dato del Complejo		
Temperatura del agua	Т	[°C]	26,53	"Vulcano Green"		
				(Anexo A)		
Viscosidad cinemática		$\left[\frac{1}{m^2/s}\right]$	8,67(10)			
Área tubería	А	/s] m ²	0,00283			
Velocidad	V	m's	1,8770			
Caudal	Q	$\frac{n_{\overline{z}}}{m_{-/s}}$	0,0053			

Fuente: Autores

Pérdidas por longitud de tubería.

 $H_{rpTRAMO3} = 0.0154 \, m.c. \, a$

Pérdidas secundarias.

Tabla 33. Pérdidas secundarias en el tramo 3

Accesorio	Diámetro [in]	# Accesorios	Leq [m]	Leq [m]
Tee	2	2	2,3	4,6
L	1	1	Total	4.6

Fuente: Autores

 $H_{rsTRAMO9} = 0,2260 \, m. \, c. \, \alpha$

Pérdidas totales tramo 3

$$H_{rtotalesTRAMO3} = H_{primariasTOTALES} + H_{secundariasTOTALES} + Hi.c$$
 (59)

 $H_{rtotalesTRAMO3} = (0.0154 + 0.2260 + 1.02) \text{ m.c.a}$

 $H_{rtotalesTRAM3} = 1,2614 m.c.a$

3.2.6.7 Cálculo del caudal que se reparte a cada uno de los inyectores

Figura 29. Distribución de inyectores tramo 4-5

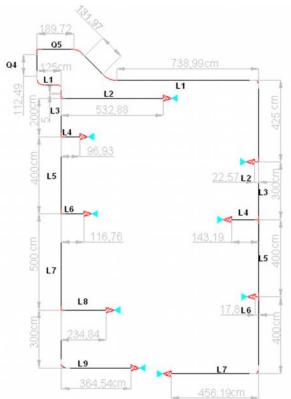


Tabla 34. Propiedades de la tubería – caudal hacia inyectores

DATOS DE LA TUBERÍA						
Datos		Unidades	Valores	Referencias		
				Catálogo de		
Tubería de succión PVC 2 in	Ø	[ma]	0.00	MARK		
	interior	[m]	0,06	PEERLESS		
				(Anexo G)		
Médulo do rugacidad relativa				Tomado de		
Módulo de rugosidad relativa		[mm]	0,0015	CRANE A.41		
PVC				(Anexo H)		
Área tubería	Α	$\frac{m^2}{m^2}$	0,00283			
Velocidad	V	$\frac{m}{m_{j}s}$	1,8777			

Tabla 35. Longitudes de tuberías y propiedades del fluido - caudal hacia inyectores

Consideraciones						
Hr4	y Hr5					
Ø4=Ø5	[m]	0,06				
Temperatura del	[°C]	26,53				
agua de la piscina	[0]	20,00				
Viscosidad $\begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$ 8,67(10) $\frac{1}{-7}$						
cinemática $\begin{bmatrix} \begin{bmatrix} -2/s \end{bmatrix} & 8,67(10) \\ m \end{bmatrix} = \begin{bmatrix} 8,67(10) \\ m \end{bmatrix}$						
Peso específico	[kN/23]	9,78				

Tabla 36. Diámetro y longitud, de tubería en la descarga tramo 4 y 5

DATOS DE LA TUBERÍA						
Datos	Valores	Referencias				
Tubería de descarga PVC 2in	Øi	m	0,06	Catálogo de MARK PEERLESS (Anexo G)		
Módulo de rugosidad relativa PVC		mm	0,0015	Tomado de CRANE A.41 (Anexo H)		
Temperatura del agua	Т	°C	26,53	Dato del Complejo "Vulcano Green" (Anexo A)		
Viscosidad cinemática		2/s	8,67(10)7			
Área tubería	Α	$\frac{n^2}{m^2}$	0,00283			
Velocidad total	V	m	1,8770			
Caudal total	Q	$ \begin{array}{c c} \hline r_1 \\ \hline r_1 \\ \hline r_2 \\ \hline r_3 \\ \hline r_4 \\ \hline r_5 \\ \hline r_6 \\ \hline r_7 \\ _$	0,0053			
Caudal L4	Q	$\frac{\overline{m}_{3}^{3}}{m_{-/_{S}}} = 0,$	0,0029			
Caudal L5	Q	$\frac{\overline{m}_{3}^{3}/_{s}}{m_{3}^{2}/_{s}} = 0.0$	0,00236			
Velocidad L4	V	n3/s m/s	1,026			
Velocidad L5	V	ms,s ms,s	0,835			

Tabla 37. Análisis de pérdidas de descarga en el tramo 4 y 5

Descarga tramo 5	Q(m3/s)	L(m)	V(m/s)	Re		h5(m)
Tramo 1	0.002360	13.650	0.835	57763.135	0.0202	0.16337
Tramo 2	0.000590	0.100	0.209	14440.784	0.0281	0.00010
Tramo 3	0.001770	3.000	0.626	43322.351	0.0216	0.02152
Tramo 4	0.000590	0.380	0.209	14440.784	0.0281	0.00040
Tramo 5	0.001180	4.000	0.417	28881.568	0.0237	0.01401
Tramo 6	0.000590	0.250	0.209	14440.784	0.0281	0.00026
Tramo 7	0.000590	4.480	0.209	14440.784	0.0281	0.00466
	1	1.	- 1		HTp5	0.20432

Descarga tramo 4	Q(m3/s)	L(m)	V(m/s)	Re		h4(m)
Tramo 1	0.002900	2.230	1.026	70980.124	0.0194	0.03856
Tramo 2	0.000580	4.650	0.205	14196.025	0.0282	0.00469
Tramo 3	0.002320	2.000	0.821	56784.099	0.0203	0.02322
Tramo 4	0.000580	0.250	0.205	14196.025	0.0282	0.00025
Tramo 5	0.001740	4.000	0.615	42588.074	0.0216	0.02784
Tramo 6	0.000580	0.450	0.205	14196.025	0.0282	0.00045
Tramo 7	0.001160	5.000	0.410	28392.050	0.0238	0.01699
Tramo 8	0.000580	0.350	0.205	14196.025	0.0282	0.00035
Tramo 9	0.000580	3.480	0.205	14196.025	0.0282	0.00351
	1	_1		J	HTp4	0.11588

Pérdidas por longitud de tubería.

$$H_{rpL4} = 0.1158 \, m. \, c. \, a$$

 $H_{rpL5} = 0.2043 \, m. \, c. \, a$

$$H_{rpTRAMO 4-5} = H_{rpL4} + H_{rpL5} \tag{60}$$

$$H_{rpTRAMO 4-5} = (0,1158 + 0,2043) m. c. a$$

 $H_{rpTRAMO 4-5} = 0,3202 m. c. a$

Pérdidas secundarias.

Tabla 38. Pérdidas secundarias en el tramo 4 y 5

COE	COEFICIENTE DE PÉRDIDAS SECUNDARIAS TRAMO "L4"						
Accesorio # Pérdidas tot							
Accesorio	[in]	Accesorios	i cidida [it]	[K]			
Uniones	2	1	0,053	0,053			
Inyectores 1,5 – 0,75 5 0,1896 0,948							
			Total	1,001			

Tabla 39. Pérdidas secundarias en el tramo 4 y 5

Accesorio	Diámetro [in]	# Accesorios	Leq [m]	Leq [m]
Codo Roscado Estándar 90	2	2	3,4	6,8
Tee en línea	2	4	2,3	8,82
			Total	15,62

Tabla 40. Pérdidas secundarias en el tramo 4 y 5

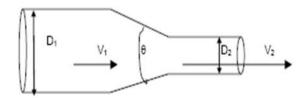
Pérdidas secundarias tramo "5"					
Accesorio	Diámetro [in]	# Accesorios	Pérdida [K]	Pérdidas totales [K]	
Inyectores	1,5 – 0,75	4	0,1896	0,7584	
Unión	2	1	0,053	0,053	
		J	Total	0,8114	
Accesorio	Diámetro [in]	# Accesorios	Leq [m]	Leq [m]	
Codos Roscados	2	2	2.4	6.0	
Estándar 90	2	2	3,4	6,8	
Codos a 45	2	2	3,4	6,8	
Tee	2	3	2,2062	6,6168	
		J	Total	20,22	

Fuente: Autores

Para el cálculo de pérdidas en los inyectores se considerará como una reducción gradual. En este caso se produce un fenómeno de contracción semejante al de entrada a la tubería, el cual también conviene que sea gradual. Dependiendo de la brusquedad con que se efctúa la contracción, el coeficiente de pérdida está dado por el ángulo θ , de acuerdo a la tabla de coeficientes de pérdidas por reducción gradual de Kisiliev. (LÓPEZ A, 2007 pág. 45)

Tabla 41. Coeficientes de pérdidas, según Kisiliev

θ	4 a 5°	7º	10°	15°	20°	25°	30°	35°	40°	45°	60°	75°	80°
K	0.60	0.16	0.16	0.18	0.20	0.22	0.24	0.26	0.28	0.30	0.32	0.34	0.35
	0.005										.,		


Fuente: LÓPEZ Enrique. Hidráulica General, flujo de agua en tuberías. 2007. Pág.45

Con objeto de evitar pérdidas grandes, el ángulo de reducción no debe exceder de un valor especificado, dicho ángulo es:

$$\tan \theta = \sqrt{\frac{gD}{V}} \tag{61}$$

Donde
$$D = \frac{D_1 + D_2}{2}$$
; $V = \frac{V_1 + V_2}{2}$

Figura 30. Reducción gradual

Fuente: LÓPEZ Enrique, Hidráulica general, flujo de agua en tuberías. Septiembre, 2007. Pág.46

Medidas del inyector tomadas del CATÁLOGO PENTAIR WATER POOL AND SPA.

Tabla 42. Dimensiones del Inyector, diámetros comerciales y nominales

Inyectores		
Comercial	Nominal	
Medida	Medida	
[in]	[mm]	
1,5	50	
0,75	25	

Fuente: Autores

Por lo tanto el ángulo θ tiene el siguiente valor:

$$D = \frac{D_1 + D_2}{2} \tag{62}$$

$$D = \frac{50 \, mm + 25 \, mm}{2}$$

$$D = 37.5 \ mm = 0.0375 \ m$$

Tabla 43. Área de inyectores y sus velocidades

Áreas del inyector			
A1	$\frac{1}{m^2}$]	0,00196	
A2	$\begin{bmatrix} \frac{m^2}{m} \end{bmatrix}$	0,00049	

Velocidad en el inyector			
V1	[m/s]	1,479	
V2 [m/s]		5,918	

Fuente: LÓPEZ Enrique, Hidráulica general, flujo de agua en tuberías. Septiembre, 2007

Tabla 44. Diámetro de inyectores

Relación de diámetro en el inyector			
D	[m]	0,0375	
Fuente: Autores			

$$V = \frac{V_1 + V_2}{2} \tag{63}$$

$$V = \frac{1,479 \frac{m}{s} + 5,918 \frac{m}{s}}{2}$$

$$V = 3.699 \, m/s$$

$$\tan \theta = \sqrt{\frac{gD}{V}}. ag{64}$$

$$\tan\theta = \sqrt{\frac{(9.8m/s^2)(0.0375m)}{3.699m/s}}$$

 $\theta = 17.4^{\circ}$

Una vez que hemos calculado el ángulo de desfase procedemos a determinar el coeficiente de pérdidas por reducción gradual del ángulo θ , según Kisiliev; el que resulta mediante linealización:

$$k_{T4} = 0.1896$$

Una vez que se tiene las pérdidas en este tramo de tubería se procede a calcular la presión de salida en el inyector, la misma que deberá ser mayor que la presión hidrostática de la piscina o caso contrario el agua que sale por el inyector se regresaría nuevamente a la tubería; de manera similar se procede en el otro tramo de los inyectores:

$$P_{inyector} > P_{Hidrost\'atica}$$
 (65)

$$Q_{tramoL4} = 0,0029 \, m^3/s$$

$$Q_{tramol.5} = 0.00236m^3/s$$

$$A = 2.83 (10)^{-3} m^2$$

$$K_{invector} = 0.1896$$

$$H_{inyectorL4} = 0.1896 \frac{(0.0029m^3/s)^2}{2(9.8\frac{m^2}{s})(2.83(10)^{-3}m^2)^2}$$

 $H_{inyector} = 0.0102 \, m.c. a$

$$h_{piscina} = 1,25 m$$

$$\frac{P_{hidrost\acute{a}tica}}{\gamma} = 1,25 \, m. \, c. \, a$$

$$z_1 = z_2 \tag{66}$$

$$\frac{P_{inyector}}{\gamma} + z_1 + \frac{{v_1}^2}{2g} - H_{inyector} = \frac{P_{Hidrostática}}{\gamma} + z_2 + \frac{{v_2}^2}{2g}$$
 (67)

$$\frac{P_{inyector}}{\gamma} = \frac{P_{Hidrost\'atica}}{\gamma} + H_{inyector} + \frac{{V_2}^2}{2g} - \frac{{V_1}^2}{2g}$$

$$\frac{P_{inyector}}{\gamma} = 1,25 \, m. \, c. \, a + 0,0102 \, m. \, c. \, a + \frac{(5,918 \, m/s)^2}{2 \, (9,8 \, m/s^2)} - \frac{(1,479 \, m/s)^2}{2 \, (9,8 \, m/s^2)}$$

$$\frac{P_{inyector}}{\gamma} = 2,935 \, m. \, c. \, a$$

Entonces:

$$P_{invector} > P_{Hidrostática}$$

Con esto se llega a comprobar que la presión del inyector es la adecuada para que el agua retorne nuevamente a la piscina luego de pasar por el filtro.

 $H_{rsTRAMOL4} = 0,3239m.c.a$

 $H_{rsTRAMOL5} = 0,2708 \, m. \, c. \, a$

$$H_{rsTRAMO} = H_{rsTRAMOL4} + H_{rsTRAMOL5} \tag{68}$$

 $H_{rsTRAMOT} = 0.3239 \, m. \, c. \, a + 0.2708 \, m. \, c. \, a$

 $H_{rsTRAMOT} = 0.5947 \, m. \, c. \, a$

Pérdidas totales tramo 4 - 5

$$H_{rtotales} = H_{primarias TOTALES} + H_{secundarias TOTALES}$$
 (69)

 $H_{rtotalesTRAMO 4-5} = 0,32020m.c.a + 0,5947m.c.a$

 $H_{rtotalesTRAMO 4-5} = 0,9149 m.c.a$

3.2.7 Turco

3.2.7.1 Condiciones requeridas

Temperatura máxima= 37°C.

3.2.7.2 Cálculo de la cantidad de vapor necesario

a) Cálculo del calor sensible. (VALENZUELA, 2003)

$$q_s = \frac{V\delta C p_{aire} \Delta T}{t} \tag{70}$$

Donde:

 $q_s = \text{Calor sensible, en } \frac{Btu}{h}$

V = Volumen de aire a calentar e el turco, en ft³

= Densidad del aire, en lb/ft3

 $Cp_{aire} = Calor específico del aire, en \frac{Btu}{lb^{\circ}F}$

 $T_1 = Temperatura inicial, en^F, (Anexo K)$

T₂ = Temperatura final, en°F, (Anexo K)

t = Tiempo de calentamiento, en h

b) Cálculo de la densidad promedio. (VALENZUELA, 2003)

$$\delta = \frac{\delta_1 + \delta_2}{2} \tag{71}$$

Donde:

 δ = Promedio de densidad del aire, en lb/ft³

 δ_1 = Densidad del aire a temperatura inicial, (Osanger, 2013)

 δ_2 = Densidad del aire a temperatura final, en $\frac{lb}{tt^3}$

Con la temperatura inicial y final seleccionamos la respectiva densidad la misma que es obtenida.

Con $T_1 = 24.8^{\circ}C = 297.95^{\circ}K = 76.64^{\circ}F$ seleccionamos $\delta_1 = 0.0514 \frac{lb}{ft^3}$ (Anexo L).

Con $T_2 = 37^{\circ}C = 310,15^{\circ}K = 98,6^{\circ}F$ seleccionamos $\delta_2 = 0,0492 \frac{lb}{ft^3}$ (Anexo L).

$$\delta = \frac{(0.0514 + 0.0492)\frac{lb}{ft^3}}{2}$$

$$\delta = 0.0503 \frac{lb}{ft^3}$$

c) Cálculo del calor específico. (VALENZUELA, 2003 págs. A-4)

$$Cp_{aire} = \frac{Cpaire_1 + Cpaire_2}{2} \tag{72}$$

Con la temperatura inicial y final seleccionamos el respectivo calor específico

Con $T_1 = 24.8^{\circ}C = 297.95^{\circ}K = 76.64^{\circ}F$ seleccionamos $Cp_{aire1} = 0.240 \frac{Btu}{tb^{\circ}F}$, (Anexo M).

Con $T_2 = 37^{\circ}C = 310,15^{\circ}K = 98,6^{\circ}F$ seleccionamos $Cp_{aire2} = 0,240 \frac{Btu}{lb^{\circ}F}$, (Anexo M).

$$Cp_{aire} = \frac{(0.240 + 0.240)\frac{Btu}{lb^c F}}{2}$$

$$Cp_{aire} = 0.240 \frac{Btu}{lb^{\circ}F}$$

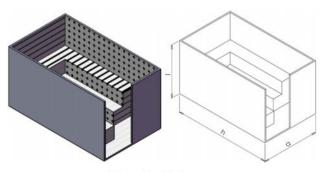
d) Cálculo de la variación de temperatura

$$\Delta T = (T_2 - T_1) \tag{73}$$

$$T_1 = 24.8^{\circ}C = 297.95^{\circ}K = 76.64^{\circ}F$$

$$T_2 = 37^{\circ}C = 310,15^{\circ}K = 98,6^{\circ}F$$

$$T = (98,6^{\circ}F - 76,64^{\circ}F)$$


$$T = 21,96^{\circ}F$$

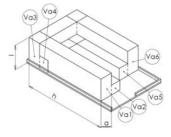
e) Tiempo de calentamiento

t = 2h

f) Cálculo del volumen de la habitación

Figura 31. Vista isométrica del turco

Fuente: Autores


$$V_h = V_1 = l * a * h (74)$$

 $V_1 = [(7,22)(7,77)(13,12)]ft^3$

$$V_1 = 736,18 \, ft^3 = 20,86 \, m^3$$

g) Cálculo del volumen que ocupan los asientos

Figura 32. Vista seccional de asientos - turco

$$V_h = V_a = l * a * h$$

$$V_a = Va_1 + Va_2 + Va_3 + Va_4 + Va_5 + Va_6$$
 (75)

$$Va_1 = [(1,54)(2,95)(10,5)]ft^3$$

$$Va_1 = 47,78 ft^3$$

$$V_{a2} = [(1,25)(1,44)(10,5)]ft^3$$

$$V_{a2} = 18,89 ft^3$$

$$V_{a3} = [(1,54)(2,95)(5,58)]ft^3$$

$$V_{a3} = 25,38 ft^3$$

$$V_{a4} = [(1,25)(1,44)(5,58)]ft^3$$

$$V_{a4} = 10,03 ft^3$$

$$V_{a5} \approx [(1,25)(1,44)(7,48)]ft^3$$

$$V_{a5} \approx 13,46\,ft^3$$

$$V_{a6} = [(1,54)(2,95)(7,48)]ft^3$$

$$V_{a6} = 34,04 ft^3$$

$$V_a = (47.78 + 18.89 + 25.38 + 10.03 + 13.46 + 34.04) ft^3$$

$$V_a = 149,58 \, ft^3 = 4,24 \, m^3$$

h) Cálculo del volumen de aire

$$V = V_h - V_a \tag{76}$$

$$V = (20.86 - 4.24)m^3$$

$$V = 16,618 \, m^3 = 586,60 \, ft^3$$

Reemplazando los datos tenemos:

$$q_{s} = \frac{(586,60 \, ft^{3}) \left(0.0503 \frac{lb}{ft^{3}}\right) \left(0,240 \, \frac{Btu}{lb^{c}F}\right) (21,96 \, ^{\circ}F)}{2 \, h}$$

$$q_{s} = 77,754 \, \frac{Btu}{h}$$

3.2.7.3 Cálculo del calor latente (VALENZUELA, 2003)

$$q_L = \dot{m}\Delta h \tag{77}$$

Donde:

 $q_L = \text{Calor latente, en} \frac{\text{Btu}}{\text{h}}$

 $\dot{m} = \text{Flujo de la masa de vapor, en } \frac{\text{kg}}{\text{h}}$

 h_{fg} =Entalpia de evaporación, en $\frac{Btu}{lb}$

$$h_{fg} = h_g - h_f \tag{78}$$

Tanto la entalpia de líquido sub- enfriado como de vapor saturado fueron obtenidas de las tablas de vapor a la presión de alimentación del vapor.

 h_f = Entalpia de líquido sub enfriado

 h_g =Entalpia de vapor saturado

Presión del vapor. La presión del vapor de agua fue tomada del manómetro ubicado en la caldera el mismo que marcó:

 $P_{abs} = P_m + P_{atm}$

$$P_{man} = 25 \ psi$$

(79)

Donde:

 P_{abs} = Presión absoluta, en psi

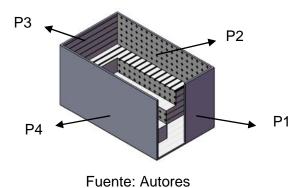
 $P_m =$ Presión manométrica, en psi

 $P_{atm} =$ Presión atmosférica, en psi

Patm = 10,42 psi, Presión local de la ciudad de Penipe.

$$P_{abs} = (25 + 10,42)psia$$

$$P_{abs} = 35,42 psia$$


En las tablas de vapor teniendo el valor de la presión de 35,42 psia

$$h_{y} = 1167,41 \frac{Btu}{lb}$$
 $h_{f} = 228,71 \frac{Btu}{lb}$
 $h = (1167,41 - 228,71) \frac{Btu}{lb}$
 $h = 938,7 \frac{Btu}{lb}$

Pérdidas de calor por conducción en las paredes, piso y techo. Las secciones de un cuarto de turco tienen diferentes formas que se ilustra en la figura.

Ilustración de las paredes del turco.

Figura 33. Vista de las paredes el turco

P1, P2, P3, y P4; representan cada una de las diferentes secciones de la habitación del cuarto del turco.

V, es la puerta de acceso.

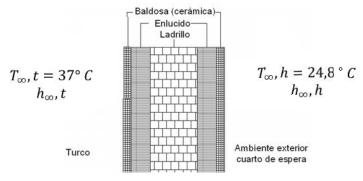
P1,P2,P3: Estas secciones tienen como ambiente contiguo el cuarto de espera debido que el ambiente de esta habitación se encuentra a una menor temperatura se

consideran pérdidas por conducción a través de estas paredes así como también las secciones de cada uno de los vidrios que forman cada una de estas paredes.

P4: Esta sección tiene como habitación contigua el cuarto de la sauna, por lo que se considera de igual manera las pérdidas por conducción en estas secciones.

V: Pérdidas por conducción, por ser una puerta de acceso.

Las temperaturas y humedades relativas del turco:


- Interiores
- Exteriores
- Paredes
- Techo
- Piso

Pérdidas por conducción en la pared "P1"

Consideraciones:

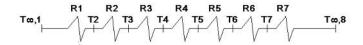

- 1. Estado estacionario, por lo tanto q = cte.
- 2. Suponemos conducción uniforme es decir unidimensional en la dirección x.
- La conductividad térmica es variable es decir de acuerdo a los diferentes materiales.
- 4. $T_{\infty t} > T_{\infty h}$

Figura 34. Vista seccional de pared 1 – turco

a) Circuito térmico equivalente de la pared "P1"

Figura 35. Circuito térmico de pared 1 - turco

Fuente: Autores

$$q_{x} = \frac{T_{\infty t} - T_{\infty h}}{(\Gamma R_{t})(\frac{1}{A})} \tag{80}$$

$$q_{x} = \frac{T_{\infty, -T_{\infty,h}}}{\left[\left(\frac{1}{h_{\infty,t}}\right) + \left(\frac{e_{A}}{K_{A}}\right) + \left(\frac{e_{B}}{K_{B}}\right) + \left(\frac{e_{C}}{K_{C}}\right) + \left(\frac{e_{D}}{K_{D}}\right) + \left(\frac{e_{E}}{K_{E}}\right) + \left(\frac{1}{h_{\infty,h}}\right)\right]\left(\frac{1}{A_{P_{1}}}\right)}$$
(81)

b) Cálculo del área de la pared P1

$$A_{"P1"} = (a)(h) (82)$$

$$A_{P1''} = (2,20 m)(2,37 m)$$

$$A_{"P1"} = 5.214 \, m^2$$

$$A_{puerta} = 1,71 m^2$$

Área de la pared 1 restada la puerta:

$$A_{"P1"} = 3,50 m^2$$

c) Temperaturas

Temperatura en el ambiente exterior. (Anexo K)

$$T\infty$$
, $h = 24.8 \,^{\circ}C$

Temperatura en el ambiente interior. (Anexo K)

$$T \infty t = 37^{\circ} C$$

d) Espesor de los componentes de la pared "P1"

e_A = Espesor de la baldosa(cerámica) = 0,003 m

 $e_B = Espesor del enlucido = 0,03 m$

 e_C = Espesor del ladrillo = 0,10 m

 e_D = Espesor del enlucido = 0,03 m

e_E = Espesor de la baldosa (cerámica) = 0,003 m

 $e_G = Espesor del hormigón = 0,25 m$

 $e_H = E_Spesor del vidrio = 0,004 m$

e_{Al} = Espesor del aluminio = 0,006 m

e_I = Espesor de la madera de pino = 0,025 m

Conductividad térmica de los materiales. (VALENZUELA, 2003)

 $K_A = \text{Conductividad térmica de la cerámica} = 0.810 \frac{W}{\text{m}^{\circ}\text{C}}$

 K_B = Conductividad térmica del enlucido = 0,50 $\frac{W}{m}$

 $K_c = Conductividad térmica del ladrillo = 0,72 \frac{W}{m}$

 $K_D = Conductividad térmica del enlucido = 0,50 \frac{W}{m}$

 K_E = Conductividad térmica de la cerámica = 0,810 $\frac{W}{m}$

 $K_G = Conductividad térmica del hormigón = 1,4 \frac{W}{m}$

 $K_V = \text{Conductividad térmica del vidrio} = 0.810 \frac{W}{m}$

 K_{AL} = Conductividad térmica del aluminio = 220,5 $\frac{W}{m}$

 $K_{\mathbf{P}} = \text{Conductividad térmica del pino} = 0,147 \frac{W}{m}$

e) Cálculo del ambiente convectivo h_{∞} , t, adyacente a la pared P4

$$h_{\infty}, t = \frac{(N_u)(K_f)}{L_c} \tag{83}$$

Donde:

h , t =Coeficiente convectivo en el interior del turco, en $\frac{W}{m^2 \cdot C}$.

Nu= Número de Nusselt.

 $\mathit{K_f} = \mathsf{Conductividad}$ térmica del vapor, en $\frac{\mathit{W}}{\mathit{m}^{\circ\mathit{C}}}$.

Lc = Longitud característica, en m.

Consideraciones:

- 1. Convección forzada en una placa y flujo laminar que se extiende sobre toda la longitud de la placa.
- 2. Las propiedades se determinan a temperatura fílmica.

$$Tf = \frac{T_w + T_b}{2} \tag{84}$$

$$Tb = \frac{T_1 + T_2}{2} \tag{85}$$

Donde:

 T_1 , T_2 = Temperatura del ambiente interior del turco.

 $T_1 = 36,50$

 $T_2 = 37,50$

 T_w = Temperatura superficial en la pared "P4", en .

 $T_w = 34,50$

Tf = Temperatura fílmica.

$$Tb = \frac{(36.5 + 37.5)}{2}$$

Tb = 37°

$$Tf = \frac{(34.5 + 37)}{2}$$

$$Tf = 35.75$$

$$Re = \frac{(\delta)(V_v)(L_c)}{\mu} \tag{86}$$

Donde:

Re = Número de Reynolds

 $\delta = \text{Densidad del vapor}, en \frac{kg}{m^3}$

 $V_v = \text{Velocidad del vapor}, en \frac{m}{s}$

 $L_c = \text{Longitud característica (altura de la pared), } en m$

 $\mu = \text{Viscosidad dinámica}, en N \frac{s}{m^2}$

Propiedades del vapor saturado con $T_f = 35,75$.

$$\delta = 0.04236 \frac{kg}{m^3}$$

$$\mu = 9.79(10)^{-6} \frac{(N)(s)}{(m^2)}$$

$$V_v = 50 \ \overline{D}$$
(87)

 $V_v = \text{Velocidad del vapor, en } \frac{m}{s}$

D = Diámetro interno del tubo, en m

D = 0.02628 m

$$V_v = 50 \sqrt{0.02628 m}$$

$$V_v = 8,106 \frac{m}{s}$$

$$Re = \frac{\left(0,04236 \frac{kg}{m^3}\right) \left(8,106 \frac{m}{s}\right) (2,20 m)}{9,79(10)^{-6} \frac{(N)(s)}{(m^2)}}$$

$$Re = 7.72 (10)^4$$

$$Nu = \frac{(h_{\infty,t})(L_c)}{K_f} = 0.662 (R_e)^{0.5} (P_r)^{\frac{1}{3}}$$
 (88)

Donde:

Nu = Número de Nusselt.

 $h_{\infty,t}$ = Coeficiente convectivo, en $\frac{W}{m^{2\circ}C}$.

 $L_c =$ Longitud característica, en m.

 $R_e = Número de Reynolds.$

 $P_r = N$ úmero de Prandtl, (Anexo N).

$$L_c = 2,20 \, m$$

$$P_r = 0.95425 \text{ (Anexo N)}$$

$$k_f = 0.01916 \frac{W}{m^{\circ}C}$$
, (Anexo N)

$$Nu = \frac{(h_{\infty,t})(L_c)}{K_f} = 0,662 (7,72 (10)^4)^{0.5} (0,95425)^{\frac{1}{3}}$$

$$Nu = 181,037$$

$$h_{\infty}, t = \frac{(181,037) \left(0,01916 \frac{W}{m^{\circ}c}\right)}{2,50 m}$$

$$h_{\infty}, t = 1,5767 \frac{W}{m^{2} {}^{\circ}C}$$

Coeficiente convectivo en el ambiente exterior (cuarto de espera), turco y a la sauna:

$$h \quad h = \frac{(Nu)(K_{fa})}{(Lc)} \tag{89}$$

Donde:

 $h \sim h = \text{Coeficiente convectivo en el ambiente exterior del turco, en } \frac{W}{m^{2} \circ C}$.

Nu= Número de Nusselt.

 K_{fa} =Conductividad térmica del aire, en $\frac{W}{m^{\circ r}}$.

Lc = Longitud característica, en Lc = 2,2 m.

Consideraciones:

- 1. Convección natural para una placa vertical considerando que la longitud característica L_c es igual a la altura de la placa.
- Las propiedades se evalúan a la temperatura filmica.

$$Tf = \frac{T_w + T_b}{2}$$

$$Tb = \frac{T_1 + T_2}{2}$$

Donde:

 T_1 , T_2 = Temperatura del ambiente exterior al turco.

 T_w = Temperatura superficial en la pared "P2", en

$$T_1 = 28,5$$

$$T_2 = 22.5$$

$$T_w = 26.5 = 299.65 \,^{\circ} K$$

Tf = Temperatura fílmica

$$Tb = \frac{(28,5 + 22,5)}{2}$$

$$Tb = 25.5 = 298.65 \,^{\circ} K$$

$$Tf = \frac{(26.5 + 25.5)}{2}$$

$$Tf = 26^{\circ} (= 299.15^{\circ} K)$$

$$Gr = \frac{gLc^3\beta (Tw-Tb)}{v^2} \tag{90}$$

Donde:

Gr = Grashof.

 L_c = Longitud característica, en m.

 β =Coeficiente térmico de dilatación cúbica del fluido; "Si asumimos que el fluido se comporta como un gas ideal, la ecuación se reduce a la siguiente forma:"

$$\beta = \frac{1}{T_f} \tag{91}$$

 $v = \text{Viscosidad cinemática, en } \frac{m^2}{s}$.

Con la temperatura $Tf = 26^{\circ} = 299,15^{\circ} K$ se seleccionan las propiedades termo físicas del aire. (Anexo N)

$$\rho = 1.181 \binom{kg}{m^3}$$

$$\mu = 1.975 (10)^{-5} \binom{N \text{ s}}{m^2}$$

$$v = 16.735 254 (10)^{-6} \binom{m^2}{s}$$

$$K_{fa} = 0.026 135 26 \binom{W}{m \text{ °C}}$$

$$g = 9.8 \frac{m}{s^2}$$

$$P_r = 7.08 (10)^{-1}$$

$$\beta = \frac{1}{T_{filmica}} = \frac{1}{299,15 \text{ °K}} = 3,34 \text{ (10)}^{-3} \text{ °K}^{-1}$$

$$Gr = \frac{9.8m/s^2((2.2m)^3)[3.34(10)^{-3} {}^{\circ}K^{-1}](299.65 - 298.65) {}^{\circ}K}{(16.735254(10)^{-6}m^2/s)^2}$$

$$Gr = 1,245(10)^9$$

$$Ra = GrPr (92)$$

Donde:

Ra = Número de Rayleigh

Gr = Número de Grashof

Pr = Número de Prandit

 $Ra = (1,245 (10)^{9})(7,08(10)^{-1})$

 $Ra = 1,294 (10)^9$

$$N_{u} = \left[0.825 + \frac{0.387R_{a}^{\frac{1}{6}}}{\left[1 + \left(\frac{0.492}{P_{r}}\right)^{\frac{9}{16}}\right]^{\frac{8}{27}}}\right]^{2}$$
(93)

Donde:

 N_u = Número de Nusselt.

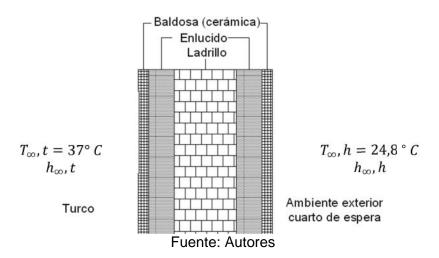
 $R_a = \text{Número de Rayleigh}$

 $P_r = \text{Número de Prandlt}$

$$N_u = \left[0.825 + \frac{0.387(8.818(10)^8)^{\frac{1}{6}}}{\left[1 + \left(\frac{0.492}{7.08(10)^{-1}}\right)^{\frac{9}{16}}\right]^{\frac{8}{27}}}\right]^2$$

 $N_u = 118,14$

$$h , h = \frac{(118,14)(0,02613526) W/_{m \circ C}}{(2,20m)}$$


$$h , h = 1.403 \frac{W}{m^2 \, ^{\circ} \text{C}}$$

Flujo de calor por conducción a través de la pared "P1"

$$q_{P1} = \frac{(37 - 24,8)^{\circ}C}{\left[\left(\frac{1}{1,5767}\right) + \left(\frac{0,003}{0,810}\right) + \left(\frac{0,03}{0,50}\right) + \left(\frac{0,10}{0,72}\right) + \left(\frac{0,003}{0,50}\right) + \left(\frac{1}{1,403}\right)\right]\left(\frac{1}{3,50 \text{ m}^2}\right) \frac{m^2 \circ C}{W}}$$

$$q_{P1} = 26,50 W$$

Figura 36. Vista seccional de pared 2 - turco

a) Circuito térmico equivalente de la pared

Figura 37. Circuito térmico de pared 2 - turco

$$q_{\chi} = \frac{T_{\infty t} - T_{\infty h}}{\left[\left(\frac{1}{h_{\infty,t}}\right) + \left(\frac{e_{A}}{K_{A}}\right) + \left(\frac{e_{B}}{K_{B}}\right) + \left(\frac{e_{C}}{K_{C}}\right) + \left(\frac{e_{D}}{K_{D}}\right) + \left(\frac{e_{E}}{K_{E}}\right) + \left(\frac{1}{h_{\infty,h}}\right)\right]\left(\frac{1}{A_{P2,3}}\right)}$$

 $q_x = \frac{T_{\infty t} - T_{\infty h}}{\left(\sum R_t\right) \left(\frac{1}{A}\right)}$

b) Cálculo del área de la pared P2

$$A_{P2"} = (a_1)(h)$$

$$A_{P2"} = (4m)(1,30 m)$$
(94)

c) Temperaturas

Temperatura en el ambiente exterior:

$$T\infty$$
, $h = 24.8 °C$

 $A_{"P2"} = 5.2 m^2$

Temperatura en el ambiente interior:

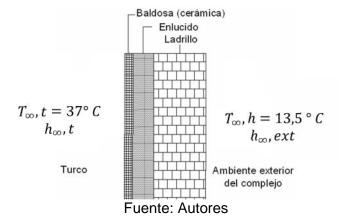
$$T\infty$$
, $t = 37^{\circ}C$

d) Coeficientes convectivos

Coeficiente convectivo en el cuarto espera al turco

$$h , h = 1,4034 \frac{W}{m^2 \, ^{\circ} \text{C}}$$

Coeficiente convectivo en el interior al turco


$$h_{\infty}, t = 1,5767 \frac{W}{m^2 \, ^{\circ} \text{C}}$$

$$q_{P2} = \frac{(37-24,8)^{\circ}C}{\left[\left(\frac{1}{1,5767}\right) + \left(\frac{0,003}{0,810}\right) + \left(\frac{0,03}{0,50}\right) + \left(\frac{0,10}{0,72}\right) + \left(\frac{0,03}{0,50}\right) + \left(\frac{0,003}{0,810}\right) + \left(\frac{1}{1,1034}\right)\right]\left(\frac{1}{5,20\,m^{2}}\right)\frac{m^{2\circ}C}{W}}$$

$$q_{P2} = 39,33 W$$

Pérdidas a través de las paredes "P3"

Figura 38. Vista seccional de pared 3 – turco

a) Circuito térmico equivalente de la pared

Figura 39. Circuito térmico de pared 3 - turco

$$q_x = \frac{T_{\infty t} - T_{\infty ext}}{(\sum R_t) \left(\frac{1}{A}\right)}$$

$$q_{x} = \frac{T_{\infty t} - T_{\infty ext}}{\left[\left(\frac{1}{h_{\infty,t}}\right) + \left(\frac{e_{A}}{K_{A}}\right) + \left(\frac{e_{B}}{K_{B}}\right) + \left(\frac{e_{C}}{K_{C}}\right) + \left(\frac{1}{h_{\infty,ext}}\right)\right]\left(\frac{1}{A_{Tde^{+}P5-P6^{"}}}\right)}$$

b) Cálculo del área de la pared P3

$$A_{"P3"} = [(a_3)(h - h_a)]$$
(95)

$$A_{P3''} = (2.37 \, m)(1.30 \, m)$$

$$A_{"P3"} = 3.081 \, m^2$$

c) Temperaturas

Temperatura en el ambiente exterior (cerramiento complejo turístico):

$$T \infty$$
, $ext = 13.5$

Temperatura en el turco:

$$T\infty$$
, $t = 37^{\circ}C$

d) Coeficientes convectivos

Coeficiente convectivo en el turco:

$$h , t = 1,5767 \frac{W}{m^2 {}^{\circ}\text{C}}$$

Coeficiente convectivo en el ambiente exterior (cerramiento complejo deportivo):

$$h_{\infty}, ext = 5.7 + 3.8 v \tag{96}$$

Dónde:

 h_{∞} , ext = Coeficiente convectivo de ambientes externos, en $\frac{W}{m^{2\circ}C}$

 $v = Velocidad del aire local, en \frac{m}{s}$

$$v = 2,13 \frac{m}{s}$$

$$h_{\infty}$$
, $ext = 5.7 + 3.8 \left(2.13 \frac{m}{s}\right)$

$$h_{\infty}, ext = 13,794 \frac{W}{m^2 \, ^{\circ} \text{C}}$$

$$q_{P3} = \frac{(37-13{,}5)^{\circ}C}{\left[\left(\frac{1}{1{,}5767}\right) + \left(\frac{0{,}003}{0{,}810}\right) + \left(\frac{0{,}03}{0{,}50}\right) + \left(\frac{0{,}10}{0{,}72}\right) + \left(\frac{1}{13{,}794}\right)\right]\left(\frac{1}{3{,}081m^{2}}\right)\frac{m^{2}{\,}^{\circ}C}{W}}$$

$$q_{P3} = 79,622 W$$

Pérdidas a través de las paredes "P4". Como esta sección se encuentran compartiendo el mismo ambiente convectivo del turco y de la sauna se tomaran los mismos cálculos; lo único que difiere es el área de transferencia de calor y debido a que el habitáculo del turco tiene mayor temperatura que la sauna existe pérdidas de calor por conducción a través de esta sección de pared.

Figura 40. Vista seccional de pared 4 - turco

a) Circuito térmico equivalente de la pared

Figura 41. Circuito térmico de pared 4 - turco

$$q_x = \frac{T_{\infty t} - T_{\infty sauna}}{\left(\sum R_t\right) \left(\frac{1}{A_{p_4 v}}\right)}$$

$$q_{"P4"} = \frac{T_{\infty t} - T_{\infty scuna}}{\left[\left(\frac{1}{h_{\infty t}}\right) + \left(\frac{e_A}{K_A}\right) + \left(\frac{e_B}{K_B}\right) + \left(\frac{e_C}{K_C}\right) + \left(\frac{e_D}{K_D}\right) + \left(\frac{e_E}{K_E}\right) + \left(\frac{e_I}{K_I}\right) + \left(\frac{1}{h_{\infty , sauna}}\right)\right]\left(\frac{1}{A_{P4}}\right)}$$

b) Cálculo del área de la pared P4

$$A_{PA} = (a_{10})(h - h_a) (97)$$

$$A_{"P4"} = (4m)(1,30m)$$

$$A_{"P4"} = 5.2 \, m^2$$

c) Temperaturas

Temperatura en el interior del turco:

$$T \infty , t = 37^{\circ} C.$$

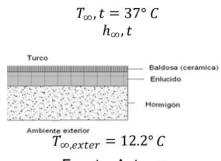
Temperatura en el interior sauna:

$$T \infty, t = 28.5^{\circ}C$$

d) Coeficientes convectivos

Coeficiente convectivo en el interior del turco

$$h , t = 1,577 \frac{W}{m^2 \, ^{\circ} \text{C}}$$


Coeficiente convectivo en el interior de la sauna

$$h_{\infty}$$
, sauna = 7,5 $\frac{W}{m^2 {}^{\circ}\text{C}}$

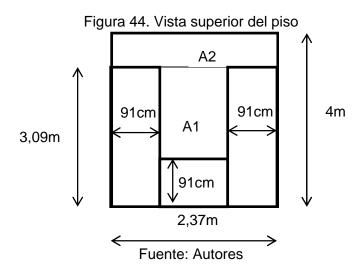
$$q_{p4} = \frac{(37 - 28,5)^{\circ}\mathcal{C}}{\left[\left(\frac{1}{1,577}\right) + \left(\frac{0,003}{0,810}\right) + \left(\frac{0,03}{0,50}\right) + \left(\frac{0,10}{0,72}\right) + \left(\frac{0,03}{0,50}\right) + \left(\frac{0,003}{0,810}\right) + \left(\frac{0,025}{0,147}\right) + \left(\frac{1}{7,5}\right)\right]\left(\frac{1}{5,2\,m^2}\right)\frac{m^{2\,\circ}\mathcal{C}}{W}}$$

$$q_{P4} = 35,337 W$$

Figura 42. Vista seccional del piso - turco

Fuente: Autores

a) Circuito térmico equivalente de la pared


Figura 43. Circuito térmico del piso – turco

Fuente: Autores

$$\begin{split} q_x = & \frac{T_{\infty t} - T_{\infty}_{exterior}}{(\sum R_t) \left(\frac{1}{A_{piso}}\right)} \\ q_{piso} = & \frac{T_{\infty t} - T_{\infty}_{exterior}}{\left[\left(\frac{1}{h_{\infty,t}}\right) + \left(\frac{e_f}{\kappa_f}\right) + \left(\frac{e_g}{\kappa_g}\right) + \left(\frac{e_B}{\kappa_B}\right) + \left(\frac{1}{h_{\infty,exterior}}\right)\right] \left(\frac{1}{A_{piso}}\right)} \end{split}$$

Cálculo del área del piso

$$A_{"Piso"} = A1 + A2 (98)$$

$$A_{"Piso"} = 1,199 + 2,1567$$

$$A_{"Piso"} = 3,356 m^2$$

b) Temperaturas

Temperatura en el ambiente exterior:

$$T \infty$$
, exter = 12.2 °C

Temperatura en el turco:

T ,
$$t = 37^{\circ}C$$

c) Coeficientes convectivos

Coeficiente convectivo en el turco:

$$h , t = 1,5767 \frac{W}{m^2 {}^{\circ}\text{C}}$$

Coeficiente convectivo en el ambiente exterior (cerramiento complejo deportivo):

$$h_{\infty}, ext = 5.7 + 3.8 v \tag{99}$$

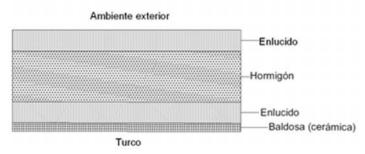
Donde:

 h_{∞}, ext = Coeficiente convectivo de ambientes externos, en $\frac{W}{m^2 {}^{\circ}\text{C}}$

 $v = Velocidad del aire local, en \frac{m}{s}$

$$v = 0 \frac{m}{s}$$

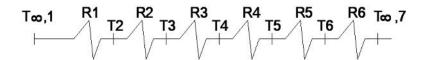
$$h_{\infty}, ext = 5.7 + 3.8 \left(0\frac{m}{s}\right)$$


$$h_{\infty}$$
, $ext = 5.7 \frac{W}{m^2 ^{\circ} \text{C}}$

$$q_{piso} = \frac{(37 - 12,2)^{\circ}C}{\left[\left(\frac{1}{1,5767}\right) + \left(\frac{0,003}{0.810}\right) + \left(\frac{0,25}{1,4}\right) + \left(\frac{0,03}{0.5}\right) + \left(\frac{1}{5,7}\right)\right]\left(\frac{1}{4,424m^{2}}\right)\frac{m^{2} \circ C}{W}}$$

$$q_{piso} = 79,11 \text{ W}$$

Pérdidas a través del techo


Figura 45. Vista seccional del techo - turco

Fuente: Autores

a) Circuito térmico equivalente del techo

Figura 46. Circuito térmico del techo – turco

Fuente: Autores

$$q_{x} = \frac{T_{\infty t} - T_{\infty} e_{xterna}}{(\sum R_{t}) \left(\frac{1}{A_{techo}}\right)}$$

$$q_{techo} = \frac{T_{\infty t} - T_{\infty} e_{xterna}}{\left[\left(\frac{1}{h_{\infty t}}\right) + \left(\frac{e_{A}}{K_{A}}\right) + \left(\frac{e_{B}}{K_{B}}\right) + \left(\frac{e_{B}}{K_{B}}\right) + \left(\frac{1}{h_{\infty}, externo}\right)\right] \left(\frac{1}{A_{techo}}\right)}$$

b) Cálculo del área del techo

$$A_{"techo"} = [axl] \tag{100}$$

$$A_{"techo"} = (2,37 m)(4 m)$$

$$A_{"techo"} = 9,48 m^2$$

c) Temperaturas

Temperatura en el ambiente externo (cuarto de espera):

$$T\infty$$
, externo = 24,8 °C

Temperatura en el turco:

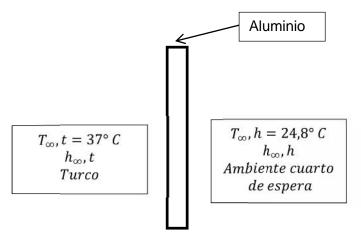
$$T\infty$$
, $t = 37^{\circ}C$

d) Coeficientes convectivos

Coeficiente convectivo en el turco:

$$h , t = 1,5767 \frac{W}{m^2 {}^{\circ}\text{C}}$$

Coeficiente convectivo en el cuarto de espera:


$$h$$
 , externo = 1,4034 $\frac{W}{m^2 \, ^{\circ} \text{C}}$

$$q_{techo} = \frac{(37 - 24,8)^{\circ}\mathcal{C}}{\left[\left(\frac{1}{1,5767}\right) + \left(\frac{0,003}{0,810}\right) + \left(\frac{0,03}{0,5}\right) + \left(\frac{0,25}{1,4}\right) + \left(\frac{0,03}{0,5}\right) + \left(\frac{1}{1,4034}\right)\right]\left(\frac{1}{9,48m^2}\right)\frac{m^{2\circ}\mathcal{C}}{W}}$$

$$q_{techo} = 70,13 W$$

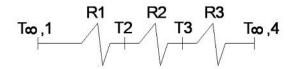

Pérdidas a través de la puerta de acceso al turco

Figura 47. Vista seccional puerta – turco

a) Circuito térmico equivalente de la pared

Figura 48. Circuito térmico puerta - turco

Fuente: Autores

$$q_x = \frac{T_{\infty t} - T_{\infty h}}{(R_t) \left(\frac{1}{A_{techo}}\right)}$$

$$q_{puerta} = \frac{T_{\infty t} - T \infty_h}{\left[\left(\frac{1}{h_{\infty,t}}\right) + \left(\frac{e_{Al}}{\kappa_{Al}}\right) + \left(\frac{1}{h_{\infty,h}}\right)\right]\left(\frac{1}{A_{puerta}}\right)}$$

b) Cálculo del área de la puerta de acceso

$$A_{"puerta"} = [(a)(h)] \tag{101}$$

 $A_{"puerta\ acceso"} = (1,90\ m)(0,90\ m)$

 $A_{\text{"puertaacceso"}} = 1,71 \, m^2$

c) Temperaturas

Temperatura en el ambiente del cuarto de espera. (Anexo K)

$$T\infty$$
, $h = 24.837$

Temperatura en el turco. (Anexo K)

$$T\infty$$
, $t = 37^{\circ}C$

d) Coeficientes convectivos

Coeficiente convectivo en el turco:

$$h , t = 1,5767 \frac{W}{m^2 \, ^{\circ} \text{C}}$$

Coeficiente convectivo en el cuarto de espera:

$$h\infty, h = 1,4034 \frac{W}{m^{2} ° C}$$

$$q_{puerta} = \frac{(37 - 24,837) ° C}{\left[\left(\frac{1}{1,5767}\right) + \left(\frac{0,006}{220,5}\right) + \left(\frac{1}{1,4034}\right)\right] \left(\frac{1}{1,71m^{2}}\right) \frac{m^{2} ° C}{W}}$$

$$q_{puerta} = 15,49 W$$

Carga térmica por los usuarios. (q_p) El libro de fisiología Médica "Guyton's", reporta que para producir un gramo de sudor, el cuerpo requiere 0,586kcal.Las glándulas sudoríparas pueden secretar hasta 30 gramos de sudor por minuto, es decir, casi medio litro por cada 15 minutos, por lo que la deshidratación es una posibilidad muy real, si no se tiene cuidado. El tiempo aproximado dentro del turco es de 20 minutos, pero para nuestro análisis se tomará de 1 hora, asumiendo que entran y salen 20 personas; por lo que el turco está diseñado para 20 usuarios.

Asumiendo que una persona pierde aproximadamente 25 g/min por sudor:

$$q_p = \left(25 \frac{g}{min}\right) \left(0,586 \frac{kcal}{g}\right) (60 min)$$

$$q_p = 879 kcal$$

 q_p = calor necesario para que suden los usuarios.

$$q_{usuarios} = (q_p)(N^{\underline{o}} \ deusuarios) \tag{102}$$

 $q_{usuarios} = (879 \, kcal)(20 \, personas)$

$$q_{usuarios} = (17580 \; kcal) \left(\frac{1 \; kW - h}{859 \; kcal}\right)$$

$$q_{usuarios} = 20,47 \, kW - h$$

$$q_{usuarios} = \frac{20,\!47\;kW-h}{1h}$$

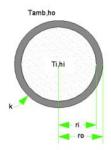
$$q_{usuarios} = 20,47 \, kW = 20465,66 \, W$$

3.2.7.4 Resumen de pérdidas de energía en el turco. La siguiente tabla muestra las pérdidas de calor en el turco y la carga térmica que produce los usuarios.

Tabla 45. Pérdidas de energía por transferencia de calor y carga térmica – turco

	Pérdidas	
	W	%
Pared p1	26.50	0.127
Pared p2	39.33	0.189
Pared p3	79.62	0.383
Pared p4	35.34	0.170
Techo	70.13	0.337
Piso	79.11	0.380
Puerta	15.49	0.074
Car. Personas	20465.66	98.340
Total[W]	20811.18	100
Total[Btu/h]	71010.67	,

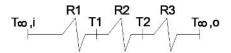
Fuente: Autores


 $Q_p = 20.811,18 W$

3.2.7.5 Pérdidas en las tuberías de vapor hacia el turco. Pérdida de calor en la tubería de hierro galvanizado.

Consideraciones:

- 1. El sistema opera a régimen permanente.
- 2. El flujo de calor es básicamente en dirección radial.


Figura 49. Vista seccional tubería de hierro galvanizado

Las pérdidas de vapor se evaluarán tomando en cuenta que el fluido es transportado una parte en tubería de hierro galvanizado.

a) Circuito térmico equivalente en la tubería de hierro galvanizado

Figura 50. Circuito térmico tubería hierro galvanizado

Fuente: Autores

b) Dimensión de la tubería de hierro galvanizado

 L_{HG} :Longitud de la tubería de hierro galvanizado= (2,77 + 4,56)m = 7,33m

c) Temperatura inicial y final

 $P_{Vapor} = 20 psiman$

$$P_{absvapor} = P_{Vapor} + P_{atm} (103)$$

 $P_{absvapor} = (25 + 10,42) psi$

 $P_{absvapor} = 35,42 \ psi$

$$T_{saturación} / P_{vapor(35,42 \ psi)} = 126,68$$

$$T_{\infty,i} = 126,68$$

T_{si}: Temperatura en la superficie interior de la tubería= 120

 T_{se} : Temperatura en la superficie externa de la tubería= 96

T_{amb}: Temperatura ambiente= 13,5

Diámetro de la tubería de hierro galvanizado.

 $\emptyset_{nominal} = 1 in$

 $\phi_{exterior} = 34,01 \, mm$

 $r_{exterior} = 17,01 \, mm$

 $\phi_{interior} = 26,28 \, mm$

 $r_{interior} = 13,14 \, mm$

d) Conductividad térmica de los materiales

 K_{HG} = Conductividad térmica del hierro galvanizado = 50 $\frac{V}{m^2}$

La pérdida de calor en la tubería de hierro galvanizado se calcula mediante la siguiente ecuación:

$$q_{TuboGalvanizado} = \frac{2\pi L_{HG}(T_{\infty,i} - T_{amb})}{\frac{1}{r_i h_i} + \frac{1}{\kappa_{HG}} ln\left(\frac{r_o}{r_i}\right) + \frac{1}{r_o h_o}}$$

Donde:

q_{Tubo Galvanizado} = Calor perdido en la tubería de hierro galvanizado, en W

L_{HG} =Longitud de la tubería de hierro galvanizado, en m

r_i =Radio interior de la tubería, en m

r_o =Radio exterior de la tubería, en m

 K_{HG} =Coeficiente de conductividad térmica del hierro galvanizado, en $\frac{V}{m^*C}$

 h_i =Coeficiente convectivo del vapor de agua dentro de un tubo, en $\frac{W}{m^{2\circ}C}$

 h_0 =Coeficiente de transferencia de calor por convección y radiación, en $\frac{W}{m^{2\circ}C}$

e) Evaluación de coeficientes convectivos

Las propiedades se evalúan a la temperatura fílmica:

$$Tf = \frac{T_w + T_b}{2}$$

 $T_b = Temperatura del fluido$

 $T_b = 126,68$

T_w = Temperatura superficial

 $T_w = 120$

Tf = Temperatura fílmica.

$$Tf = \frac{(126,68+120)}{2}$$

$$Tf = 123,34$$

$$Re = \frac{(\delta)(V_v)(\emptyset_{tuberia})}{\mu}$$

Donde:

Re = Número de Reynolds

 $= \text{Densidad del vapor , en } \tfrac{kg}{m^3}$

 $V_v = Velocidad del vapor, en \frac{m}{s}$

tubería = Diámetro interno de la tubería, en m

 $\mu = Viscosidad dinámica, en N \frac{s}{m^2}$

Propiedades del vapor saturado con $T_f = 123,34$, (Anexo N)

$$K_f = 0.02713 \frac{W}{m^{\circ}C}$$

$$\delta = 1.25 \frac{kg}{m^3}$$

$$\mu = 1.96 (10)^{-5} \frac{(N)(s)}{(m^2)}$$

$$P_r = 1,0073$$

$$V_v = 50 \overline{D}$$

 $V_v = \text{Velocidad del vapor, } en \frac{m}{s}$

D = Diámetro interno del tubo, en m

D = 0.02628 m

$$V_v = 50 \sqrt{0.02628}$$

$$V_v = 8,106 \frac{m}{s}$$

$$Re = \frac{\left(1,25\frac{kg}{m^3}\right)\left(8,11\frac{m}{s}\right)\left(0,02628\,m\right)}{1,96\,(10)^{-5}\frac{(N)(s)}{(m^2)}}$$

$$Re = 13592,53$$

Para el cálculo del coeficiente convectivo h_i se considera flujo turbulento dentro de una tubería rugosa, por lo que Petukhov y Popov recomiendan:

$$N_{u} = \frac{\binom{f}{8}RePr}{1,07+12.7\sqrt{f/8}(Pr^{2/3}-1)} = \frac{h_{C}\ell_{tuberia}}{K_{f}}$$
(104)

Donde:

N_u = Número de Nusselt.

 $R_e = N$ úmero de Reynold.

P_r = Número de Prandtl.

$$f = [1.82log_{10}(R_e) - 1.64]^{-2} (105)$$

f = Factor de fricción.

$$f = [1,82log_{10} [13592,53] - 1,64]^{-2}$$

$$f = 0,029$$

$$N_u = \frac{\left(\frac{0,029}{8}\right) (13592,53)(1,0073)}{1,07 + 12,7\sqrt{0,029}/8} ((1,0073)^{2/3} - 1)$$

$$N_u = 46,23$$

Por lo tanto el coeficiente convectivo en el interior de la tubería de hierro galvanizado que transporta vapor se evalúa con la ecuación:

$$h_i = \frac{N_u K_f}{tuberia} \tag{106}$$

Donde:

hi =Coeficiente convectivo en el interior de la tubería de hierro galvanizado, $en\frac{W}{m^2 \circ C}$

 K_f =Coeficiente de conductividad térmica del vapor, en $\frac{v}{m'}$

tubería = Diámetro interno de la tubería de hierro galvanizado, en m

N_u = Número de Nusselt

$$h_i = \frac{(46,23)(0,02713)\frac{W}{m^{\circ r}}}{0,02628 \, m}$$

$$h_i = 47,73 \frac{W}{m^2 \, ^{\circ} \text{C}}$$

De la misma manera el coeficiente de convección h_o , que compone la resistencia a la transferencia de calor de la superficie externa de la tubería al aire, es una combinación de dos mecanismos simultáneos, convección natural y radiación. Por lo que deben evaluarse separadamente y posteriormente sumarse.

$$h_o = hc + hrad \tag{107}$$

 $h_o =$ Coeficiente convectivo de la superficie externa de la tubería al aire, en $\frac{W}{m^2 {}^\circ C}$ hc = Coeficiente convectivo del ambiente externo del complejo, 13,794 $\frac{W}{m^2 {}^\circ C}$ hrad = Coeficiente convectivo debido a la radiación solar, $\frac{W}{m^2 {}^\circ C}$

$$h_{rad} = \frac{0.173 \, \varepsilon \left[\left(\frac{T_{se}}{100} \right)^4 - \left(\frac{T_{amb}}{100} \right)^4 \right]}{T_{se} - T_{amb}}$$

Donde:

 $h_{rad} = Coeficiente de radiación, en \frac{Btu}{hft^2 {}^\circ F}$

= Coeficiente de emisividad para la tubería de acero galvanizado = 0,28

T_{se}: Temperatura en la superficie externa de la tubería, en°R

Tamb: Temperatura ambiente, en°R

$$T_{se} = 96 \, ^{\circ}\text{C} = 664,49 \, ^{\circ}\text{R}$$

$$T_{amb} = 13.5 \text{ °C} = 515.99 \text{ °R}$$

$$h_{rad} = \frac{0,173 (0,28) \left[\left(\frac{664,29}{100} \right)^4 - \left(\frac{515,99}{100} \right)^4 \right]}{664,49 - 515,99}$$

$$h_{rad} = 0,4 \frac{Btu}{hft^{2\circ}F}$$

$$h_{rad} = 0,69 \frac{W}{m^{2\circ}C}$$

$$h_o = (13,794 + 0,69) \frac{W}{m^{2\circ}C}$$

$$h_o = 14,484 \frac{W}{m^{2\circ}C}$$

Flujo de calor perdido en la tubería de acero galvanizado:

$$q_{TuboGalvanizado} = \frac{2\pi L_{HG}(T_{\infty,i} - T_{amb})}{\frac{1}{r_i h_i} + \frac{1}{K_{HG}} ln\left(\frac{r_o}{r_i}\right) + \frac{1}{r_o h_o}}$$

$$q_{TuboGalvanizado} = \frac{2\pi (4,56)(126,68-13,5)}{\frac{1}{(0,01314)(47,73)} + \frac{1}{(50)}ln\left(\frac{0,017005}{0,01314}\right) + \frac{1}{(0,017005)(14,484)}}$$

 $q_{TuboGalvanizado} = 572,9558 W$

 $q_{TuboGalvanizado} = 0,573 kW$

 $q_{TuboGalvanizado} = 1955,005 \frac{Btu}{h}$

3.2.7.6 Calor requerido en el turco (Qrt). Para el calor requerido en el turco se debe considerar el calor necesario para calentar el aire en el interior del turco así como también reponer el calor que se pierde a través de las paredes del turco, por longitud de tubería y por la carga térmica de los usuarios.

$$Q_{rt} = q_S + Q_P + q_{TuboGalvanizado} (108)$$

Donde:

 q_s = Calor sensible para calentar el aire del turco= 77,754 $\frac{Btu}{h}$

 Q_P = Pérdidas de calor por transferencia de calor y carga termica = 71010,67 $\frac{Btu}{h}$

 $q_{Tubo\ Galvanizado}$ = Pérdidas de calor por L. tubería hacia el turco= 1955,005 $\frac{Btu}{h}$

$$Q_{rt} = (77,754 + 71010,67 + 1955,005) \frac{Btu}{h}$$

$$Q_{rt} = 73043,43 \frac{Btu}{h}$$

$$Q_{rt} = 21406,93 W$$

$$Q_{rt} = 21,407 \, kW$$

- **3.2.8** Sauna. El método de cálculo utilizado en la sauna es similar al del turco, cambiando nada más algunas variables físicas como temperatura (paredes, ambientes), humedad, las mismas que fueron tomadas en diferentes días, fechas y horario en el Complejo.
- **3.2.8.1** Condiciones requeridas. Se deben cumplir tres condiciones:

- Temperatura máxima= 28,5°C.
- El tiempo de calentamiento de la habitación lo da el demandante o dueño para el que estemos diseñando, como es nuestro caso de dos horas, tomando en cuenta si el tiempo de calentamiento del cuarto disminuye esto implicaría que requeriría de un equipo de mayor potencia, que a su vez sería mucho más costoso.
- Tiempo de calentamiento = 2 horas.

3.2.8.2 Cálculo del calor sensible

$$q_s = \frac{V\delta C p_{aire} \Delta T}{t}$$

Donde:

 $q_s = \text{Calor sensible, en } \frac{\text{Btu}}{h}$

 $V = Volumen del turco, en ft^3$

 $\delta =$ Densidad del aire, en lb/ft³

 $\mathcal{C}p_{aire} = ext{Calor específico del aire, } en rac{Btu}{lb^c F}$

 $T_1 = Temperaturainicial, en °F (Anexo O)$

T₂ =Temperatura final, en °F (anexo O)

t = Tiempo de calentamiento, en h

a) Cálculo de la densidad promedio. (VALENZUELA, 2003)

$$\delta = \frac{\delta_1 + \delta_2}{2}$$

Con la temperatura inicial y final seleccionamos la respectiva densidad.(Anexo N)

Con
$$T_1 = 24.6$$
°C = 297,75°K = 76,28°F selectionamos, $\delta_1 \approx 0.0515 \frac{lb}{ft^3}$
Con $T_2 = 28.5$ °C = 301,65°K = 83,3°F selectionamos, $\delta_1 \approx 0.0506 \frac{lb}{ft^3}$

$$\delta = \frac{(0,0515 + 0,0506) \frac{lb}{ft^3}}{2}$$
$$\delta = 0,05105 \frac{lb}{ft^3}$$

b) Cálculo del calor específico. (ZABALA, 2008)

$$Cp_{aire} = \frac{Cpaire_1 + Cpaire_2}{2}$$

Con
$$T_1 = 24.6$$
°C = 297,75°K = 76,28°F, selectionamos $Cp_{aire1} = 0,2404$ $\frac{Btu}{lb^\circ F}$

Co
$$T_2 = 28.5$$
°C = 301.65°K = 83.3°F, seleccionamos $Cp_{aire2} = 0.2404$ $\frac{Btu}{lb^\circ F}$

$$Cp_{aire} = \frac{(0.2404 + 0.2404)\frac{Btu}{lb^{\circ}F}}{2}$$

$$Cp_{aire} = 0.2404 \frac{Btu}{lb^{\circ}F}$$

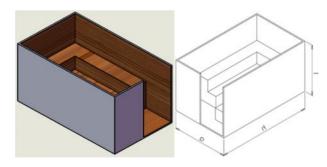
c) Cálculo de la variación de temperatura

$$\Delta T = (T_2 - T_1)$$

$$T_1 = 24.6^{\circ}C = 297.75^{\circ}K = 76.28^{\circ}F$$

$$T_2 = 28.5^{\circ}C = 301.65^{\circ}K = 83.3^{\circ}F$$

$$T = (83.3^{\circ}F - 76.28^{\circ}F)$$


$$T = 7.02 \, ^{\circ}F$$

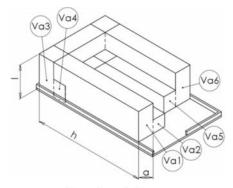
d) Tiempo de calentamiento

$$t = 2h$$

e) Cálculo del volumen de la habitación

Figura 51. Vista Isométrica del Sauna

$$V_h = V_1 = l * a * h ag{109}$$


$$V_1 = [(7,22)(7,77)(13,12)]ft^3$$

$$V_1 = 736,18 ft^3$$

$$V_h = 736,18 ft^3 = 20,86m^3$$

f) Cálculo del volumen que ocupan los asientos

Figura 52. Vista seccional de los asientos - sauna

$$V_a = Va_1 + Va_2 + Va_3 + Va_4 + Va_5 + Va_6 \tag{110}$$

$$Va_1 = [(2,95)(1,54)(10,50)]ft^3$$

$$Va_1 = 47.78 ft^3$$

$$V_{a2} = [(1,25)(1,44)(10,50)]ft^3$$

$$V_{a2} = 18,89 \, ft^3$$

$$V_{a3} = [(2,95)(1,54)(5,58)]ft^3$$

$$V_{a3} = 25,38 ft^3$$

$$V_{a4} = [(1,25)(1,44)(5,5)]ft^3$$

$$V_{a4} = 10,03 ft^3$$

$$V_{a5} \approx [(1,25)(1,44)(7,48)]ft^3$$

$$V_{a5} = 13,46 ft^3$$

$$V_{a6} = [(2,95)(1,54)(7,48)]ft^3$$

$$V_{a6} = 34,04 ft^3$$

$$V_a = (47.78 + 18.89 + 25.38 + 10.03 + 13.46 + 34.04) ft^3$$

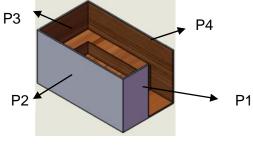
$$V_a = 149.58 \, ft^3 = 4.24 \, m^3$$

g) Cálculo del volumen de aire

$$V = V_h - V_a \tag{111}$$

$$V = (20.86 - 4.24)m^3$$

$$V = 16,618 \, m^3 = 586,60 \, ft^3$$


Reemplazando los datos tenemos:

$$Q_{s} = \frac{(586,60)ft^{3}(0,05105)\frac{lb}{ft^{3}}(0,2404)\frac{Btu}{lb^{\circ}F}(7,02)^{\circ}F}{2}$$

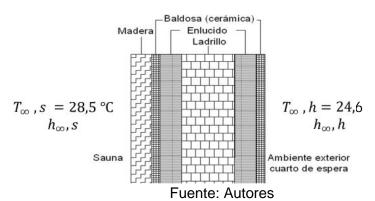
$$Q_s = 25,268 \frac{Btu}{h} = 7,405 W$$

Pérdidas de calor por conducción en las paredes, piso y techo. Los cuartos de la sauna tienen geometrías regulares en cuanto a sus secciones, una de ellas es como la que se representa en el esquema.

Figura 53. Distribución de paredes - sauna

Donde:

P1, P2, P3, P4; representan cada una de las diferentes secciones de la habitación del cuarto del sauna.


V, es la puerta de acceso.

Las temperaturas y humedades relativas de la sauna:

- Interiores
- Exteriores
- Paredes
- Techo
- Piso


Pérdidas por conducción en la pared "P1"

Figura 54. Vista seccional de pared 1 – sauna

a) Circuito equivalente de la pared

Figura 55. Circuito térmico pared 1 - sauna

b) Cálculo del área de la pared P1

$$A_{"P1"} = (a)(h) - Apuerta \tag{112}$$

$$A_{P1''} = (2,20 \, m)(2,37 \, m) - 1,67 m^2$$

$$A_{P1"} = (2,20 m)(2,37 m) - 1,71 m^2$$

$$A_{"P1"} = 3,504 \, m^2$$

c) Temperaturas (Anexo O)

Temperatura en el ambiente exterior

$$T\infty$$
, $h = 24.6 \,^{\circ}C$

Temperatura en el ambiente interior:

$$T\infty$$
, $t = 28.5^{\circ}C$

d) Espesor de los componentes pared

 e_A = Espesor de la madera = 0,0025 m

 $e_B = \text{Espesor de la cerámica} = 0$, 003 m

 $e_C = \text{Espesor del enlucido} = 0,03 \, m$

 $e_D = \text{Espesor del ladrillo} = 0.10 \, m$

 $e_E = \text{Espesor del enlucido} = 0$, 03 m

 e_F = Espesor de la cerámica = 0,003 m

e) Conductividad térmica de los materiales.

 K_A =Conductividad térmica de la madera (pino)=0,147 $\frac{W}{m^{\circ r}}$

 K_B =Conductividad térmica de la cerámica= 0,810 $\frac{W}{m^{\circ}r}$

 K_C =Conductividad térmica del enlucido= 0,50 $\frac{W}{m^{\circ}C}$

 K_D =Conductividad térmica del ladrillo= 0,72 $\frac{W}{m^{\circ}C}$

 K_E =Conductividad térmica del enlucido= 0,50 $\frac{W}{m^{\circ}c}$

 K_F =Conductividad térmica de la cerámica = 0,810 $\frac{W}{m^{\circ c}}$

f) Cálculo del ambiente convectivo h_{∞} , s, advacente a la pared P1

$$h_{\infty}, s = \frac{(N_u)(K_f)}{L_c}$$

 h_{\sim} , t =Coeficiente convectivo en el interior del sauna, en $\frac{W}{m^2 \circ c}$.

Nu= Número de Nusselt.

 $K_f = \text{Conductividad térmica del vapor, en } \frac{W}{m^{\circ c}}.$

Lc = Longitud característica, en m.

Consideraciones:

- Convección forzada en una placa y flujo laminar que se extiende sobre toda la longitud de la placa.
- 2. Las propiedades se determinan a Temperatura Fílmica.

$$Tf = \frac{T_w + T_b}{2}$$

$$Tb = \frac{T_1 + T_2}{2}$$

Donde:

 $T_1, T_2 =$ Temperatura del ambiente interior de la sauna.

 $T_1 = 28,5$

 $T_2 = 24.6$

 $T_w = \text{Temperatura superficial en la pared "P1", en}$.

$$T_{w} = 29$$

Tf = Temperatura fílmica.

$$Tb = \frac{(28.5 + 24.6)}{2}$$

$$Tb = 26,55$$

$$Tf = \frac{(29 + 26,55)}{2}$$

$$Tf = 27,775$$

$$Re = \frac{(\delta)(V_v)(L_c)}{\mu}$$

Donde:

Re = Número de Reynolds.

 $= \text{Densidad del vapor} \text{ , en } \frac{kg}{m^3}.$

 $V_v = \text{Velocidad del vapor , en } \frac{m}{s}$.

 L_c = Longitud característica (altura de la pared), en m.

 $\mu = \text{Viscosidad dinámica, en N} \frac{s}{m^2}.$

Propiedades del vapor saturado con $T_f = 27,775 = 300,925$ °K. (Anexo N)

$$\delta = 1.17 \frac{kg}{m^3}$$

$$\mu = 0,00001848 \, \frac{(N)(s)}{(m^2)}$$

$$C_p = 1,007 \; \frac{kJ}{kg^{\circ}K}$$

$$k_f = 0.02633 \frac{W}{m \, ^{\circ}\text{C}}$$

$$P_r = 0.707$$

$$V_v = 50 \overline{D}$$

 $V_v = \text{Velocidad del vapor, en} \frac{m}{s}$.

D = Diámetro interno del tubo, en m.

$$D = 0.02628 \, m = 1 \, \text{plg}$$

$$V_v = 50\sqrt{0.02628}$$

$$V_v = 8,106 \frac{m}{s}$$

$$Re = \frac{\left(1,17\frac{kg}{m^3}\right)\left(8,106\frac{m}{s}\right)(2,20 m)}{184,8 (10)^{-7}\frac{(N)(s)}{(m^2)}}$$

$$Re = 1,13 (10)^6$$

$$Nu = \frac{(h_{\infty,t})(L_c)}{K_f} = 0,662 (R_e)^{0.5} (P_r)^{\frac{1}{3}}$$

Donde:

Nu = Número de Nusselt.

 $h_{\infty,t} = \text{Coeficiente convectivo, en} \frac{W}{m^2 ^{\circ} \text{C}}.$

 L_c = Longitud característica, en m.

 $R_e = \text{Número de Reynolds}.$

 $P_r = \text{Número de Prandtl (Anexo N)}.$

$$L_c = 2,20 \, m$$

$$P_r = 0.707$$

$$k_f = 0.02633 \frac{W}{m \, ^{\circ}\text{C}}$$

$$Nu = \frac{(h_{\infty,t})(L_c)}{K_f} = 0,662 \, (Re)^{0.5} (Pr)^{\frac{1}{3}}$$

$$Nu = 0.662 [1.13 (10)^6]^{0.5} (0.707)^{\frac{1}{3}}$$

$$Nu = 626,627$$

$$h_{\infty}, s = \frac{(Nu)(Kf)}{Lc}$$

$$h_{\infty}, s = \frac{(626,627) \left(0,02633 \frac{w}{m^{\circ c}}\right)}{2,20 m}$$

$$h_{\infty}$$
, $s = 7.5 \frac{W}{m^2 \, ^{\circ} \text{C}}$

Coeficiente convectivo en el ambiente exterior (cuarto de espera):

$$h , h = \frac{(Nu)(K_{fa})}{(Lc)}$$

Donde:

 $h\sim$, h=Coeficiente convectivo en el ambiente exterior del turco, en $\frac{W}{m^2 \circ \mathbb{C}}$.

Nu= Número de Nusselt.

 K_{fa} =Conductividad térmica del aire, en $\frac{W}{m^{\circ c}}$

Lc = Longitud característica, en m = 2,20

Consideraciones:

- 1. Convección natural para una placa vertical considerando que la longitud característica L_c es igual a la altura de la placa.
- 2. Las propiedades se evalúan a la temperatura filmica.

$$Tf = \frac{T_w + T_b}{2}$$

$$Tb = \frac{T_1 + T_2}{2}$$

Donde:

 T_1 , T_2 = Temperatura del ambiente exterior al turco.

$$T_1 = 22,5$$

$$T_2 = 20.8$$

 T_w = Temperatura superficial en la pared "P1", en

$$T_{w} = 25$$

Tf = Temperatura fílmica.

$$Tb = \frac{(22.5 + 20.8)}{2}$$

$$Tb = 21,65$$

$$Tf = \frac{(21,65+25)}{2}$$

$$Tf = 23,33 = 296,48 \,^{\circ}K$$

$$Gr = \frac{gLc^3\beta \; (Tw - Tb)}{v^2}$$

Donde:

Gr = Grashof

 $L_c =$ Longitud característica, en m

 β =Coeficiente térmico de dilatación cúbica del fluido; "Si asumimos que el fluido se comporta como un gas ideal, la ecuación se reduce a la siguiente forma:

$$\beta = \frac{1}{T_f}$$

 $v = \text{Viscosidad cinemática, en } \frac{m^2}{s}.$

Con la temperatura Tf = 23,33 = 296,48 °K se seleccionan las propiedades termo físicas del aire (Anexo N).

$$\rho = 1,19068 \binom{kg}{m^3}$$

$$\mu = 184,01 (10)^{-7} \binom{Ns}{m^2}$$

$$v = 15,466 (10)^{-6} \binom{m^2}{s}$$

$$K_{fa} = 25,386 (10)^{-3} \binom{W}{m} ^{\circ}C$$

$$g = 9,8 \frac{m}{s^2}$$

$$P_r = 0,73$$

$$\beta = \frac{1}{T_{filmica}} = \frac{1}{296,48 ^{\circ}K} = 3,37 (10)^{-3} ^{\circ}K^{-1}$$

$$Gr = \frac{9,8 (2,20^3)[3,37 (10)^{-3}] (25 - 21,65)}{(15,466 (10)^{-6})^2}$$

$$Gr = 4,925 (10)^9$$

$$Ra = GrPr (113)$$

Donde:

Ra = Número de Rayleigh

Gr = Número de Grashof

Pr = Número de Prandlt

$$Ra = [4,925 (10)^{9}](0,73)$$

 $Ra = 3,595 (10)^{9}$

$$Nu = \left[0.825 + \frac{0.387 Ra^{1/6}}{\left[1 + \left(\frac{0.4929/16}{Pr}\right)\right]^{\frac{8}{27}}}\right]^{2}$$

Donde:

 $N_u = \text{Número de Nusselt.}$

 R_a = Número de Rayleigh.

 P_r = Número de Prandlt.

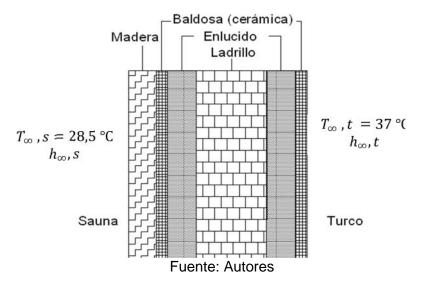
$$Nu = \left[0.825 + \frac{0.387 (3.595 (10)^9)^{1/6}}{\left[1 + (\frac{0.492^{9/16}}{0.73})\right]^{\frac{8}{27}}}\right]^2$$

$$N_u = 183,63$$

$$h , h = \frac{(183,63)(0,025386 \frac{W}{m \circ C})}{(2,20)}$$

$$h , h = 2,1189 \frac{W}{m^2 \, ^{\circ} \text{C}}$$

Flujo de calor por conducción a través de la pared "P1"


$$q_{\chi} = \frac{T_{\infty S} - T \infty_{h}}{\left[\left(\frac{1}{h_{\infty,S}}\right) + \left(\frac{e_{A}}{K_{A}}\right) + \left(\frac{e_{B}}{K_{B}}\right) + \left(\frac{e_{C}}{K_{C}}\right) + \left(\frac{e_{D}}{K_{D}}\right) + \left(\frac{e_{E}}{K_{E}}\right) + \left(\frac{e_{F}}{K_{F}}\right) + \left(\frac{1}{h_{\infty,h}}\right)\right]\left(\frac{1}{A_{P1}}\right)}$$

$$q_{P1} = \frac{(28,5 - 24,6)^{\circ}C}{\left[\left(\frac{1}{7,5}\right) + \left(\frac{0.0025}{0.147}\right) + \left(\frac{0.003}{0.810}\right) + \left(\frac{0.03}{0.50}\right) + \left(\frac{0.1}{0.72}\right) + \left(\frac{0.03}{0.50}\right) + \left(\frac{0.003}{0.810}\right) + \frac{1}{2.1189}\right]\left(\frac{1}{3.50m^{2}}\right) \frac{m^{2} \circ C}{W}}$$

$$q_{P1} = 13,12 W$$

Pérdidas por conducción en la pared "P4". Para el cálculo de las pérdidas de calor en esta pared hay que tomar en cuenta el ambiente convectivo y la temperatura del turco ya que comparte con la del sauna. (Anexo O)

Figura 56. Vista seccional de pared 4 – sauna

Circuito equivalente de la pared.

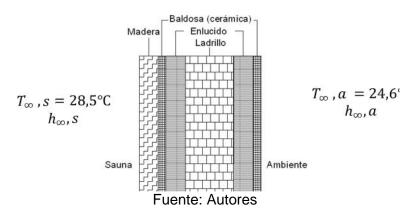
Figura 57. Circuito térmico pared 4 – sauna

R1 R2 R3 R4 R5 R6 R7 R8

T\omega,s T2 T3 T4 T5 T6 T7 T8 T\omega,t

Fuente: Autores

$$A_{p4} = (1,30m)(4m)$$


$$A_{p4} = 5.2 \, m^2$$

$$q_{p4} = \frac{(37 - 28,5)^{\circ}C}{\left[\left(\frac{1}{7,5}\right) + \left(\frac{0,0025}{0,147}\right) + \left(\frac{0,003}{0,810}\right) + \left(\frac{0,03}{0,50}\right) + \left(\frac{0,1}{0,72}\right) + \left(\frac{0,03}{0,50}\right) + \left(\frac{0,003}{0,810}\right) + \frac{1}{1,479}\right]\left(\frac{1}{5,2m^2}\right)\frac{m^{2\circ}C}{W}}$$

$$q_{p4} = 35,478 W$$

Pérdidas por conducción en la pared "P2" y "P3"

Figura 58. Vista seccional de pared 2, y 3.

Circuito equivalente de la pared

Figura 59. Circuito térmico pared 2 y 3

Pared "P2"

$$A_{p2} = (4 m)(1,30 m)$$

$$A_{p2} = 5.20 \, m^2$$

$$q_{p\,2} = \frac{(28,\!5-24,\!6)^\circ \mathcal{C}}{\left[\left(\frac{1}{7,\!5}\right) + \left(\frac{0,\!0325}{0,\!147}\right) + \left(\frac{0,\!003}{0,\!810}\right) + \left(\frac{0,\!03}{0,\!50}\right) + \left(\frac{0,\!1}{0,\!72}\right) + \left(\frac{0,\!03}{0,\!50}\right) + \left(\frac{0,\!003}{0,\!810}\right) + \frac{1}{2,\!1189}\right] \left(\frac{1}{5,\!20\,m^2}\right) \frac{m^2 \circ \mathcal{C}}{W}}$$

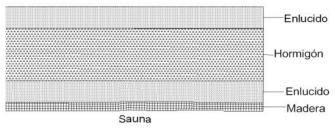
$$q_{P2} = 19,47 W$$

Pared "P3"

$$A_{p3} = (2,37 m)(1,30 m)$$

$$A_{p3} = 3.081 m^2$$

$$q_{p\,3} = \frac{(28,\!5-13,\!5)^{\circ}C}{\left[\left(\frac{1}{7,\!5}\right) + \left(\frac{0,\!3325}{0,147}\right) + \left(\frac{0,\!033}{0,\!810}\right) + \left(\frac{0,\!03}{0,\!50}\right) + \left(\frac{0,\!1}{0,\!72}\right) + \left(\frac{0,\!03}{0,\!50}\right) + \left(\frac{0,\!033}{0,\!810}\right) + \frac{1}{13,\!749}\right]\left(\frac{1}{3,\!081m^2}\right) \frac{m^2{}^{\circ}C}{W}}$$


$$q_{P3} = 79,888 W$$

Pérdidas por conducción en el techo

Figura 60. Vista seccional del techo

$$T_{\infty}$$
, $\alpha = 13.5$ °C h_{∞} , α Ambiente

Ambiente exterior

$$T_{\infty}$$
, $s = 28,5$ °C

 h_{∞} , s

Circuito equivalente del techo

Figura 61. Circuito térmico techo sauna

Fuente: Autores

Techo

$$A_{techo} = (4 m)(2,37 m)$$

$$A_{techo} = 9.48 \, m^2$$

$$q_{Ptecho} = \frac{(28,5 - 24,6)^{\circ}C}{\left[\left[\left(\frac{1}{7,5}\right) + \left(\frac{0,025}{0,147}\right) + \left(\frac{0,03}{0,50}\right) + \left(\frac{0,25}{1,4}\right) + \left(\frac{0,03}{0,50}\right) + \frac{1}{2,1189}\right]\left[\left(\frac{1}{9,48m^2}\right)\frac{m^{2\circ}C}{W}\right]}$$

$$q_{Ptecho} = 34,43 W$$

Pérdidas por conducción en el piso


Figura 62. Vista seccional del piso sauna

$$T_{\infty}$$
 , $s=28,5$ °C h_{∞} , s Sauna ——Madera ——Enlucido ——Hormigón ——Enlucido Ambiente T_{∞} , $p=12,2$ h_{∞} , p

Fuente: autores

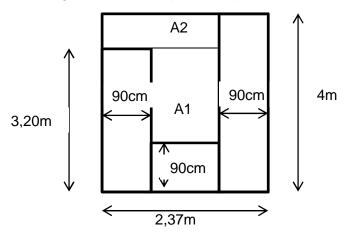

a) Circuito equivalente del piso

Figura 63. Circuito térmico piso sauna

b) Cálculo del área del piso

Figura 64. Vista superior del piso

Fuente: Autores

$$A_{"Piso"} = A1 + A2 \tag{114}$$

$$A_{"Piso"} = 1,311 + 1,176$$

$$A_{"Piso"} = 2,487 m^2$$

c) Temperaturas

Temperatura en el ambiente exterior:

$$T\infty$$
, exter = 12,2 °C

Temperatura en la sauna:

$$T\infty$$
, $t = 28.5°C$

d) Coeficientes convectivos

Coeficiente convectivo en la sauna:

$$h , t = 7.5 \frac{W}{m^2 ^{\circ} \text{C}}$$

Coeficiente convectivo en el ambiente exterior (cerramiento complejo deportivo):

$$h_{\infty}$$
, $ext = 5.7 + 3.8 v$ (115)

Donde:

 h_{∞} , ext = Coeficiente convectivo de ambientes externos, $en\frac{W}{m^2 {}^{\circ}\text{C}}$

 $v = \text{Velocidad del aire local}, en \frac{m}{s}$

$$v=0\frac{m}{s}$$

$$h_{\infty}, ext = 5.7 + 3.8 \left(0\frac{m}{s}\right)$$

$$h_{\infty}$$
, $ext = 5.7 \frac{W}{m^2 ^{\circ} \text{C}}$

Piso

$$q_{Ppiso} = \frac{(28,5-12,2)^{\circ}C}{\left[\left[\left(\frac{1}{7,5}\right) + \left(\frac{0,025}{0,147}\right) + \left(\frac{0,03}{0,5}\right) + \left(\frac{0,03}{1,4}\right) + \left(\frac{0,03}{0,5}\right) + \frac{1}{5,7}\right]\right]\left(\frac{1}{2,487~m^2}\right)\frac{m^{2\circ}C}{W}}$$

$$q_{Ppiso} = 56,22 W$$

Pérdidas por conducción en la puerta (madera)

Figura 65. Vista seccional de la puerta del sauna

$$T_{\infty}$$
 , $s=28.5$ °C h_{∞} , s $sauna$

 T_{∞} , $h=24,837^{\circ}\mathrm{C}$ h_{∞} , h Ambiente cuarto de espera

Circuito equivalente de la puerta

Figura 66. Circuito térmico piso sauna

Fuente: Autores

 e_v =Espesor de la madera= 0,05m

 K_A =Conductividad térmica de la madera (pino)= 0,147 $\left[\frac{W}{m^{\circ}C}\right]$

Puerta

$$\begin{split} A_{puerta} &= (1,9mx\ 0,9m) = 1,71m^2 \\ q_{Puerta} &= \frac{(28,5-24,837)^{\circ}C}{\left[\left[\left(\frac{1}{7,5}\right) + \left(\frac{0,05}{0,147}\right) + \frac{1}{2,1189}\right]\right]\left(\frac{1}{1,71\ m^2}\right)\frac{m^{2\circ}C}{W}} \end{split}$$

$$q_{Puerta} = 8,6 W$$

Carga térmica por los usuarios. El libro de fisiología Médica "Guyton's", reporta que para producir un gramo de sudor, el cuerpo requiere 0,586kcal.

Las saunas pueden usarse de manera segura en la moderación como una herramienta para bajar de peso. Una persona en una condición física promedio sudor de aproximadamente 500 gramos y gastar alrededor de 300 calorías durante una sesión de sauna de 20 minutos.

Haciendo la relación:

$$500 g \rightarrow 20 min$$

$$Xgr \rightarrow 1 min$$

Se pierde aproximadamente 25 gr/min por persona.

$$Q_p = \left(25 \frac{g}{min}\right) \left(0,586 \frac{kcal}{g}\right) (60 \, min)$$

$$Q_p = 879 \, kcal$$

$$Q_{usuarios} = (Q_p)(N^{\underline{o}} \ deusuarios) \tag{116}$$

 $Q_{usuarios} = (879 \, kcal)(20 \, personas)$

$$Q_{usuarios} = (17580 \ kcal) \left(\frac{1}{859} \frac{kW - h}{kcal} \right)$$

$$Q_{usuarios} = 20,46 \, kW - h$$

$$Q_{usuarios} = \frac{20,\!46}{1h} \frac{kW-h}{1h}$$

$$Q_{usuarios} = 20,46 \ kW$$

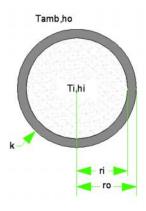
$$Q_{usuarios} = 20465,65 W$$

3.2.8.3 Resumen de pérdidas de energía en la sauna (Q_p) . En la siguiente tabla se muestra las pérdidas de calor en la sauna y la carga térmica que produce los usuarios.

Tabla 46. Pérdidas de energía por transferencia de calor y carga térmica – sauna

	Pérdidas	
	W	%
PARED P1	13,12	0,063
PARED P2	19,47	0,094
PARED P3	79,89	0,386
PARED P4	35,48	0,171
TECHO	34,43	0,166
PISO	56,22	0,271
PUERTA	8,60	0,042
CAR. PERSONAS	20465,66	98,807
TOTAL (W)	20712,86	100
Total(Btu/h)	70675,17	

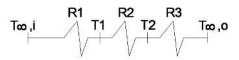
Fuente: Autores


$$Q_p = 20712,86 W$$

3.2.8.4 Calor disipado por la tubería del intercambiador en la sauna

Consideraciones:

- 1. El sistema opera a régimen permanente.
- 2. El flujo de calor es básicamente en dirección radial.


Figura 67. Vista seccional tubo cilíndrico sin aislamiento tubería de hierro galvanizado

Fuente: Autores

a) Circuito térmico equivalente en la tubería de hierro galvanizado

Figura 68. Circuito térmico de tubería de hierro galvanizado

Fuente: Autores

b) Dimensión de la tubería hierro galvanizado

 $L_{hierro\ galvanizado} = \text{Longitud tubos cortos} = 0.3\ m$

 $L_{hierro\ galvanizado} =$ Longitud tubos largos= 1,5 m

c) Temperaturas

$$P_{Vapor} = 25 psiman$$

$$P_{absvapor} = P_{Vapor} + P_{atm}$$

$$P_{absvapor} = (25 + 10,42)psi$$

$$P_{absvapor} = 35,42 psi$$

$$T_{saturación} / P_{vapor(35,42 \ psi)} = 126,68$$

$$T_{\infty,i} = 126,68$$

 T_{si} : Temperatura en la superficie interior de la tubería = 120

T_{se}: Temperatura en la superficie externa de la tubería = 68

T_{amb.Sauna}: Temperatura ambiente en la sauna= 28,5

d) Diámetro de la tubería de hierro galvanizado

 $\emptyset_{nominal} = 1 in$

 $\emptyset_{exterior} = 34,01 \, mm$

 $r_{exterior} = 17,01 \, mm$

 $\phi_{interior} = 26,28 \, mm$

 $r_{interior} = 13,14 \, mm$

e) Conductividad térmica de los materiales.

 K_{HG} = Conductividad térmica del hierro galvanizado = 50 $\frac{W}{m^{\circ}C}$

El calor disipado por el arreglo de tubos largos y cortos se evalúa mediante la siguiente ecuación:

$$q_{tubos} = \frac{2\pi L_{tubos}(T_{\infty,i} - T_{ambSauna})}{\frac{1}{r_i h_i} + \frac{1}{\kappa_{Cu}} ln\left(\frac{r_o}{r_i}\right) + \frac{1}{r_o h_o}}$$

Donde:

 q_{tubos} = Calor disipado por los tubos del intercambiador, en W

 $L_{Tubos} =$ Longitud de los tubos, en m

 $r_i = Radio interior de la tubería, en m$

 $r_o = \text{Radio exterior de la tubería, en m}$

 $K_{Cu} = ext{Coeficiente}$ de conductividad térmica del cobre, $en rac{W}{m^{\circ} ext{C}}$

 h_i = Coeficienteconvectivo del vapor de agua dentro de un tubo, $en\frac{W}{m^2 \circ C}$

 h_o =Coeficiente convectivo en el interior de la sauna, $en\frac{W}{m^2 \circ c}$

f) Evaluación de coeficientes convectivos

Las propiedades se evalúan a la temperatura fílmica:

$$Tf = \frac{T_w + T_b}{2}$$

Donde:

 $T_b = \text{Temperatura del vapor}$

 $T_b = 126,68$

 $T_w = \text{Temperatura superficial}$

 $T_w = 120$

Tf = Temperatura fílmica.

$$Tf = \frac{(120 + 126,68)}{2}$$
$$Tf = 123,34$$

$$Re = \frac{(\delta)(V_v)(\emptyset_{tuberia})}{\mu}$$

Donde:

Re = Número de Reynolds

 $\delta =$ Densidad del vapor, en $\frac{kg}{m^3}$

 $V_v = \text{Velocidad del vapor}$, en $\frac{m}{s}$

 $\phi_{tuberia} = D$ íametro interno de la tubería, en m

 $\mu = \text{Viscosidad dinámica, en N} \frac{\text{s}}{\text{m}^2}$

Propiedades del vapor saturado determinadas con $T_f = 123,34$ (Anexo N).

$$K_f = 0.02713 \frac{W}{m^{\circ}C}$$

$$\delta = 1.25 \frac{kg}{m^3}$$

$$\mu = 1.96 (10)^{-5} \frac{(N)(s)}{(m^2)}$$

$$P_r = 1,007344$$

$$V_v = 50 \overline{D}$$

 $V_v = \text{Velocidad del vapor, en } \frac{m}{s}$

D = Diámetro interno del tubo, en m

D = 0.02628 m

 $V_v = 50\sqrt{0.02628}$

 $V_{\nu} = 8.11 \frac{m}{s}$

$$Re = \frac{\left(1,25\frac{kg}{m^3}\right)\left(8,11\frac{m}{s}\right)\left(0,02628\,m\right)}{1,96\,(10)^{-5}\frac{(N)(s)}{(m^2)}}$$

Re = 13592,53

Para calcular el coeficiente convectivo h_i se considera flujo turbulento por Re > 2000 dentro de una tubería rugosa, por lo que Petukhov y Popov recomiendan:

$$N_{u} = \frac{\left(\frac{f}{8}\right) RePr}{1,07 + 12,7 \sqrt{f/8} (Pr^{2/3} - 1)} = \frac{h_{C}}{K_{f}} \frac{tubería}{K_{f}}$$

Donde:

 $N_u = N$ úmero de Nusselt

 $R_e = N$ úmero de Reynold

 $P_r = \text{Número de Prandtl}$

$$f = [1.82 \log_{10}(R_e) - 1.64]^{-2}$$
(117)

f = Factor de fricción

 $f = [1.82log_{10}[13592.53] - 1.64]^{-2}$

f = 0.0289

$$N_u = \frac{\binom{0.0289}{8}(13592,53)(1,0073)}{1,07 + 12,7\sqrt{0.0289/8}((1,0073)^{2/3} - 1)}$$

$$N_{y} = 45,91$$

Por lo tanto el coeficiente convectivo en el interior de la tubería de hierro galvanizado del intercambiador de calor de la sauna se evalúa con la ecuación:

$$h_i = \frac{N_u K_f}{tuberia}$$

Donde:

 $h_i = ext{Coeficiente convectivo en el interior de la tubería hierro galvanizado, } en rac{W}{m^2 {}^{\circ} ext{C}}$

 $K_f = \text{Coeficiente}$ de conductividad térmica del vapor, $en \frac{W}{m^2 \cdot C}$

 $\emptyset_{tuberia} = Diámetro interno de la tubería de hierro galvanizado, en m$

 $N_u = N$ úmero de Nusselt

$$h_i = \frac{(45,91)(0,02713)\frac{W}{m^{\circ c}}}{0,02628 \ m}$$

$$h_i = 47,39 \frac{W}{M^2 ^{\circ} \text{C}}$$

Para el cálculo del coeficiente convectivo en el ambiente dela sauna se tomará el mismo que ya fue evaluado; por lo tanto:

$$h_{sauna} = 7.5 \frac{W}{M^{2} ^{\circ} \text{C}}$$

El calor disipado por un tubo corto y largo del intercambiador de calor de la sauna es:

$$q_{tubos} = \frac{2\pi L_{tubos}(T_{\infty,i} - T_{amb.Sauna})}{\frac{1}{r_i h_i} + \frac{1}{\kappa_{HG}} ln\left(\frac{r_o}{r_i}\right) + \frac{1}{r_o h_o}}$$

$$q_{Tubocorto} = \frac{2\pi (0,30)(126,68-28,5)}{\frac{1}{(0,01314)(47,39)} + \frac{1}{(50)}ln\left(\frac{0,01701}{0,01314}\right) + \frac{1}{(0,01701)(7,5)}}$$

 $q_{Tubocorto} = 19,58 W$

$$q_{Tubolargo} = \frac{2\pi (1,50)(126,68 - 28,5)}{\frac{1}{(0,01314)(47,39)} + \frac{1}{(50)}ln\left(\frac{0,01701}{0,01314}\right) + \frac{1}{(0,01701)(7,5)}}$$

 $q_{Tubolargo} = 97,92 W$

Entonces como ya conocemos el calor disipado por un tubo tanto corto como largo y conociendo que el intercambiador tiene diez tubos respectivamente; se determina el calor total en cada uno de los tubos (largos y cortos).

$$q_{TotalTubocorto} = (N^{o}_{Tuboscortos})(q_{Tubocorto})$$
(118)

 $q_{TotalTubocorto} = (12)(19,58 W)$

 $q_{TotalTubocorto} = 234,96 W$

$$q_{TotaTubolargo} = (N^{o}_{Tuboslargos})(q_{Tubolargo})$$
 (119)

 $q_{TotaTubolargo} = (12)(97,92 W)$

 $q_{TotaTubolargo} = 1175,04 W$

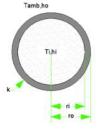
Finalmente el calor disipado por los tubos del intercambiador de calor en la sauna se calcula mediante la siguiente ecuación:

$$q_{Tubosinter cambiador} = q_{Total Tubocorto} + q_{Total Tubolargo}$$
 (120)

 $q_{Tubosinter cambiador} = (234,96 + 1175,04)W$

 $q_{Tubosintercambiador} = 1410 W$

 $q_{Tubosintercambiador} = 1,41 \, kW$


3.2.8.5 Pérdidas en las tuberías de vapor hacia la sauna

Pérdida de calor en la tubería de hierro galvanizado

Consideraciones:

- 1. El sistema opera a régimen permanente.
- 2. El flujo de calor es básicamente en dirección radial.

Figura 69. Vista seccional tubería de hierro galvanizado

Fuente: Autores

Las pérdidas de vapor se evaluarán tomando en cuenta que el fluido es transportado una parte en tubería de hierro galvanizado.

a) Circuito térmico equivalente en la tubería de hierro galvanizado

Figura 70. Circuito térmico tubería hierro galvanizado

Fuente: Autores

b) Dimensión de la tubería de hierro galvanizado

 L_{HG} : Longitud de la tubería de hierro galvanizado= (2,77)m

c) Temperatura inicial y final

$$P_{Vapor} = 25 psiman$$

$$P_{absvapor} = P_{Vapor} + P_{atm}$$

$$P_{absvapor} = (25 + 10,42)psi$$

$$P_{absvapor} = 35,42 psi$$

$$T_{saturación} / P_{vapor(35,42 \; psi)} = 126,68$$

$$T_{\infty,i} = 126,68$$

 T_{si} : Temperatura en la superficie interior de la tubería = 120

T_{se}: Temperatura en la superficie externa de la tubería = 96

 T_{amb} : Temperatura ambiente= 13,5

Diámetro de la tubería de hierro galvanizado.

 $\emptyset_{nominal} = 1 in$

 $\phi_{exterior} = 34,01 \, mm$

 $r_{exterior} = 17,01 \, mm$

 $\phi_{interior} = 26,28 mm$

 $r_{interior} = 13,14 \, mm$

d) Conductividad térmica de los materiales

 K_{HG} = Conductividad térmica del hierro galvanizado= 50 $\frac{W}{m^{\circ c}}$

La pérdida de calor en la tubería de hierro galvanizado se calcula mediante la siguiente ecuación:

$$q_{TuboGalvanizado} = \frac{2\pi L_{HG}(T_{\infty,i} - T_{amb})}{\frac{1}{r_i h_i} + \frac{1}{\kappa_{HG}} ln\left(\frac{r_o}{r_i}\right) + \frac{1}{r_o h_o}}$$

Donde:

 $q_{TuboGalvanizado}$ = Calor perdido en la tubería de hierro galvanizado, en W

 L_{HG} = Longitud de la tubería de hierro gaívanizado, en m

 r_i = Radio interior de la tubería, en m

 $r_o = \text{Radio exterior de la tubería, en m}$

 K_{HG} = Coeficiente de conductividad térmica del hierro galvanizado, en $\frac{V}{m^2L}$

 h_i = Coeficiente convectivo del vapor de agua dentro de un tubo, en $\frac{W}{m^2 \circ C}$

 $h_o = ext{Coeficiente}$ de transferencia de calor por convección y radiación, en $\frac{ ext{W}}{ ext{m}^2 \circ ext{C}}$

e) Evaluación de coeficientes convectivos

Las propiedades se evalúan a la temperatura filmica. (Anexo N)

$$Tf = \frac{T_w + T_b}{2}$$

 $T_b = \text{Temperatura del fluido}$

 $T_b = 126,68$

 $T_{\rm w} = \text{Temperatura superficial}$

 $T_{w} = 120$

Tf = Temperatura fílmica.

$$Tf = \frac{(126,68 + 120)}{2}$$

$$Tf = 123,34$$

$$Re = \frac{(\delta)(V_v)(\emptyset_{tuberia})}{\mu}$$

Donde:

Re = Número de Reynolds

 $\delta = \text{Densidad del vapor, en } \frac{\text{kg}}{\text{m}^3}$

 $V_v = \text{Velocidad del vapor, en } \frac{m}{s}$

 $\emptyset_{tuberia} = \mathsf{Diám}$ etro interno de la tubería, en m

 $\mu = \text{Viscosidad dinámica, en N} \frac{\text{s}}{\text{m}^2}$

Propiedades del vapor saturado con $T_f = 123,34$.

$$K_f = 0.02713 \frac{W}{m^{\circ} \text{C}}$$

$$\delta = 1.25 \frac{kg}{m^3}$$

$$\mu = 1.96 (10)^{-5} \frac{(N)(s)}{(m^2)}$$

$$P_r = 1,0073$$

$$V_v = 50 \overline{D}$$

 $V_v = \text{Velocidad del vapor, en} \frac{\text{m}}{\text{s}}$

D = Diámetro interno del tubo, en m

D = 0.02628 m

$$V_{\nu} = 50 \sqrt{0.02628}$$

$$V_v = 8,106 \frac{m}{s}$$

$$Re = \frac{\left(1,25\frac{kg}{m^3}\right)\left(8,11\frac{m}{s}\right)\left(0,02628\,m\right)}{1,96\,(10)^{-5}\frac{(N)(s)}{(m^2)}}$$

$$Re = 13592,53$$

Para el cálculo del coeficiente convectivo h_i se considera flujo turbulento dentro de una tubería rugosa, por lo que Petukhov y Popov recomiendan:

$$N_{u} = \frac{\binom{f}{8}RePr}{1,07 + 12,7\sqrt{f/8}(Pr^{2/3} - 1)} = \frac{h_{C} tubería}{K_{f}}$$

Donde:

 $N_u = N$ úmero de Nusselt

 $R_e = \text{Número de Reynold}$

 $P_r = \text{Número de Prandtl}$

$$f = [1.82log_{10}(R_e) - 1.64]^{-2}$$

f = Factor de fricción

$$f = [1.82log_{10}[13592.53] - 1.64]^{-2}$$

$$f = 0.029$$

$$N_u = \frac{\binom{0.029}{8}(13592,53)(1,0073)}{1,07 + 12,7\sqrt{0,029/8}((1,0073)^{2/3} - 1)}$$

$$N_u = 46,23$$

Por lo tanto el coeficiente convectivo en el interior de la tubería de hierro galvanizado que transporta vapor se evalúa con la ecuación:

$$h_i = \frac{N_u K_f}{tuberia}$$

Donde:

 h_i = Coeficiente convectivo en el interior de la tubería de hierro galvanizado , en $\frac{W}{m^2 c}$

 $\mathit{K_f} = \mathsf{Coeficiente}$ de conductividad térmica del vapor, $en\frac{\mathit{W}}{\mathit{m}^\circ\mathsf{C}}$

 $\emptyset_{tuberia} = Diámetro interno de la tubería de hierro galvanizado, en m$

 $N_u = N$ úmero de Nusselt

$$h_t = \frac{(46,23)(0,02713)\frac{W}{m^{\circ c}}}{0,02628 m}$$

$$h_i = 47.73 \frac{w}{m^2 \, ^{\circ} \text{C}}$$

De la misma manera el coeficiente de convección h_o que compone la resistencia a la transferencia de calor de la superficie externa de la tubería al aire, es una combinación de dos mecanismos simultáneos, convección natural y radiación. Por lo que deben evaluarse separadamente y posteriormente sumarse.

$$h_0 = hc + hrad \tag{121}$$

 $h_o =$ Coeficiente convectivo de la superficie externa de la tubería al aire, en $\frac{W}{m^2 \circ C}$ hc = Coeficiente convectivo del ambiente externo del complejo,13,794 $\frac{W}{m^2 \circ C}$ hrad = Coeficiente convectivo debido a la radiación solar, $\frac{W}{m^2 \circ C}$

$$h_{rad} = \frac{0.173 \,\varepsilon \left[\left(\frac{T_{se}}{100} \right)^4 - \left(\frac{T_{amb}}{100} \right)^4 \right]}{T_{se} - T_{amb}}$$

Donde:

 $\mathbf{h}_{\mathrm{rad}} = \mathsf{Coeficiente}$ de radiación, $en\frac{\mathit{Btu}}{\mathit{hft}^{2\circ}\mathsf{F}}$

 ε = Coeficiente de emisividad para la tubería de acero galvanizado= 0,28

T_{se}: Temperatura en la superfície externa de la tubería, en°R

 T_{amb} : Temperatura ambiente, $en^{\circ}R$

$$T_{se} = 96 \,^{\circ}C = 664,49 \,^{\circ}R$$

$$T_{amb} = 13.5 \, ^{\circ}C = 515,99 \, ^{\circ}R$$

$$h_{rad} = \frac{0,173 \left(0,28\right) \left[\left(\frac{664,29}{100}\right)^4 - \left(\frac{515,99}{100}\right)^4 \right]}{664,49 - 515,99}$$

$$h_{rad} = 0.4 \frac{Btu}{hft^{2} {}^{\circ}F}$$

$$h_{rad} = 0.69 \frac{W}{m^2 °C}$$

$$h_o = (13.794 + 0.69) \frac{W}{m^2 \, ^{\circ} \text{C}}$$

$$h_o = 14,484 \frac{W}{m^{2} ^{\circ} \text{C}}$$

Flujo de calor perdido en la tubería de acero galvanizado:

$$q_{TuboGalvanizado} = \frac{2\pi L_{HG}(T_{\infty,i} - T_{amb})}{\frac{1}{r_i h_i} + \frac{1}{\kappa_{HG}} ln\left(\frac{r_o}{r_i}\right) + \frac{1}{r_o h_o}}$$

$$q_{TuboGalvanizado} = \frac{2\pi (2,77)(126,68-13,5)}{\frac{1}{(0,01314)(47,73)} + \frac{1}{(50)}ln\left(\frac{0,017005}{0,01314}\right) + \frac{1}{(0,017005)(14,484)}}$$

 $q_{TuboGalvanizado} = 348,0455 W$

 $q_{TuboGalvanizado} = 0,348 \, kW$

$$q_{TuboGalvanizado} = 1187,425 \frac{Btu}{h}$$

3.2.8.6 Calor requerido en la sauna (Qrs). Para el calor requerido en el sauna se debe considerar el calor necesario para calentar el aire en el interior del sauna así como también reponer el calor que se pierde a través de las paredes del sauna, por longitud de tubería y por la carga térmica de los usuarios.

$$Q_{rs} = q_s + Q_P + q_{TuboGalvanizado} (122)$$

Donde:

 q_s = Calor sensible para calentar el aire de la sauna= 25,268 $\frac{Btu}{h}$

 $Q_P = \text{P\'erdidas de calor por muros y carga t\'ermica} = 70675,165 \frac{Btu}{h}$

 $q_{\text{Tubo}Galvanizado}$ = Pérdidas de calor por longitud de tubería = 1187,425 $\frac{Btu}{h}$

$$Q_{rs} = (25,268 + 70675,165 + 1187,425) \frac{Btu}{h}$$

$$Q_{rs} = 71890,858 \frac{Btu}{h}$$

$$Q_{rs} = 21069,14 W$$

$$Q_{rs} = 21,069 \, kW$$

3.2.9 Evaluación de la caldera

3.2.9.1 Potencia de la caldera (Pc). Para la potencia necesaria del equipo se debe considerar el calor requerido tanto en la piscina, en el turco y en la sauna.

$$P_{c} = Q_{rp} + Q_{rt} + Q_{rs} {123}$$

Donde:

 Q_{rp} = Calor requerido para la piscina= 98,559 kW

 Q_{rt} = Calor requerido para el turco= 21,407 kW

 Q_{rs} = Calor requerido para la sauna= 21,069 kW

$$P_c = Q_{rp} + Q_{rt} + Q_{rs}$$

 $P_c = (98,559 + 21,407 + 21,069)kW$

 $P_c = 141,035 \, kW$

Rendimiento del generador de vapor. Para el rendimiento del generador de vapor se empleará el método ASME, para medir la eficiencia de calderas:

Tabla 47. Método ASME, eficiencia para calderas

METODO	EFICIENCIA	ESPECIFICACIONES
DIRECTO	$n = \frac{Qu}{Qc} * 100$	Qu: Calor útil Qc: calor de combustión
INDIRECTO	$n = 100 - \sum Qp$	Qp: Calor perdido en gases de combustión, humedad en el combustible, formación de CO y por combustión de hidrogeno

Fuente: ASME, eficiencia para calderas

$$n = \left(\frac{Q_u}{Q_c}\right)(100) \tag{124}$$

n = Rendimiento de la caldera

 $Q_u = \text{Calor útil, } en^{\frac{kJ}{h}}$

 $Q_c = \text{Calor del combustible}, en \frac{kJ}{h}$

$$Q_u = \dot{D_v}(h_2 - h_1) \tag{125}$$

Donde:

 $\vec{D}_v = \text{Flujo másico del vapor, } en \frac{kg}{h}$

h₂ ≈ Entalpia del vapor, en kJ/kg, se encuentra con la presión absoluta de la caldera.

 h_1 = Entalpia del líquido sub-enfriado, kJ/kg, se encuentra con la presión de la caldera y con la temperatura del agua de suministro.

La densidad del agua de entrada se evalúa a la temperatura de 16

$$\delta_{H_2O} = 998,20 \frac{kg}{m^3}$$

$$Q_{sistema} = 0,24 \, m^3/h$$

$$h_2 = h_g = 1167,41 \, \frac{Btu}{lb} = 2713,53 \, \frac{kJ}{kg}$$

$$h_1 = h_f = 28,982 \frac{Btu}{lb} = 67,4 \frac{kJ}{kg}$$

3.2.9.2 Cálculo del flujo de vapor necesario para calentar la piscina, sauna y turco

 $Q_{sv}=$ Calor de suministro necesario para calentar la piscina, sauna y turco

$$Q_{sv} = \dot{m}_{sv}(h_2 - h_1) \tag{126}$$

$$\dot{m}_{sv} = Q_{sv}/(h_2 - h_1) \tag{127}$$

$$\dot{m}_{sv} = \frac{481231,16\frac{Btu}{h}}{1167,41 - 28,982} \frac{Btu}{h}$$

$$\dot{m}_{sv} = 422,72 \, lb/_h = 191,71 \, kg/_h$$

$$Q_u = \dot{D_v}(h_2 - h_1)$$

Donde:

$$\dot{m}_{SV} = \dot{D}_{V}$$

$$Q_u = \left(191,71\frac{kg}{h}\right)(2713,53 - 67,4)\frac{kJ}{kg}$$

$$Q_u = 507289,58 \frac{kJ}{h}$$

$$Q_c = \dot{m_c} * PCI$$

 $\vec{m_c}$ = Flujo másico de combustible, en $\frac{\text{kg}}{\text{h}}$

PCI =Poder calorífico inferior del combustible, en $\frac{kJ}{kg}$, (Anexo P)

El combustible que se utiliza es el diesel, el mismo que se consume alrededor de 4 GPH en un tiempo de cinco horas.

$$\begin{split} V_{combustible} &= 80 \ litros = 0,08 \ m^3 \\ PCI_{Diesel} &= 18397 \frac{Btu}{lb} = 42798,015 \frac{kJ}{kg}, \quad \text{(Anexo P)} \\ \delta_{Diesel} &= 837 \ \frac{kg}{m^3}, \quad \text{(Anexo P)} \end{split}$$

$$m_c = \left(837 \; \frac{kg}{m^3}\right) (0.08 \, m^3)$$

$$m_c = 66.96 \, kg$$

$$\dot{m_c} = \frac{66,96}{5} \frac{kg}{h}$$

$$\dot{m_c} = 13,392 \frac{kg}{h}$$

$$Q_c = \left(13,392 \frac{kg}{h}\right) \left(42798,015 \frac{kJ}{kg}\right)$$

$$Q_c = 573151,017 \frac{kJ}{h}$$

$$n = \left(\frac{Q_u}{Q_c}\right)(100)$$

$$n = \left(\frac{507289,58\frac{kJ}{h}}{573151,017\frac{kJ}{h}}\right)(100)$$

$$n = (0.885)(100)$$

$$n = 88,5\%$$

Potencia real de la caldera.

$$P_r = \frac{P_t}{n} \tag{128}$$

Donde:

 P_r = Potencia real, en kW

 $P_t =$ Potencia teórica, en kW

 $\eta = \text{Eficiencia}, \text{ en } 81,07\%$

$$P_r = \frac{141,035 \, kW}{0,885}$$

 $P_r = 159,36 \, kW$

$$P_r = 543764,03 \frac{Btu}{h}$$

Si:

1BHP = 33475
$$Btu/_{h}$$
 (129)

$$P_r = 543764,03 \frac{Btu}{h} \frac{1 BHP}{33475 \frac{Btu}{h}}$$

 $P_r = 16.2 BHP \approx 16 BHP$

3.2.9.3 Cálculo de la masa de vapor requerida para la piscina, sauna y turco

$$\dot{m}_{vapor} = \frac{P_r}{h_{fa}} \tag{130}$$

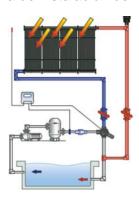
 $P_r \coloneqq$ Potencia real del generador de vapor , $\frac{Btu}{h}$

 h_{fg} =Calor latente o entalpia de evaporación, $en\frac{Btu}{lb}$

$$\dot{m}_{vapor} = \frac{543764,03}{1138,428} \frac{Btu}{lb} / h$$

$$\dot{m}_{vapor} = 477,64 \frac{lb}{h}$$

$$\dot{m}_{vapor} = 216,62 \frac{kg}{h}$$


CAPÍTULO IV

4. IDENTIFICAR LAS POSIBLES OPORTUNIDADES DE AHORRO ENERGÉTICO.

4.1 Paneles solares

Son dispositivos que aprovechan la energía de la radiación solar, el término comprende a los colectores solares utilizados para producir agua caliente mediante energía solar térmica, son de fabricación israelita su dimensión es de 3,85m², fabricados enteramente de plástico polipropileno para una sencilla conexión entre los paneles y tuberías estándar tiene un proceso de inyección único que conecta los tubos verticales al colector para crear un panel que es literalmente una pieza única de plástico, minimiza los efectos del viento sobre el panel y crea una extraordinaria estabilidad mecánica evita la distorsión debido a la expansión térmica del panel.

Figura 71. Diagrama de instalación de los paneles solares

Fuente: Catálogo MAGEN ECO_ENERGY, Heliocol Colector Solar

Cálculo del número de paneles solares necesarios para satisfacer los requerimientos de la piscina:

La piscina tiene los siguientes requerimientos:

T = 26.53 3

Número de usuarios = 20 personas

 $V = 129.34m^3$

a) Recurso energético disponible

EL recurso energético disponible está dado por la radiación solar existente en nuestro país en este caso se tomó datos proporcionados por el CONELEC.

Tabla 48. Radiación solar en el Ecuador

Mes	Radiación	Radiación
IVIES	Wh/m²	MJ/m ²
Enero	4411,18	15,8
Febrero	4480,31	16,1
Marzo	4655,19	16,7
Abril	4360,20	15,7
Mayo	4276,06	15,4
Junio	4140,13	14,9
Julio	4308,48	15,5
Agosto	4624,62	16,6
Septiembre	4974,44	17,9
Octubre	4888,34	17,6
Noviembre	4943,48	17,8
Diciembre	4837,51	17,4
Promedio	4574,99	16,45

Fuente: CONELEC, atlas solar con fines de generación eléctrica, Agosto 2008

b) Calor requerido para el calentamiento del agua de la piscina

La demanda energética para calentar el agua de la piscina se determinó anteriormente.

$$Q_{rp} = 98,56 \text{ kW} = 336,52 Btu/h$$

Para satisfacer la demanda energética de la piscina, será necesario un tiempo de cinco horas para compensar las pérdidas de calor y el calor necesario para calentar el agua de la piscina.

Número de paneles solares método demanda energética:

$$N_c = \frac{\mathrm{Qd}}{\mathrm{Qu}} \tag{131}$$

N_c: Número de captadores solares.

Qd: Demanda energética.

Qu: Calor útil de un solo colector.

Para obtener la demanda energética se obtendrá de acuerdo al calor requerido para la piscina.

$$Qd = Qrp 5h$$

$$Qd = 98,56kW 5h$$

$$Qd = 492,8 \, kW. \, h$$

Para el calor útil de un colector solar se determina por:

$$Qu = S * n * Ac$$

S: Radiación media anual.

n: Rendimiento del colector. (Anexo Q)

Ac: Área del colector. (Anexo Q)

$$Qu = 4574,99 \frac{W \cdot h}{m^2} * 0,80 \quad 3,85m^2$$

$$Qu = 14090,97W \cdot h = 14,09kW \cdot h$$

Por lo tanto el número de colectores solares es:

$$N_c = \frac{492,8 \text{kW.h}}{14,09 \text{kW.h}}$$

$$N_c = 35$$

El precio de cada panel solar Heliocol (3.20mx1.20m) de 3.8m², es \$ 228,88(Anexo R) la inversión será igual al costo de cada panel solar multiplicado por el número de paneles solares.

$$costo = N_c * $228,88$$

c) Consumo de combustible para calentar el agua de la piscina

$$n = \frac{Q_c}{Q_{comb}} \tag{132}$$

$$\dot{m}_{comb} = \frac{\varrho_c}{n \cdot PC} \tag{133}$$

Donde:

 \dot{m}_{comt} = Masa de combustible, en $\frac{kg}{h}$

n = Eficiencia del equipo calentador, en %

 Q_c = Calor requerido para calentar el agua, en $\frac{kJ}{s}$

PC = Poder calorífico del combustible, en $\frac{kJ}{ka}$

$$\dot{m}_{comt} = \frac{98,559\frac{J}{s} * \frac{3600s}{1h}}{0,8 \quad 46294,04\frac{kJ}{kg}}$$

$$\dot{m}_{comb} = 9.58 \frac{kg}{h}$$

$$\dot{m}_{comb} = 21.12 \frac{lb}{h}$$

El volumen de combustible:

$$V_c = \frac{\mathsf{m}_{comb}}{\mathsf{comb}}$$

$$V_c = \frac{21.12 \frac{\text{lb}}{\text{h}}}{7.044 \frac{\text{lb}}{\text{gal}}}$$

$$V_c = 2.99 \frac{\text{gal}}{\text{h}}$$

Se necesitaría 2,99gal/h para calentar el agua de la piscina.

4.2 Sistema híbrido para calentar el agua de la piscina

En un sistema híbrido de calefacción de agua al utilizar colectores solares disminuimos en parte la contaminación ambiental.

Requerimientos:

Tabla 49. Requerimientos de la piscina

Volumen del vaso	129,34	m³
Tasa de calentamiento	1,2	°F/h
Tiempo de calentamiento	5	h
Temperatura ambiente	13	°C
Temperatura final	26,53	°C

Fuente: Autores

Los resultados obtenidos para un solo sistema de calentamiento de agua anteriormente analizados son los siguientes.

Tabla 50. Requerimientos del equipo calefactor de la piscina

Caudal de recirculación	19,12 m³/h
Calor requerido para la piscina	336300,52 Btu/h
Eficiencia del equipo	0,8
Número de equipos	1 de 502125 Btu/h

Fuente: Autores

a) Análisis para la selección del número de paneles solares

Se recomienda que el 30%, del calor total sea calentado con energía solar y el 70% con un sistema tradicional.

Qc = calor total a calentar por los paneles solares.

$$Q_c = \frac{492,8 \text{kW.h}}{100\%}$$

$$Q_c = 147,84 \text{kW.h}$$

El 30% equivale a 147,84kW. h vamos a calentar con energía solar.

Utilizando el procedimiento de la ecuación.

$$N_c = \frac{\mathrm{Qd}}{\mathrm{Qu}}$$

Número de paneles solares:

$$N_c = \frac{147,84 \text{kW.h}}{14,09 \text{kW.h}}$$

$$N_c = 11$$

Si el precio de cada panel solar es aproximadamente \$ 228,88(Anexo R), la inversión será igual al costo de cada panel solar multiplicado por el número de paneles solares.

$$costo = N_p * $228,88$$

 $costo = 11 * 228,88 = $2517,68$

b) Ahorro de combustible utilizando un sistema híbrido

$$n = \frac{Q_c}{Q_{comb}} \tag{134}$$

$$\dot{m}_{comb} = \frac{Q_c}{n^* PC} \tag{135}$$

Donde:

 \dot{m}_{comb} = Flujode combustible, en $\frac{lb}{h}$

n = Eficiencia del equipo calentador, en %

 $Q_c=$ Calor requerido para calentar el agua, en $\frac{Btu}{h}$

PC = Poder calorífico del combustible, en $\frac{Btu}{lb}$

$$\dot{m}_{comb} = \frac{100896,98 \frac{\text{Btu}}{h}}{0.8 \quad 18397,8 \frac{\text{Btu}}{lh}}$$

$$\dot{m}_{comt} = 6.86 \frac{lb}{h}$$

El volumen de combustible:

$$V_c = \frac{m_{comb}}{comb}$$

$$V_c = \frac{6.86 \frac{lb}{h}}{7.04 \frac{lb}{gal}}$$

$$V_c = 0.97 \frac{gal}{h}$$

Será producirá en ahorro de 0,97gal/h, por lo tanto el combustible necesario para calentar el agua de la piscina es de 2,02 gal/h, utilizando el sistema híbrido.

Resumen del consumo de combustible para el calentamiento del agua de la piscina.

Tabla 51. Resumen del consumo de combustible

Variables	Consumo (gal/h)
Sistema actual.	2,99
Sistema híbrido.	2,02
Ahorro	0,97

Fuente: Autores

4.3 Manta térmica

Para la selección de la manta térmica se debe conocer el área de la piscina.

$$A_{piscina}=103,47\,m^2$$

Con esta área se propone una manta térmica de burbujas de polietileno:

Figura 72. Manta térmica de polietileno con orillo cosido para cubrir la piscina

Fuente: www.ingerclima.com/manta-térmica-burbuja-piscinas/2-14-10-14.htm

Es la más popular y económica de todas. Consiste en una superficie plástica con burbujas de aire (como el plástico de embalar) con un enrollador manual. Su montaje es sumamente sencillo y para ponerlo, tan solo hay que tirar del extremo de la manta desenrollándolo sobre la lámina de agua de la piscina. Para recogerlo utilizamos una manivela que se encuentra en el enrollador. (INGERCLIMA)

Ventajas de la manta térmica.

- Ayuda a conservar y eleva la temperatura del agua.
- Evita la evaporación, ahorrando grandes cantidades de agua.
- Económica.
- Reduce la suciedad en la piscina reduciendo el aditivo de productos químicos.
- **4.3.1** Tipo de cubierta y orillo cosido. El tipo de manta térmica que desee y si desea orillo cosido, esto se aconseja como mínimo en el lado donde va instalado el enrollador y al lado contrario, es decir, desde donde tiramos para instalar la cubierta térmica.

Tabla 52. Tipos de mantas para piscinas marca Ingerclima

Tipo	Grosor	PVP €/m2	Orillo cosido Lateral €/m lineal
Espuma	500 gr/m2	20,57	6.9 (solo en tramos rectos)
Solar reforzada	520 gr/m2 reforzada	9.1	3.75
Solar sin reforzar	520 gr/m2 sin reforzar	8	3.75
Solar basica	380 gr	6.37	3.75

Fuente: INGERCLIMA, climatización de piscinas

Para nuestro caso escogemos una Manta Solar Básica por ser la más económica; por lo tanto el precio de la manta con el orillo cosido se detalla en la tabla.

Tabla 53. Costo de la manta térmica en euros

Área	Perímetro	Manta térmica	
Piscina	Piscina	Solar Básica	Orillo cosido
m²	m	EUROS	EUROS
103,47	37	659,1	138,75
PRECIC	TOTAL	797,85	

Fuente: INGERCLIMA, climatización de piscinas

Por lo tanto la manta térmica para la piscina del complejo deportivo "Vulcano Green" tiene un costo de 797,85 euros (\$ 997,31), referencia al mes de diciembre del 2013.

4.3.2 Enrollador para la piscina. El complemento ideal para todas las mantas de burbujas es su enrollador manual. Con él, podemos extender y recoger la manta térmica muy fácilmente y en tan solo unos segundos.

Características del enrollador.

- Enrollador para cubiertas solares y térmicas.
- Soportes de acero inoxidable. Altura 500mm
- Eje telescópico de aluminio anodizado.
- Manivela de arrastre y freno de seguridad en ambos lados.
- Tiras de fijación a la cubierta incluidas.
- Ruedas, para facilitar el movimiento.

Figura 73. Enrolladora manta térmica piscina

Fuente: INGERCLIMA, climatización de piscinas

La elección del enrollador va en función de la medida de la piscina, la tabla indica los diferentes modelos y precios de los enrolladores para mantas térmicas para piscinas:

Tabla 54. Modelos y precios de enrolladores para mantas térmicas

Modelo	Aconsejado	Medidas	Diametro del eje	Ruedas	PVP €
Basic	Hasta piscinas de 7,5x3,5m	4 - 5,5m	75mm	Si	195
Plus	Hasta piscinas de 10x5m	4 - 4,5m	100mm	Si	350
Plus +	Piscinas de medidas superiores	5.5-7,25 m	100mm	Si	395

Fuente: INGERCLIMA, climatización de piscinas

En nuestro caso se selecciona una enrolladora marca Plus+ debido a que satisface las necesidades para nuestro sistema; cuyo precio es de 395 euros (\$493,75) referencia al mes de diciembre del año 2013.

4.4 Ahorro de combustible utilizando la manta térmica

Las piletas cubiertas no están afectadas por el clima, aunque también pierden una gran cantidad de energía por la evaporación, las mantas térmicas minimizan la evaporación.

Cubrir la pileta cuando no se utiliza es la manera más efectiva de reducir los costos de climatización de la misma. Es posible ahorrar entre el 50 al 70% del costo de climatización.

a) Pérdidas de energía sin la utilización de la manta térmica:

Las pérdidas sin la utilización de la manta térmica refiérase a la sección 3.2.3:

 Q_r =Total de pérdidas generadas en la piscina= 36274,07 W

Calor requerido en la piscina (Q_{rp}), tomado de la sección 3.2.5:

$$Q_{rp} = P_o + Q_r \tag{136}$$

Donde:

P_o =Calor necesario para calentar el agua de la piscina= 62285,24 W

 Q_r =Total de pérdidas generadas en la piscina= 36274,07 W

$$Q_{rp} = 62285,24 W + 36274,07 W$$

$$Q_{rp} = 98559,31 W$$

$$Q_{rp} = 98,559 \, kW = 336297,11 \, \frac{Btu}{h}$$

Cálculo de la masa de vapor requerida para la piscina.

$$\dot{m}_{vapor} = \frac{q_{rp}}{h_{fg}} \tag{137}$$

Donde:

 Q_{rp} =Calor requerido para la piscina, $\frac{Btu}{h}$ h_{fg} =Calor latente o entalpia de evaporación, en $\frac{Btu}{lb}$

$$\dot{m}_{vapor} = \frac{336\ 297,11\ ^{Btu}/_{h}}{1138,428\ ^{Btu}_{lb}}$$
 $\dot{m}_{vapor} = 295,405\frac{lb}{h}$
 $\dot{m}_{vapor} = 133,97\frac{kg}{h}$

Cálculo del flujo de combustible:

$$Q_{comt} = \dot{m}_{comt} \qquad h = Q_{rp} \tag{138}$$

$$\dot{m}_{comb} = \frac{\dot{n}_{sv} * h_{fg}}{^{h}h} \tag{139}$$

El poder calorífico del diesel es: (GARCIA L, 2001)

$$\begin{split} &\Delta_h = 10221 \, \frac{kcal}{kg} = 18397.8 \, \frac{Btu}{lb} \\ &\dot{m}_{comt} = \frac{295.405 \, \frac{lb}{h} * 1138.428 \, \frac{Btu}{lb}}{18397.8 \, \frac{Btu}{lb}} \\ &\dot{m}_{comt} = 18.28 \, \frac{lb}{h} \end{split}$$

Cálculo del flujo másico del combustible:

$$ho_{diesel} = 837 \; {}^{kg}/{}_{m^3} = 7,044 \; {}^{lb}/{}_{aal}, \; ({\sf GARCIA\,L}, \, 2001)$$

$$\dot{V}_{rp} = \frac{\dot{m}}{\rho} \tag{140}$$

$$\dot{V}_{rp} = \frac{18,28 \, lb/h}{7,044 \, lb/gal} = 2,595 \frac{gal}{h}$$

b) Pérdidas de energía utilizando la manta térmica

Para el análisis de la manta térmica se toma el 60% de las pérdidas de evaporación actual, en base a los fabricantes de mantas térmicas.

Las pérdidas por evaporación es: 29 821,29 W

El 60% es: 17 892,774 W

Pérdidas utilizando la manta térmica:

Tabla 55. Pérdidas utilizando la manta térmica

	Totales [W]	%
P. evaporación	17892,774	73,49
P. radiación	2647,26	10,87
P. convección	130,40	0,55
P. renovación	3280,42	13,47
P. conducción	394,69	1,62
Total[w]	24 345,274	100
Total[Btu/h]	83069,48	

Fuente: Autores

Calor requerido en la piscina (Q_{rp}) con la utilización de la manta térmica:

$$Q_{rp} = P_o + Q_r$$

Dónde:

P_o =Calor necesario para calentar el agua de la piscina= 62285,24 W

 Q_r =Total de pérdidas generadas en la piscina= 24345,274 W

 $Q_{rp} = 62\ 285,24\ W + 24\ 345,274\ W$

 $Q_{rp} = 86630,514 W$

 $Q_{rp} = 86,63 \, kW = 295 \, 595,442 \frac{Btu}{h}$

Cálculo de la masa de vapor requerida para la piscina

$$\dot{m}_{vapor} = \frac{Q_{rp}}{h_{fg}}$$

Donde:

 $Q_{rp} = \text{Calor requerido para la piscina, } \frac{Btu}{h}$

 h_{fg} =Calor latente o entalpia de evaporación, en $\frac{Btu}{lb}$

$$\dot{m}_{vapor} = \frac{295\,595,442 \frac{Btu}{h}}{1138,428 \frac{Btu}{lh}}$$

$$\dot{m}_{vapor} = 259,65 \frac{lb}{h}$$

$$\dot{m}_{vapor} = 117,76 \frac{kg}{h}$$

Cálculo del flujo de combustible:

$$Q_{comb} = \dot{m}_{comb} * lh = Q_{rp}$$

$$\dot{m}_{comt} = \frac{\dot{m}_{sv} * h_{fg}}{^{\wedge}h}$$

El poder calorífico del diesel es: (GARCIA L, 2001)

$$_{h}$$
 = 10221 $^{kcal}/_{kg}$ = 18397,8 $^{Btu}/_{lb}$

$$\dot{m}_{comt} = \frac{259,65}{18397,8} \frac{lb/_h * 1138,428}{Btu/_{lb}} \frac{btu}{lb}$$

$$\dot{m}_{comt} = 16,067 \frac{lb}{h}$$

Cálculo del flujo másico del combustible:

$$\begin{split} & \rho_{diesel} = 837 \ ^{kg}/_{m^3} = 7,044 \ ^{lb}/_{gal}, \, (\text{GARCIA L, 2001}) \\ & \dot{V}_{rp} = \frac{\dot{m}}{\rho} \\ & \dot{V}_{rp} = \frac{16,067 \ ^{lb}/_{h}}{7,044 \ ^{lb}/_{gal}} = 2,281 \frac{gal}{h} \end{split}$$

Resumen del consumo de combustible para el calentamiento del agua de la piscina:

Tabla 56. Resumen del consumo de combustible

Variables	Consumo (gal/h)
Sin manta térmica	2,595
Con manta térmica	2,281
Ahorro	0,314

Fuente: Autores

Resumen del consumo de combustible utilizando paneles solares y con la manta térmica.

Ahorro de combustible total (A_{CT}) = Ahorro manta térmica + Ahorro paneles solares

$$A_{CT} = 0.314 + 0.97 \text{ gal/h}$$

$$A_{CT} = 1,284 \text{gal/h}$$

Tabla 57. Resumen del consumo de combustible total

Variables	Consumo (gal/h)
Sistema actual	4,2
Sistema nuevo	2,92
Ahorro	1,28

Fuente: Autores

Siendo el consumo de combustible de 2,92gal/h para calentar la piscina.

4.5 Tanque de combustible

Figura 74. Condiciones actuales del tanque de combustible

Fuente: autores

4.5.1 Cálculo de la capacidad del tanque de combustible. El sistema de combustible consta de dos tanques. El primero que es el de servicio diario, sirve para almacenar el combustible unos pocos días y es de donde se alimenta directamente la caldera. El segundo que es el de reserva, y sirve para satisfacer la demanda de combustible por un tiempo más largo y evitar los desabastecimientos en épocas de escases.

Los tanques que se emplean para almacenar combustibles pueden ser clasificados según su forma en cilindros verticales, cilindros horizontales y rectangulares. Según su ubicación se pueden clasificar en dos categorías, tanques subterráneos y tanques sobre el piso. Es importante mencionar que en este proyecto los tanques serán construidos en acero ASTM A36.

4.5.2 Dimensionamiento del tanque de servicio diario. Para dimensionar el tanque de servicio diario se debe considerar que este almacenará suficiente combustible para tres días laborables, cada día con 5 horas de operación. El siguiente cálculo sirve para determinar la capacidad de este tanque.

$$3 días * \frac{5 horas}{1 día} * \frac{4,2 gal}{1 hora} = 63,5 gal$$

Como se puede apreciar el tanque de servicio diario debe tener una capacidad aproximada de 80 gal., con un factor de seguridad del 25%.

4.5.3 Dimensionamiento del tanque de reserva. Para dimensionar el tanque de reserva se debe considerar que este almacenará suficiente combustible para 12 días laborables, cada día con 5 horas de operación. El siguiente cálculo sirve para determinar la capacidad de este tanque.

$$12 días * \frac{5 horas}{1 día} * \frac{4,2 gal}{hora} = 252 gal$$

Por lo tanto se necesita un tanque de 315 gal o 1,19 m³., con un factor de seguridad del 25%.

Basándose en la tesis "Selección De Equipos Y Diseño Del Sistema Para Calentamiento De Agua En Un Hotel Cinco Estrellas, Manuel Abel Herrera Ordóñez, ESPOL" para el dimensionamiento del tanque de diámetro de 1m, se despeja la altura h de la fórmula de un cilindro de volumen V y diámetro D se obtiene el siguiente resultado:

$$V = \pi * r^2 * h \tag{141}$$

$$h = \frac{1,19m^3}{\pi * (0,5m)^2}$$

$$h=1.51m$$

 $h = \frac{V}{\pi * r^2}$

Este tanque será del tipo vertical y localizado sobre el piso, deberá estar encerrado en un cajón de hormigón o algo similar por medidas de seguridad.

4.6 Ablandador

4.6.1 Sistema de tratamiento del agua de alimentación. El agua de alimentación de un sistema a vapor puede ocasionar algunos problemas muy significativos en las calderas. Como las calderas son equipos muy caros y pueden ocasionar graves

accidentes cuando se encuentran en mal estado, es muy importante aplicar un tratamiento al agua de alimentación para que el equipo permanezca en buen estado, pueda operar de forma eficiente y que no se acorte su vida útil.

Para poder solucionar los problemas que ocasiona las impurezas contenidas en el agua de alimentación se le aplica tratamientos internos y externos. El tratamiento interno es un tratamiento que se aplica a la caldera cuando está en operación y consiste en agregar al agua un conjunto de sustancias químicas. El tratamiento externo se aplica al agua de alimentación antes que ingrese a la caldera y puede realizarse por medios físicos o químicos.

De manera específica el tratamiento interno se emplea para contrarrestar pequeñas cantidades de dureza remanentes del tratamiento externo ó introducidas en el retorno de condensados, para contrarrestar el efecto corrosivo producido por la presencia de oxígeno disuelto y del dióxido de carbono, para contrarrestar las sales en el agua de reposición, para prevenir incrustaciones, arrastre y espumeo.

La siguiente tabla ilustra los compuestos que se emplean en este tratamiento y sus aplicaciones.

COMPUESTOS QUÍMICOS EN TRATAMIENTO INTERNO Y SUS APLICACIONES

Tabla 58. Compuestos químicos

Compuesto químico	Aplicación
Fosfato de sodio.	Para prevenir incrustaciones.
Hidróxido de sodio.	Para prevenir incrustaciones y minimizar la
	corrosión.
Polímeros.	Para prevenir incrustaciones y acondicionar
	lodos.
Taninos / Almidón.	Para acondicionar lodos.
Hidracina / Sulfito de sodio.	Para remover oxígeno.
Antiespumante.	Para prevenir arrastre y espumeo.
Aminas neutralizantes.	 Para neutralizar CO₂.

Fuente: Mantenimiento de calderas industriales y marinas, por ING. VARGAS

Como se mencionó anteriormente el tratamiento externo se lo aplica antes de que el agua ingrese a la caldera y se lo emplea para extraer la mayor cantidad posible de impurezas del agua y que esta se encuentre dentro los parámetros recomendables.

Existen varios métodos para el tratamiento externo del agua de alimentación, pero para este caso se decidió emplear ablandamiento por ser un método de los más comunes, eficaces y de bajo costos de operación. El ablandamiento consiste en eliminar las impurezas conocidas con el nombre de durezas (calcio y magnesio) y reemplazarlas por otras impurezas que no revisten este carácter (sodio soluble). Este tratamiento se lo efectúa por medio de reacciones químicas y el equipo que se emplea es el intercambiador iónico ciclo sódico. La principal desventaja de este método es su incapacidad de reducir alcalinidad y sólidos en suspensión.

- **4.6.2** Selección del ablandador. Para la selección del ablandador se deberá seguir una secuencia de pasos:
- Determinar la dureza en el agua

La dureza del agua aproximadamente es: 216ppm convertirlo a granos por galón (gpg), dividiéndolo entre 17,1:

216/17,1 = 12,63 gpg

Determinar los caballos vapor caldera (caballos de fuerza)

Capacidad de la caldera = 159,36 kW = 543705,22 Btu/h, convertirla a caballos (HP)

Tabla 59. Factor de conversión

Capacidad de la caldera Factor de Conversión (HP)

Libras de Vapor por hora

BTU's

Pies cuadrados - tubo de agua

Pies cuadrados - tubo de humo

Divide / 34.5

Divide / 33,475

Divide / 10

Divide / 12

Fuente: Sisteagua

543705,22 Btu/h entre 33475 = 16 HP

Determinar la alimentación de agua máxima a la caldera

La capacidad de la caldera es de 16 HP (caballos de fuerza), convertir los HP a galones de agua por hora necesarios para alimentar la caldera,

HP X 4.25 galones por hora,

 $16 \times 4.25 = 68$ galones por hora (gph)

 Determinar la cantidad de condensados de retorno o recuperados, y determinar la alimentación neta a la caldera

La alimentación de diseño es de 68 galones por hora, si el retorno de condensados es del 50%, por lo tanto 34galones, la alimentación neta será de 68 - 34 = 34 galones por hora.

Determinar la alimentación total requerida por día

34 galones por hora, si el sistema opera 10 horas por día, 34 X 10 horas =340 galones por día.

Determinar los granos totales de dureza a remover por día

340 galones por día con una dureza de 12,63 gpg (granos por galón) serán:

340 X 12,63 = 4294,2 granos de dureza se necesita remover al día.

Debido a la natural importancia de obtener agua suavizada como alimentación a la caldera, debemos de considerar un margen de error en la selección del suavizador.

Este margen es común el 15%, multiplicando los 5963,6 granos por 1,15 la demanda total a remover será de 4938,33 granos por día.

Capacidades promedio del Suavizador

En la selección de un suavizador de agua, primero hay que estar familiarizado en cuáles son las capacidades de un suavizador. Obviamente los esfuerzos realizados para calcularlos granos totales necesarios para suavizar un volumen específico de agua con una dureza específica, nos sirven para seleccionar algún suavizador en base a su capacidad. Cuando se revisa la información técnica de un suavizador se observara que la mayoría de ellos siempre vienen especificados a su capacidad máxima de intercambio en granos.

Para remover 6858,14 granos al día, la selección no debe de realizarse en la capacidad máxima de granos del suavizador, hacer esto tendrá como resultado una ineficiente operación en términos de consumo de sal.

La selección debe de realizarse en base a la capacidad baja o media de granos del suavizador.

Niveles de capacidad convencionales para los suavizadores son:

30,000 granos por pie3 de resina (regenerando con 15 libras de sal por pie3 de resina) 25,000 granos por pie3 de resina (regenerando con 10 libras de sal por pie3 de resina) 20,000 granos por pie3 de resina (regenerando con 5 libras de sal por pie3 de resina)

Si nosotros aplicamos, lo anterior podremos observar los beneficios en forma muy tangible, además de observar un ahorro real del 50% en el consumo de sal.

4938,33gpg/30,000granos pie3=0,16 pies 3×15 libras de sal = 2,4libras de sal al día 4938,33gpg/25,000granos pie3=0,19 pies 3×10 libras de sal = 1,97libras de sal al día 4938,33gpg/20,000granos pie3=0,25 pies 3×5 libras de sal = 1,23libras de sal al día

Por lo que recomendamos cada vez que se seleccione un suavizador, se considere que tan eficiente lo queremos diseñar.

Si diseñamos en base a 15 libras para regenerar un pie³ de resina, es decir a la capacidad máxima de intercambio, probablemente seleccionemos un equipo más pequeño pero muy ineficiente en el consumo de sal.

Seleccionando en el nivel de 5 libras por pie³ de resina, es decir en su nivel bajo de capacidad lograremos un ahorro del 50% en el consumo de sal. (Anexo U).

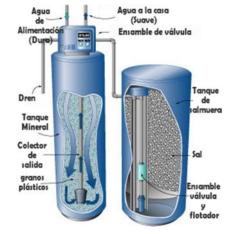


Figura 75. Esquema de ablandador de agua

Fuente: www.todoagua.aqua-soft.com.mx/filtros -filtración-purificadores-para aguasuavizadores-residencial-y-comercial-suavizador-de-agua-de-15-pie-cubico-valvula-decontrol-manual-p-341.html

4.7 Mantenimiento de la caldera

Al igual que en toda maquinaria, en el caldero se puede hacer un mantenimiento preventivo, correctivo o de paro.

Es conocido que el mantenimiento preventivo es el que ahorra a la empresa recursos económicos, y además previene riesgos industriales, precautelando la integridad del equipo así como de las personas que trabajan con el mismo.

4.7.1 *Mantenimiento semanal.* Como parte del mantenimiento preventivo se requiere seguir varios procedimientos estipulados, de modo que se precautele la integridad de los componentes del caldero más sensibles. A continuación se describe el procedimiento a seguir en periodos semanales, o cada 40 horas de trabajo del caldero.

Necesario limpiar la boquilla del quemador de la caldera. De este modo se asegura que el hollín producido en la combustión no obstruya la salida del combustible.

Revisar rápidamente que todos los acoples al caldero se encuentren seguros, es decir que su posición inicial no haya variado. Hacer una inspección visual rápida de las juntas, en caso de ubicar alguna junta sospechosa verificar su ajuste con la herramienta indicada para dicho efecto.

Chequear que la alarma de bajo nivel de agua, el consiguiente apagado automático esté funcionando bien, para esto se deben seguir los siguientes pasos:

- Abrir la válvula de soplo, mientras el caldero está funcionando.
- Se observará que el nivel de agua del caldero va disminuyendo aceleradamente.
- Al llegar el nivel de agua el punto crítico, el caldero deberá apagarse automáticamente.
- Siguiendo estos pasos en forma semanal se asegura que trabaje adecuadamente tanto la alarma como el control automático.

Revisar el nivel de combustible y mantener dicho nivel entre las marcas de alta y baja permisibles. No es recomendable que el nivel de combustible exceda a la marca superior. Es importante que se respete los niveles de combustible, un exceso en el mismo podría ocasionar un daño acelerado en el espejo refractario por partículas de combustible no guemadas.

4.7.2 *Mantenimiento mensual*

Revisar el ensamble del encendido y el electrodo, en caso de ser necesario limpiar. Si este ensamble no se encuentra en perfecto estado, el rendimiento del caldero disminuiría, en virtud de que la chispa para el encendido de la llama no sería inmediata.

Verificar el estado de la boquilla de atomización, si el caso lo amerita limpiar dicha boquilla. Es muy importante tener en cuenta que para la limpieza de la boquilla nunca se debe usar elementos mecánicos filosos.

Si se observa que la boquilla está averiada, ésta debe ser reemplazada.

Limpiar el lente detector de la llama, verificar su correcto funcionamiento en el panel de control. La visualización de la llama es un indicador de la combustión correcta o incorrecta mediante el color de la misma.

Inspeccionar el sumidero de aceite y limpiarlo en caso que se requiera. La frecuencia de la limpieza dependerá sobre todo de la frecuencia de operación del quemador, y de la calidad del combustible que se utilice.

Asegurar que los empaques se encuentren buen estado y que sus superficies se encuentren libres de impurezas. Una ligera capa de aceite limpio garantizará que el conjunto se encuentre apretado asegurando el vacío. Cerrar la válvula antes de sacar la tapa del filtro para evitar que se derrame combustible.

4.7.3 *Mantenimiento anual.* Para el mantenimiento anual se incluyen las actividades del mantenimiento semanal, y mensual.

A continuación se establece una serie de pasos que generan un proceso rápido y seguro en el mantenimiento anual.

- Colocar un aviso de modo que para todo el personal sea fácil visualizar que el caldero se encuentra en mantenimiento.
- Realizar la inspección interna.
- Luego de apagado el caldero dejar enfriar hasta 40 °C con un rango aceptable de más o menos 5 °C.

- Cerrar válvulas de ingreso de agua y combustible.
- Colocar el aviso de máquina en reparación
- Quitar la energía en el equipo. Colocar el candado en el tablero de control del caldero.
- Colocar la brida ciega y cerrar la válvula de salida del caldero
- Vaciar el agua del caldero abriendo las válvulas de purgas de fondo, es necesario tomar una muestra del agua.
- Limpiar con cepillo de acero y espátula el lado de fuego, especialmente los espejos.
- Baquetear los tubos de fuego cuantas veces sea necesario hasta que se haya desprendido todo el hollín, usando un cepillo circular de acero, se debe acoplar a una varilla larga de modo que el tubo sea íntegramente limpiado.
- Realizar la inspección interna del caldero.
- Reparar tapas y hogar con sus respectivos refractarios.
- Reemplazar todos los empaques tanto del hogar como de las puertas delantera y posterior.
- Revisar la condición del tanque de combustible, limpiar y remover lodo si es necesario.
- Limpiar los lodos del interior
- Revisar que el flotador se encuentre en óptimas condiciones, de lo contrario reemplazarlo.
- Verificar que el control de nivel se encuentre instalado.
- Colocar las válvulas de purga de nivel.
- Llenar completamente el caldero con agua potable.
- Revisar todas las conexiones eléctricas.
- Reemplazar los tubos de vacío y las celdas de escaneo en los controles electrónicos.
- Abrir las válvulas de ingreso de agua y combustible.
- Retirar brida ciega y abrir válvula de salida de vapor del caldero hacia el distribuidor.
- Arrancar el caldero a bajo fogueo por 5 minutos cada hora para que los refractarios se calienten paulatinamente, hasta que empiece a subir la presión, luego los arranques son por 10 minutos cada hora hasta que adquiera la presión de operación.

CAPÍTULO V

5. ANÁLISIS DE LA FACTIBILIDAD ECONÓMICA DE LAS PROPUESTAS

En el presente capítulo se realiza el estudio de costos del proyecto, pues con esta información se podrá establecer si es factible o no su implementación.

Aquí se detallaría los precios correspondientes para la implementación del sistema de climatización de la piscina y el adecuado funcionamiento del complejo Vulcano Green.

Para el estudio de costos se ejecutara por dos partes:

- La primera parte se lo realizara de acuerdo a los equipos que falta para el sistema actual como: ablandador, manta térmica, tanque de combustible, aislante térmico para el sauna como para el turco.
- La segunda parte se lo realizara de acuerdo a los equipos que permitan disminuir el consumo de hidrocarburos y de electricidad, como se trató en el capítulo anterior de la implementación de paneles solares.

Las dos partes anteriores van estar comprendidas por:

- Costos directos
- Costos indirectos
- 1. Los costos directos muestran los costos asociados con los equipos y demás materiales necesarios como son: los calentadores de agua, manta térmica, enrollador para la piscina, ablandador tuberías, tanque de combustible, aislamiento, etc. Como también los costos de instalación; es decir, los costos que se deben pagar a las personas que trabajarán en la implementación de este proyecto.
- Los costos indirectos muestran un valor representativo de las ganancias que tendría la empresa que implementaría este proyecto.

Además de lo anterior también se mostrará algunos gastos varios que suelen tener estos proyectos como son gastos asociados a imprevistos, pago de seguros y otros valores más. Finalmente se concluirá este capítulo con un diagrama de pastel que compara todos los costos determinados durante este capítulo.

5.1 Equipo que falta para el sistema actual

5.1.1 Costo de materiales, equipos e implementos En esta etapa se presentan los costos asociados a los equipos, implementos y de más materiales necesarios en el sistema actual de este proyecto.

Tabla 60. Costos de materiales, equipos e implementos para la piscina

					Mat	terial
Rubro	Descripción	Características	Unidad	Cantidad	P. unit	Total(\$)
1	Manta térmica	Burbujas de polietileno INGERCLIMA	m ²	103,47	8,66	896,05
2	Orillo cosido	lateral cosido	М	37	5,1	188,7
3	Enrollador de cobertor	Rodillo para piscinas de 5,5- 7,5m d=100mm	U	1	537,09	237,09
			1	·	P. total	1321.84

Fuente: Autores

Tabla 61. Costos de materiales, equipos e implementos de la sauna

					Mat	terial
Rubro	Descripción	Características	Unidad	Cantidad	P. unit	Total(\$)
	Aislante	Panel Ursa Terra				
1	térmico	Sol T70p (1,20m x	m ²	11,785	5,17	60,9
	terrinco	0,6 m y 20 mm)				
2	Accesorios	lateral cosido	global	56	0,14	7,61
	<u>I</u>		1	<u>I</u>	P. total	68,51

Fuente: Autores

Tabla 62. Costos de materiales, equipos e implementos del turco

					Ma	terial
Rubro	Descripción	Características	Unidad	Cantidad	P. unit	Total(\$)
1	Aislante térmico	Panel Ursa Terra Sol T70p (1,20m x 0,6 m y 20 mm)	m²	11,781	5,17	60,9
2	Accesorios	lateral cosido	global	56	0,14	7,61
					P. total	68,51

Tabla 63. Costos de materiales, equipos e implementos para la caldera

					Mat	erial
Rubro	Descripción	Características	Unidad	Cantidad	P. unit	Total
1	Ablandador	Osmosis inversa modelo Dm-460- 925gpm ZSO-84	ud	1	400	400
2	Tanque 315 gal de combustible (reserva)	Placa ASTM A36 ancho 1220mm	ud	2	500	1000
3	Tanque 68gal de combustible (consumo diario)	Placa ASTM A36 de ancho 1220mm	ud	1	500	500
					P. total	1900

Fuente: Autores

Tabla 64. Resumen total de costos de materiales, equipos, implementos

SISTEMA	COSTO(USD)
SAUNA	68,51
TURCO	68,51
PISCINA	1321,84
CALDERO	1900
TOTAL	3358,86

- **5.1.2** Costos de instalación. El costo de la instalación se refiere a pagos que hay que cancelar al personal que llevará a cabo la instalación del sistema que se ha tratado en esta tesis, es decir, el costo de la mano de obra asociada al montaje de la manta térmica, instalación del ablandador, instalación del tanque de combustible, del aislante térmico, accesorios, etc.
- **5.1.2.1** Costos de mano de obra. Para los salarios de mano de obra se considerara los valores de la contraloría general del estado 2013 que serán los salarios mínimos que se tomarán para la mano de obra:

Tabla 65. Costos por mano de obra para la manta térmica

Trabajador	N. de horas	Costo (USD/h)	Costo total (USD)
Instalador de revestimiento	10	8	80
Ayudante	10	8	80
	,	Total	160

Fuente: Autores

Tabla 66. Costos por mano de obra para el aislamiento sauna y turco

Trabajador	N. de horas	Costo (USD/h)	Costo total (USD)
Instalador de revestimiento	45	3	135
Ayudante	45	3	135
		Total	270

Fuente: Autores

Tabla 67. Costos por mano de obra para la caldera (tanque combustible y ablandador)

Trabajador	N.de horas	Costo (USD/h)	Costo total (USD)
Técnico de montaje de subestaciones	40	5	200
Maestro eléctrico/subestación	40	5	200
		Total	400

Fuente: Autores

Tabla 68. Resumen total de costos de instalación

SISTEMA	COSTO(USD)
Piscina	160
Sauna y turco	270
Caldera	400
TOTAL	830

Fuente: Autores

5.1.2.2 Costo de transporte

Tabla 69. Costo por transporte

Trayecto desde:	Costo (USD)
Almacén de equipos.	50
Distribuidor de tuberías y accesorios.	50
TOTAL.	100

5.1.3 Costos directos para los equipos faltantes en el sistema

Tabla 70. Resumen total de costos directos

	Costo (USD)
Materiales, equipo e implementos	3358,86
Mano de obra	830
Transporte	100
TOTAL	4288,86

Fuente: Autores

5.2 Equipo para disminuir el consumo de hidrocarburos (paneles solares)

5.2.1 Costo de materiales, equipos e implementos. En esta etapa se presentan los costos asociados a los equipos, implementos y de más materiales necesarios que se implementaran para disminuir el consumo de diesel del sistema actual.

Tabla 71. Costos de materiales, equipos e implementos para la piscina

					Ma	terial
Rubro	Descripción	Características	Unidad	Cantidad	P.unit	Total(\$)
1	Panel solar	HELIOCOL H.C-40, calentador solar de plástico polipropileno de 3,85 m ²	u	11	228,88	2517,68
2	Válvula de vacío	HELIOCOL blanca- gris	u	1	20,83	20,83
3	Válvulas desfogue de aire	HELIOCOL negra	u	1	20,83	20,83
4	Collarín unidad	-	u	26	9,44	245,44
5	Conector para tubo	CPVC HELIOCOL	u	5	8,07	40,35
6	Tapón final	HELIOCOL	u	5	5,38	26,90
7	Control diferencial	GODL LINE GL-235	u	1	326,14	326,14
8	Sensor	GOLD LINE	u	2	34,52	69,04
9	Materiales varios de instalación	-	u	1	1800	1800
	L				Total	5067,21

- **5.2.2** Costos de instalación. El costo de la instalación se refiere a pagos que hay que cancelar al personal que llevará a cabo la instalación del sistema que se ha tratado en esta tesis, es decir, el costo de la mano de obra asociada al montaje de los paneles solares, tubería, etc.
- **5.2.2.1** Costos de mano de obra. Para los salarios de mano de obra se considerara los valores de la contraloría general del estado 2013 que serán los salarios mínimos que se tomaran para la mano de obra:

Tabla 72. Costos por mano de obra para la instalación de PANELES SOLARES

Trabajador	N.horas	Costo (USD/h)	Costo total (USD)
Técnico mecánico eléctrico	360	3,02	1087,2
Ayudante	240	2,78	667,2
	'	Total	1754,4

Fuente: Autores

5.2.2.2 Costo de transporte

Tabla 73. Costo por transporte

Trayecto desde:	Costo (USD)
Almacén de equipos.	50
Distribuidor de tuberías y accesorios.	50
TOTAL.	100

Fuente: Autores

5.2.3 Costos directos de la nueva instalación con paneles solares

Tabla 74. Resumen total de costos directos

	Costo (USD)
Materiales, equipo e implementos	5067,21
Mano de obra	1754,4
Transporte	100
TOTAL	6921,61

5.3 Costos de las mejoras del complejo Vulcano Green

Para el costo de las mejoras del complejo se considera el costo de los equipos que faltan al sistema, como los equipos que nos permitirán disminuir el consumo de hidrocarburos:

Tabla 75. Costos de las mejoras del complejo VULCANO GREEN

	Costo (USD)
Equipo que falta en el sistema actual	4288,86
Equipo para disminuir consumo hidrocarburos (paneles solares).	6921,61
TOTAL	11210,47

Fuente: Autores

Costos indirectos. Son gastos tales como: imprevistos, locales provisionales, vehículos, accidentes, seguros, y otros, que una empresa u organización, realiza independientemente de una obra en particular, pero que debe cargarse a los costos de la misma, en la producción adecuada, por tanto son aquellos que no se aplican a un producto determinado y generalmente se expresa como porcentaje de los costos directos. Para nuestro caso se tomara un costo indirecto del 25%.

Tabla 76. Costos indirectos

COSTOS INDIRECTOS				
Descripción Porcentaje %C.D Costo(USD)				
Carg	os administrativos			
Guardián	Guardián 6 672,63			
Gast	os administrativos	1		
Bodega	4 448,42			
Cargos técnicos				
Supervisor 10 1121,05				
Gastos de campo				
Movilización y	1,4	156,95		
acarreo	1,-	100,00		
Seguro				
Pago IESS	3,6	403,58		
Total	25%	2802,63		

5.4 Costo total del proyecto

El costo total del proyecto se considera: los costos directos de las mejoras para el complejo VULCANO GREEN, como también los costos indirectos del 25% de los costos directos.

Tabla 77. Costos Totales

Costos totales.	Total(USD)
COSTOS DIRECTOS	11210,47
COSTOS INDIRECTOS	2802,63
TOTAL	14013,10

Fuente: Autores

5.5 Análisis de costos por operación y mantenimiento

Tabla 78. Costos por consumo de agua

Consumo agua	Costo unitario (USD/m³)	Consumo diario (m³)	Consumo anual (m³)	Costo mensual (USD)	Costo anual (USD)
Piscina	0,30	0,5	72	1,8	21,6
Turco	0,30	1	144	3,6	43,2
TOTAL				5,4	64,8

Fuente: Autores

Tabla 79. Costo por consumo de energía eléctrica

Consumo	Costo	Potencia	Consumo	Consumo	Costo	Costo
de energía	unitario	del	diario	anual	mensual	anual
eléctrica	(kW/h)	equipo	(kW /h)	(kW /h)	(USD)	(USD)
		(kW)				
Sauna	0,0824	21	105	15120	103,82	1245,84
Turco	0,0824	21	105	15120	103,82	1245,84
Bomba de	0,0824	1,5	7,5	1080	7,42	89,04
la piscina						
Bomba del	0,0824	0,37	1,85	266,4	1,83	21,96
caldero						
TOTAL						2602,68
	ı	_	1 A 1			

Tabla 80. Costo por consumo de combustible

Consumo de combustible	Costo Unitario USD (gal)	Consumo de combustible (gal /h)	Consumo diario (gal)	Consumo anual (gal)	Costo mensual (USD)	Costo anual (USD)
CALDERO	1,02	2,92	29,2	4204,8	350,4	4288,89
TOTAL						4288,89

Fuente: Autores

Tabla 81. Costo por mantenimiento

Trabajadores	Costo mensual (USD)	Costo anual (USD)
Operario de mantenimiento	350	4200
Técnico de mantenimiento	350	4200
Secretario	200	2400
TOTAL	900	10800

Fuente: Autores

Tabla 82. Resumen total de costos por operación y mantenimiento

Inversión	Costo mensual (USD)	Costo total anual (USD)
Consumo agua	5,4	64,8
Consumo energía eléctrica	216,89	2602,68
Consumo combustible	350,4	4288,89
Trabajadores	900	10800
TOTAL	1472,69	17756,37

Fuente: Autores

Por lo tanto se tendrá un costo mensual por operación y mantenimiento de \$ 1472,69

5.6 Análisis comparativo entre el sistema actual y el sistema nuevo

Tabla 83. Consumo de combustible

Variables	Consumo (gal/h)
Sistema actual	4,2
Sistema nuevo	2,92
Ahorro	1,28

El ahorro del consumo de combustible es de 1,28 gal/h si al mes trabaja 120h el

ahorro de combustible será: 153,6 gal/mensualmente, como el precio del diesel en el

Ecuador es de \$1,02, referencia al mes de diciembre del 2013, siendo un ahorro de

\$156,67 mensualmente.

5.7 Análisis de beneficio/costo

El análisis de costo-beneficio es una técnica importante dentro del ámbito de la teoría

de la decisión. Pretende determinar la conveniencia del proyecto mediante la

enumeración y valoración posterior en términos monetarios de todos los costos y

beneficios derivados del proyecto.

El costo -beneficio tiene un razonamiento basado en el principio de obtener mejores

resultados al menor esfuerzo, estos resultados se pueden obtener tanto por eficiencia

como por motivación. Este costo beneficio puede evaluarse de una manera lógica; es

decir, aquellos dónde los beneficios obtenidos superan el costo son exitosos, caso

contrario fracaso.

Si el costo actual de la inversión de los paneles solares, así como la implementación

de los mismos en el sistema actual es de:

Costo total = \$6921,61

Interés = 5% anual durante un período de 5 años.

Después del análisis realizado con la implementación del sistema hibrido podemos

decir que el ahorro mensual del combustible es: 153,6 galones.

Dando un ahorro mensual de: \$ 156,67

Ahorro anual = \$1880.04

Cálculo del valor presente P = A(P/A; i%; n), basándose en la tabla de factores de

interés compuesto:

P = A(P/A; i%; n)(142)

 $P = 1880.04 \quad (4.3295) = \8139.63

- 182 -

Relación beneficio costo:

$$B/C = 8139,63/6921,61 = 1,17$$

Al analizar la relación beneficio/costo al ser este valor mayor que 1, se observa que el beneficio supera al costo de manera apropiada por lo que se podrá decir que si es factible el proyecto, con la implementación de los paneles solares.

5.8 Cálculo de la tasa interna de retorno (TIR)

La tasa interna de retorno es un método para la evaluación financiera de proyectos que igual al valor presente de los flujos de caja esperados con la inversión inicial.

Cuando la TIR es mayor que la tasa de interés de referencia, el rendimiento que obtendría el inversionista realizando la inversión es positivo, por lo tanto, conviene realizar la inversión, caso contrario el proyecto debe rechazarse.

Para realizar una evaluación de la TIR para el proyecto se toma como referencia una tasa de interés del 15% que es la tasa neta promedio anual a la que los bancos manejan los depósitos a plazo fijo. Se consideran los siguientes datos.

5.8.1 Análisis de la afluencia de usuarios. La diferente cantidad de afluencia de usuarios fue tomada de un estudio estadístico realizado en la piscina del complejo turístico Vulcano Green de Cantón Penipe.

Existen tres tipos de usuarios los cuales nos proporciona diferentes precios entre los cuales tenemos.

Tabla 84. Ingreso mínimo mensual

Tipo de usuario	Usuarios por mes	Costo unitario (USD)	Ingresos mensuales	Ingresos anuales
Adultos mayores	80	3	240	2880
Niños	160	3	480	5760
Adultos	273	5	1365	16380
Total				25020

5.8.2 Salvamento de la inversión en el complejo hidrotermal. Para efectos de

cálculos de rentabilidad, se hace necesaria la estimación de un valor de salvamento

del complejo turístico.

Se estima un valor de salvamento del 10% del costo de inversión en función de que

los elementos constitutivos del Complejo turístico.

Inversión: P= \$14013,10

Salvamento del proyecto:

S=10%xP (143)

S=0,10 x 14013,10

S=1401,31

5.8.3 Depreciación anual del complejo hidrotermal. La depreciación es la pérdida

de valor contable que sufren los activos fijos por el uso a que se les somete y su

función productora de renta. En la medida en que avance el tiempo de servicio,

decrece el valor contable de dichos activos.

La vida contable de un activo fijo depreciable comienza desde la fecha en que

empieza a explotar económicamente hasta la fecha en que se cumple su depreciación

total.

Las leyes tributarias de nuestro país determinan una vida legal para maquinaria y

equipos de 10 años.

El método de depreciación en línea recta es el método más utilizado y con este se

supone que los activos se usan más o menos con la misma intensidad año por año, a

lo largo de su vida útil; por tanto, la depreciación periódica debe ser del mismo monto.

Aplicando este método al proyecto de inversión en el Complejo Turístico se tiene una

depreciación anual de:

Inversión: P= \$14013,10

Salvamento: S= \$ 1401,31

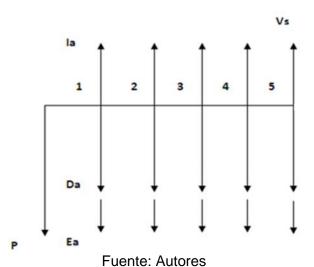
Vida útil contable: n = 5 años

- 184 -

Depreciación anual:

$$Da = \frac{P - S}{n} \tag{144}$$

$$Da = \frac{14013,10 - 1401,13}{5}$$


Da = \$2522,39

5.8.4 Tasa interna de retorno (TIR). Para realizar una evaluación de la TIR para el proyecto se toma como referencia una tasa de interés del 15% que es la tasa neta promedio anual a la que los bancos manejan los depósitos a plazo fijo. Se consideran los siguientes datos.

Tabla 85. Flujo de caja

	Símbolo	Valor
Costo de inversión	Р	14013,10
Ingreso anual	la	25020
Egreso anual	Ea	17756,37
Valor de salvamento a 5 años	Vs	1401,31
Depreciación anual	Da	2522,39
Tiempo a evaluar el proyecto (años)		5

Figura 76. Diagrama de evaluación financiera

Se calcula el valor presente neto VAN necesario para el cálculo de la TIR.

$$VAN = VAI - VAE$$
 (145)

$$VAN = Ia \left(\frac{P}{A}, i\%, n\right) + Vs \left(\frac{P}{F}, i\%, n\right) - P - Da\left(\frac{P}{A}, i\%, n\right) - Ea\left(\frac{P}{A}, i\%, n\right)$$
(146)

$$VAN = (Ia - Da - Ea) \left(\frac{P}{A}, i\%, n\right) + Vs\left(\frac{P}{F}, i\%, n\right) - P$$
 (147)

Para i = 20%

$$VAN = (25020 - 2522,39 - 17756,37)$$
 $(2,9906) + 1401,31(0,4019) - 14013,10$ $VAN = 729,24$

Para i = 24%

$$VAN = (25020 - 2522,39 - 17756,37)$$
 $(2,7454) + 1401,31(0,3411) - 14013,10$ $VAN = -518,51$

Cálculo del TIR:

TIR =
$$i\% + \frac{VAN(+)}{VAN(+) + VAN(-)} * \%$$
 (148)

$$TIR = 20 + \frac{729,24}{729,24 + 518.51} \quad 4$$

TIR = 22,34%

El valor para la TIR de 22,34% es mayor al 15 % exigido, por lo tanto el proyecto es factible a los 5 años.

CAPÍTULO VI

6. CONCLUSIONES Y RECOMENDACIONES

6.1 Conclusiones

Al determinar las pérdidas de calor que se producen en la piscina, se pudo analizar que la más influyente en el vaso de la piscina es por evaporación en un 82,82% debido a la demanda de usuarios.

Al determinar las pérdidas de calor en la sauna y en el turco, se identificó que la más influyente es por la carga térmica necesaria para los usuarios.

Se determinó la potencia de la caldera requerido para mantener las condiciones de confort de la piscina, la sauna y el turco, siendo esta de 16 BHP, con lo que se pudo verificar que la caldera existente de 15 BHP no es suficiente para satisfacer las necesidades del complejo.

La relación entre el sistema actual y el sistema nuevo propuesto, permitió conocer el ahorro del consumo de combustible que es de 1,28 GPH, que representaría un ahorro mensual de \$ 156,67.

Al ser la relación beneficio/costo de 1,17 en el sistema hibrido, se determinó que el beneficio supera al costo de manera apropiada por lo que se podrá decir que si es factible el proyecto en un tiempo de 5 años.

6.2 Recomendaciones

Adquirir una manta térmica de polietileno para evitar la evaporación en el vaso de la piscina, en horas que no se encuentre en funcionamiento y ayudar a conservar la temperatura del vaso de la piscina.

Para mantener las condiciones de confort en el agua de la piscina será necesario utilizar 1,2 GPH de diesel, produciendo un flujo másico de vapor 8,442 lb/h.

Instalar un ablandador para el agua de alimentación de la caldera para así alargar el tiempo de vida útil de la misma y evitar daños internos de la caldera. (Anexo S)

Realizar un cambio del tanque de combustible existente, por motivos de seguridad y para un buen funcionamiento del complejo.

Plantear la utilización de paneles solares, los mismos que con el estudio de factibilidad se escoge un sistema hibrido que acoge los 11 paneles solares y la caldera.

Medir el pH y cloro del agua del agua de la piscina para verificar las condiciones higiénicas del complejo. (Anexo T)

Cambiar del techo que cubre las instalaciones del complejo ya que la cubierta actual de plástico provoca mayores pérdidas por evaporación la alternativa más recomendable es un techo de policarbonato.

Realizar un mantenimiento preventivo y correctico del caldero, ya que con los resultados del análisis del agua de abastecimiento es ligeramente corrosiva.

BIBLIOGRAFÍA

ARIAS, Gyver, JULCA, Josin y OSORIO, Fredy. 2013. Equipos de recirculación en piscinas. Perú: UNASAM, 2013.

Cámara de la Construcción del Ecuador. 2011. NEC 11. Eficiencia energética en la construcción en Ecuador Cap. 13. Quito: NEC, 2011.

CRIOLLO, Adrián y POGO, Álvaro. 2011. Diseño de un sistema dual de calentamiento de agua, por medio de energia solar. Cuenca: Biblioteca, Universidad Politécnica Saleciana, 2011. 1.

DEFINICIONESabc.com. Definiciones abc. *Definiciones abc.* [En línea] General. [Citado el: miercoles de noviembre de 2013.] http://www.definicionabc.com/general/piscina.php.

DONOSO-ALVAREZ. 2013. Auditoría energética con fines de optimización mediante el uso de energía solar. TESIS. Riobamba : Biblioteca ESPOCH, 2013.

Effegibi.com. 2013. http://www.effegibi.it/. http://www.effegibi.it/es/sauna-hammam-philosophy/que-es-el-bano-turco. [En línea] 2013.

FRONTERAS JEEZ. 2013. Funcionamiento de una válvula selectora. *Válvula selectora para filtros.* [Llinás]. Mozambique : s.n., 2013.

GARCIA L, Antonio Guilherme. 2001. [En línea] GERAÇÃO DE ENERGIA ELÉTRICA, 2001. [Citado el: 14 de Noviembre de 2013.] http://www.antoniolima.web.br.com/arquivos/podercalorifico.htm. 1.

GEOCITIES.com. 2009. Tratameinto de aguas para albercas y piscinas. *oocities.com.* [En línea] Geocities, Octubre de 2009. [Citado el: 13 de Noviembre de 2013.] http://www.oocities.org/edrochac/sanitaria/albercas12.pdf.

GUIJARRO, **Basantes**. **2012**. *Uso eficiente de la energía en complejios hidrotermales*. *TESIS*. Riobamba : Biblioteca ESPOCH, 2012.

HIDRAULICA, General. 2010. Grafico y tablas. Ibarra: UTN - FRBA, 2010. 1.

HIDROMAINAKE. 2006. Filtros piscina. MANUAL. *Filtro de arena.* [Filtración]. Málaga : s.n., 2006.

INGERCLIMA. www.ingerclima.com. www.ingerclima.com. [En línea] ingerclima.

LÓPEZ A, Enrique Jesús. 2007. *Hidráulica General.* Sinaloa : Universidad Autónoma de Sinaloa, 2007.

MAILLO, Agustín. 2005. Climatización de piscinas cubiertas. Analucia: CIATESA, 2005.

NEC11. 2011. Eficiencia energética en la construcción en Ecuador Cap. 13. Quito : NEC, 2011.

NIETO, J, LOBATO, L y NIETO, M. 2006. Consideraciones médicas sobre el uso del sauna. Madrid: SEMERGEN, 2006. Vol. 1.

Normativa Técnica de Supervición y Control de Madrid. 2013. Reglamento de instalaciones térmicas en edificios. Madrid: 1, 2013.

Osanger. 2013. tablas de onsager unex.es/apuntes/termo. 2013.

PLASTIGAMA. 2013. Pérdidas secundarias de tuberia PVC. Riobamba : Plastigama, 2013. Vol. 1, 1. 1.

REI, Molins. 2013. *Manual instrucciones sistema depuración.* Barcelona : Piscinas Pool, 2013.

VALENZUELA, Ramiro. 2003. *Apuntes de transferencia de calor.* Riobamba : Biblioteca ESPOCH, 2003.

VÁZQUEZ, Gemma. 2006. Instalaciones en piscinas. Cartagena: ARQUIDE, 2006.

WIKIPEDIA. 2013. Sauna. *Sauna.* [En línea] Fundacón Wikipedia, 29 de agosto de 2013. [Citado el: 14 de noviembre de 2013.] http://es.wikipedia.org/wiki/Sauna. 1.

ZABALA, Gilberto. 2008. *Termodinamica 1, tablas de vapor.* Riobamba : s.n., 2008. 1.

ANEXO A

Temperatura promedio agua de la piscina del Complejo Vulcano Green

FECHA	HORA	T1	T2	Т3	T4	T5	Т6
11/05/2013	10:10	25.6	25.5	25.6	25.8	25.4	25.1
	12:00	27.0	26.9	26.8	26.7	26.8	26.9
	13:00	26.0	26.4	26.3	26.6	26.5	26.6
12/05/2013	11:00	26.0	26.3	26.8	25.6	25.8	26.0
	13:00	26.5	26.4	27.0	26.8	26.6	27.0
17/05/2013	15:00	27.0	26.8	27.0	26.6	26.8	27.0
18/05/2013	11:00	27.0	26.8	27.0	27.0	26.8	27.0
	13:00	26.0	26.6	26.5	26.8	26.7	27.0
	15:00	26.8	26.5	26.8	26.8	27.0	26.8
19/05/2013	12:00	27.0	26.8	27.0	26.9	26.9	27.0
	14:00	26.9	26.8	26.7	26.8	26.9	27.0
	16:00	25.6	25.7	25.9	25.8	25.7	26.0
25/05/2013	10:00	25.8	26.4	26.0	26.8	26.7	27.0
	12:00	26.0	26.8	26.7	27.0	26.8	27.0
26/05/2013	11:00	27.0	27.0	26.9	26.8	26.8	27.0
	13:00	26.8	26.5	26.7	26.8	26.9	27.0
	16:00	25.8	25.7	25.6	25.8	26.0	26.1
l	PROMEDIC	DE TEM	PERATURA	DEL AGU	A DE LA P	ISCINA	
		T1	T2	Т3	T4	T5	Т6
		26.4	26.46	26.55	26.55	26.54	26.68

TEMPERATURA PROMEDIO: 26.53°C

Temperatura y humedad promedio del aire de la piscina

ANEXO B

550114					_	-	_		R DE LA			7.0	115 101
FECHA	HORA	T1	H1 (%)	T2	H2 (%)	T3	H3 (%)	T4	H4 (%)	T5	H5 (%)	T6	H6 (%
	10:10	23.8	68	23.8	68	23.7	68	23.8	68	23.9	68	23.7	68
11/05/2013	12:00	27.0	54	26.8	54	27.0	54	26.8	54	26.9	54	27.5	55
	15:00	25.0	60	25.4	60	25.0	60	24.6	60	24.0	60	24.5	60
42/05/2042	11:00	25.0	65	25.4	65	25.8	62	24.8	62	24.9	62	25.0	63
12/05/2013	13:00	24.4	63	24.7	64	24.5	60	24.0	63	24.6	64	24.5	62
17/05/2013	15:00	21.4	59	21.8	59	22.3	59	21.9	59	21.7	59	21.8	59
	11:00	25.7	68	25.8	68	25.7	68	25.0	68	25.7	68	25.7	68
18/05/2013	13:00	24.5	60	24.7	62	24.5	63	24.3	60	23.8	64	24.4	65
Vi 0	15:00	22.5	61	23.1	61	22.6	61	23.0	61	22.9	60	22.7	60
	12:00	27.0	55	26.8	55	27.0	55	26.9	55	26.9	55	27.0	55
19/05/2013	14:00	24.0	60	24.5	60	24.8	2	24.7	60	24.5	60	24.6	62
	16:00	25.6	50	25.7	49	25.9	48	25.8	49	25.7	50	26.0	54
	10:00	23.0	68	23.4	68	23.5	68	24.0	65	24.5	65	24.6	65
25/05/2013	12:00	25.6	58	25.8	57	25.7	57	26.0	57	25.8	57	26.0	57
	11:00	25.4	65	25.5	65	25.7	65	25.4	65	25.0	65	24.9	68
26/05/2013	13:00	25.0	58	25.3	57	25.6	57	24.8	58	24.9	58	24.7	58
	16:00	24.8	57	24.9	57	25.0	57	25.7	55	25.8	55	25.4	55
PROME	DIO	24.69	60.53	24.91	60.53	24.96	56.71	24.79	59.94	24.79	60.24	24.88	60.82
101 111 111													
		T1		24.69	RAYHU	MEDAD H1	AMBIE	60.53					
		T2	-	24.99		H2	_	60.53	_				
		T3	_	24.96		H3	-	56.71	_				
		T4	-	24.79		Н4	-	59 94	_				

 T1
 24.69
 H1
 60.53

 T2
 24.91
 H2
 60.53

 T3
 24.96
 H3
 56.71

 T4
 24.79
 H4
 59.94

 T5
 24.79
 H5
 60.24

 T6
 24.88
 H6
 60.82

 PROMEDIO
 24.84
 PROMEDIO
 59.79

ANEXO C
Humedad absoluta del aire saturado

T (°C)	W(kg agua/kg aire)
20	0.0147
21	0.0155
22	0.0165
23	0.0177
24	0.0187
25	0.0200
26	0.0213
27	0.0225
28	0.0240
29	0.0255
30	0.0270

ANEXO D

Temperatura promedio del cerramiento de la piscina.

TEMPERA	TURA DEL C	ERRAMI	ENTO D	E LA PSO	INA
FECHA	HORA	T1	T2	Т3	T4
11/05/2013	10:10	22.5	22.4	22.2	22.3
	12:00	23.0	23.3	23.1	22.9
	13:00	20.2	21.5	20.0	19.8
12/05/2013	11:00	23.7	24.8	23.8	23.6
12, 03, 2013	13:00	20.8	20.5	20.8	20.5
17/05/2013	15:00	22.1	23.5	22.1	22.0
17/03/2013	13.00	22.1	23.3	22.1	22.0
18/05/2013	11:00	20.7	21.5	20.6	20.5
	13:00	23.7	22.8	23.5	23.4
	15:00	24.8	23.7	24.4	24.6
19/05/2013	12:00	20.4	20.8	20.5	20.4
	14:00	20.8	20.5	20.7	20.3
	16:00	22.4	22.6	22.5	21.8
25/05/2013	10:00	23.1	23.5	23.0	22.8
	12:00	20.5	20.5	20.3	20.2
26/05/2013	11:00	20.7	20.8	20.5	20.6
,	13:00	24.5	24.0	24.5	23.4
	16:00	21.3	21.5	21.0	21.5
	PROMEDIO	DE TEMI	PERATU	RA	
		T1	T2	T3	T4
		22.07	22.25	21.97	21.80
TEMPERAT	URA PROM	EDIO:	22.02	С	

ANEXO E

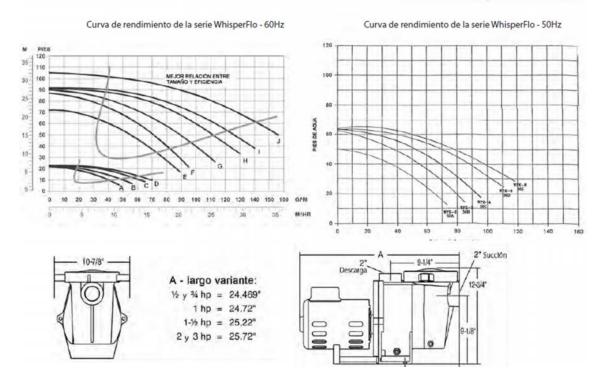
Catálogo Pentair, bombas para piscina.

Bombas de alto rendimiento WhisperFlo™

Bombas para piscinas de alta eficiencia

Bombas de alto rendimiento WhisperFlo

Termoplástico robusto con diseño de tapa "transparente" Cam & Ramp™ Autocebado, flujo elevado con difusores Funnel-Flo™. Puertos de succión y descarga de 2 pulgadas. El motor presenta eje roscado y motor de estructura 56 de funcionamiento comercial con brida cuadrada NEMA.


Características principales

- Alojamiento y canastilla de filtro sobredimensionados norma industrial en las bombas de piscina.
- Disponible en motores de brida cuadrada de ahorro de energía y estándares.
- Con menos HP se consigue un rendimiento más alto que el estándar de la industria.
- Compatible con todos los sistemas de limpieza, distintos filtros y spas de acción a chorro.
- Construcción para trabajo pesado/duradera, diseñada para una larga vida.
- Diseñada para aplicaciones residenciales y comerciales.
- Nuevo motor que incrementa la vida útil, energía, eficiencia, facilidad de instalación y mejora la refrigeración para un servicio duradero.

Información para órdenes

Producto	Modelo	Voltaje	Amperajes de carga máxima	НР	Falla de señal	HP de falla de señal	Homologaciones y certificaciones principales 3	Tamaño del puerto (NPT)	Peso de caja (libras)	Referencia de curva
			МО	NOFÁ:	SICO - AH	ORRO DE E	NERGÍA - 50HZ			
347926	WFEL-2	240/120	7,5/15,0	1/2	1,10	0,55	UL ¹ , NSF ²	2 pulg. x 2 pulg.	41	50A
347927	WFEL-3	240/120	7,5/15,0	3/4	1,10	0,83	UL1, NSF2	2 pulg. x 2 pulg.	41	50B
347928	WFEL-4	240/120	6,9/13,8	1	1,10	1,10	UL 1, NSF 2	2 pulg. x 2 pulg.	46	50C
347929	WFEL-6	240	7,2	1,5	1,10	1,65	UL ¹ , NSF ²	2 pulg. x 2 pulg.	54	50D
347930	WFEL-8	240	9,4	2	1,10	2,20	UL 1, NSF 2	2 pulg. x 2 pulg.	55	50E
			AHORRO DE E	NERGI	A, UNA V	ELOCIDAD	, PLENA POTENCIA - 601	HZ		
011511	WFE-2	115/208-230	8,8/4,5-4,4	1/2	1,90	0,95	UL ¹ , NSF ²	2 pulg. x 2 pulg.	41	Ε
011512	WFE-3	115/208-230	11,2/6,0-5,6	3/4	1,67	1,25	UL ¹ , NSF ²	2 pulg. x 2 pulg.	41	F
011513	WFE-4	115/208-230	14,8/7,8-7,4	1	1,65	1,65	UL ¹ , NSF ²	2 pulg. x 2 pulg.	46	G
011514	WFE-6	208-230	9,6-8,8	1-1/2	1,47	2,20	UL ¹ , NSF ²	2 pulg. x 2 pulg.	54	Н
011515	WFE-8	208-230	11,0-10,2	2	1,30	2,60	UL1, NSF2	2 pulg. x 2 pulg.	55	1
011516	WFE-12	208-230	15,0-13,6	3	1,15	3,45	UL ¹ , NSF ²	2 pulg. x 2 pulg.	56	J
		1	AHORRO DE ENE	RGIA,	UNA VEL	OCIDAD, P	OTENCIA MEJORADA -	60HZ		
011517	WFE-24	115/208-230	11,2/6,0-5,6	1	1,25	1,25	UL1, NSF2	2 pulg. x 2 pulg.	41	F
011518	WFE-26	115/208-230	14,8/7,8-7,4	1-1/2	1,10	1,65	UL 1, NSF 2	2 pulg. x 2 pulg.	46	G
011519	WFE-28	208-230	9,6-8,8	2	1,10	2,20	UL1, NSF2	2 pulg. x 2 pulg.	54	Н
011520	WFE-30	208-230	11,0-10,2	2-1/2	1,04	2,60	UL ¹ , NSF ²	2 pulg. x 2 pulg.	55	1
			EFICIENCIA ES	TÁNDA	R, UNA	/ELOCIDAD	, PLENA POTENCIA - 60	HZ		
011578	WF-2	115/230	10,8/5,4	1/2	1,95	0,95	UL1, NSF2	2 pulg. x 2 pulg.	41	Ε
011579	WF-3	115/230	14,2/7,1	3/4	1,67	1,25	UL ¹ , NSF ²	2 pulg. x 2 pulg.	41	F
011580	WF-4	115/230	16,0/8,0	1	1,65	1,65	UL1, NSF2	2 pulg. x 2 pulg.	46	G
011581	WF-6	115/230	22,4/11,2	1-1/2	1,50	2,25	UL1,NSF2	2 pulg. x 2 pulg.	54	Н
011582	WF-8	230	11,5	2	1,30	2,60	UL1, NSF2	2 pulg. x 2 pulg.	55	1
011583	WF-12	230	14,1	3	1,15	3,45	UL ¹ , NSF ²	2 pulg. x 2 pulg.	56	J
		ı	EFICIENCIA ESTÁ	NDAR,	UNA VEI	LOCIDAD, P	OTENCIA MEJORADA -	60HZ		
011771	WF-23	115/230	10,8/5,4	3/4	1,24	0,93	UL1, NSF2	2 pulg. x 2 pulg.	41	E
011772	WF-24	115/230	14,2/7,1	1	1,24	1,24	UL1,NSF2	2 pulg. x 2 pulg.	41	F
011773	WF-26	115/230	16,0/8,0	1-1/2	1,10	1,65	UL ¹ , NSF ²	2 pulg. x 2 pulg.	46	G
011774	WF-28	115/230	22,4/11,2	2	1,10	2,20	UL1, NSF2	2 pulg. x 2 pulg.	54	Н
011775	WF-30	230	11,5	2-1/2	1,04	2,60	UL ¹ , NSF ²	2 pulg. x 2 pulg.	55	- 1

Dimensiones y rendimiento

ANEXO F

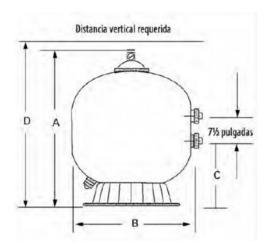
Catálogo Pentair, filtros para piscina.

Filtros de montaje lateral Triton™ II Filtro de arena de fibra de vidrio sin válvulas

PENTAIR

Filtro de montaje lateral Triton II

Características principales


- Cerramiento para trabajo pesado que brinda una inspección sencilla, y presenta un medidor de presión de fácil lectura con válvula de descarga de aire.
- Difusor pivotante que permite el acceso instantáneo a la arena y a todas las
- Todas las piezas internas están roscadas para facilidad de servicio.
- Purga de aire interno.
- Los conectores de tabique divisorio están roscados para una instalación y servicio más sencillos.
- El drenaje de combinación de arena y agua hace que el servicio y acondicionamiento para el invierno sean rápidos y sencillos.
- Máxima presión operativa 50 psi.

Información para órdenes

		Area de			Capacidad	de filtración	(en galones)	Material	Filtrante	Total de		
Producto	Modelo	filtración efectiva (pies cuadrados)	Indice de flujo (GPM)	Indice de flujo (GPM Com.)	8 horas	10 Hora	12 Hora	Grava requerida (libras)	Arena requerida (libras)	arena requerida (libras)	Cantidad por caja	Peso de cajas (libras
					FILTROS	DE ARENA TE	RITONII					
140236	TR 40	1,92	38	38	18.240	22.800	27.360	50	125	175	1	25
140249	TR 50	2,46	49	49	23.520	29.400	35.280	50	175	225	1	34
140264	TR 60	3,14	63	63	30.240	37.800	45.360	75	250	325	1	40
140210	TR 100	4,91	98	74	47.040	58.800	70.560	150	450	600	1	65
140243	TR 140	7,06	141	106	67.680	84.600	101.520	275	650	925	1	75
				0	PCIONES D	E VÁLVULA	TRITON II 1					
261173	MPV de 1-	1/2 pulgadas, pa	ara filtros o	le arena (SM 1	0-3)						1	6
263079	Válvula de	corredera de P	VC de 2 pu	lgadas sin plo	mería para i	filtros D.E. y d	e arena				1	3
261049	Válvula Hi	Flow de 2 pulga	das, sin pl	omería							1	7
261050	Válvula Hi	Flow de 2 pulga	das con pl	omería, para	filtros de are	na					1	11
261055	MPV de 2	pulgadas, para f	iltros de a	rena (SM 20-3)						1	10
263064	Válvula de	vaivén, con cen	ntro de 7-1	2 pulgadas, F	VC almendr	a					1	5

Dimensiones y rendimiento

	TAB	LA DE DIMEN	NSIONES	
MODELO	DIM. A	DIM. B	DIM. C	DIM. D
TR 40	30-1/2 Pulgadas	19-1/2 Pulgadas	10-3/4 Pulgadas	32-1/2 Pulgadas
TR 50	34-3/4 Pulgadas	21-1/2 Pulgadas	11-7/8 Pulgadas	36-3/4 Pulgadas
TR 60	35-1/2 Pulgadas	24-1/2 Pulgades	13-5/8 Pulgadas	37-1/2 Pulgadas
TR 100	39-3/4 Pulgadas	30.1/2 Fulgadas	16-1/4 Pulgadas	41 -3/4 Pulgadas
TR 140	45-1/4 Pulgadas	36-1/2 Pulgadas	18-3/4 Pulgadas	47-1/4 Pulgada

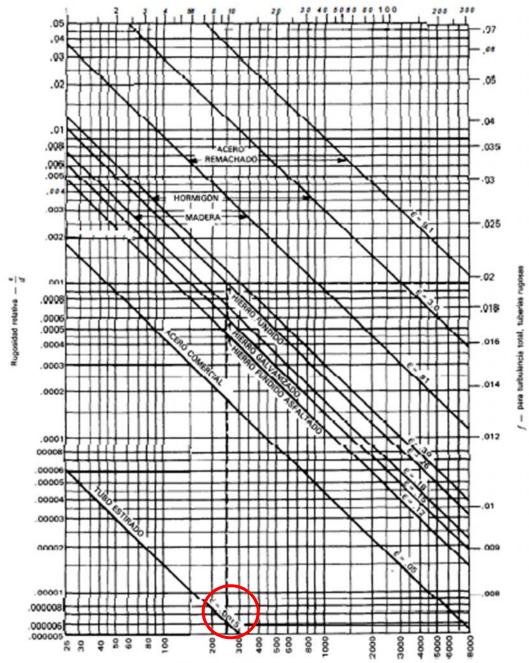
ANEXO G

Catálogo de Mark Peerless

TABELA DE PERDA DE CARGA EM TUBOS DE PVC

Cálculos baseados na fórmula de Hazen Williams Q=0,2785.C.D*2,63.j*0,54

				DIÂN	METRO N	OMINAL	DA TUBUL	AÇÃO					
Polegadas	1/2	3/4	1	1.1/4	1.1/2	2	2.1/2	3	4	5	6	8	10
nterno mm	20	25	32	40	50	60	75	85	110	140	160	200	250
azão (m³/h)						CONTRACTOR OF						185 N AS	1
0,5	3.0 10.7	1,0	0,3	0,3	0,1	TYLES!						September 1	
1,5	22,8	7.4	2,1	0,7	0,1	THE REAL PROPERTY.	No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other pa		100000000000000000000000000000000000000			000000	PORTE BOX
2	38,8	12,6	3,5	1,1	0,4	-0,2	Sec. 15-1172				MISHIS	ACCOUNT OF	Year
2,5		19,1	5,3 7,5	1,7	0,6	0,2	0,1						E SECTION AND ADDRESS OF THE PARTY OF THE PA
3,5		35,6	10,0	3,2	E 21,1	0,4	0,1				TO THE OWNER	an water	I CONTRACT
4	MANAGE AND ADDRESS OF THE PARTY	45,6	12,8	4,0	1,4	0,6	0,2					2000	1/20095
4,5			15,9 19,3	5,0 6,1	1,7	0,7	0,2	0.1					10000
5,5		TO SERVE	23,0	7,3	2,5	1.0	0.3	0,2	STEROIS .		EULE BER	STREET	10000
6	DOMESTIC STATE OF THE PARTY AND THE PARTY AN	DEDICAMENTAL	27,0	8,6	2,9	1,2	0,4	0,2	CONTRACTOR OF THE PARTY OF THE				
6,5			31,3 35,9	9,9	3,3	1,4	0,4	0,2					
7,5			40,8	12,9	4.4	1.8	0,6	0,3				SHEE	1000
8		Mary Control	46,0	14,6	4,9	2,0	0,7	0,4	0,1				
8,5 9	STEEL STATE OF THE			16.3 18.1	5,5 6,1	2,5	0,7	0.4	0.1			Maria Maria	
9.5	Marie Sale	SER E	M. Serial	20,0	6,8	2,7	0,9	0,5	0.1			ISONE EL	TO THE
10 12	MORNEY TOWNS THE S	STATE OF THE PARTY	SECTION AND ADDRESS.	22,0	7,4	3,0 4,2	1,0	0,5	0,2	-8-14	N. W. S.	437720	
14				41,1	13.9	5,6	1,4	0,7	0,2				
16		A PROPERTY.			17,8	7,2	2.4	1,3	0.4	0,1			N TO SERVICE
18		BIN SILEN			22,1 26.8	8,9	2,9	1,6	0,5	0,1			1000
22	1000 March 1980				32.0	12.9	4,3	1,9	0.5	0,2	0.1		1
24			DESCRIPTION OF THE PERSON OF T	MEDITE:	37,6	15,2	5.0	2.7	0,8	0,2	0,1	RESERVED IN	1000
26 28		FEVERAL STATES	ALCO AND DESCRIPTION OF THE PERSON OF T		43,6	17,6 20,2	5,8	3,1	0,9	0,3	0,1		
30						23,0	6,6 7,6	3,6	1,0	0,3	0,2		
32	SSS	SHEETIN	松河东西湖	THE SERVICE OF THE PARTY OF THE	THE RES	25,9	8,5	4,6	1,3	0,4	0,2		200
34 36	AND DESCRIPTION OF THE PARTY OF		A CONTRACTOR OF THE PARTY OF TH		Maria Cara	29,0 32,2	9,5	5,1	1,5	0,5	0,2	5-053-50	at messaltipes
38						35,6	11,7	5,7 6,3	1,6	0,5	0.3	200	E SECTION
40					15555	39,1	12,9	6,9	2.0	0,6	0,3	0,1	E MESO
45 50	and the last of the			Constant Trans	THE RESIDENCE OF	48,7	16.0	8,6 10,5	2,5	0,8	0,4	0,1	PRESIDE
55	Service Control			In State State			23.2	12.5	3,6	1.1	0,6	0.2	The state of
60				斯里斯			27.3	14,7	4,2	1,3	0.7	0,2	D COMP
65	Destartment	SERVICE COMPA			ACCRECATE AND AC	NAME OF TAXABLE PARTY.	31,6 36,3	17,1	4,9	1,5	0,8	0,3	TO STATE OF THE PARTY OF
75	100125-152		STATE OF STATE OF				41,2	19.6	6,3	2,0	0,9	0,3	0
80		E DE			REPORT OF		46,4	25,0	7,1	2.2	1,2	0.4	0
85 90	\$30000000				MESSAGE SALE	1300000000	B1000000000000000000000000000000000000	28,0 31,2	8,0 8,9	2.5	1,3	0,4	0
95							Zinceria	34,4	9,8	3.0	1,6	0,5	0
100								37,9	10,8	3,3	1,7	0,6	0
140	THE PERSON NAMED IN			MEDICAL PROPERTY.	THE RESIDENCE OF	NEEDS OF	100 miles		15,1	6,2	2.4	0.8	0
160				A STATE OF		285		20020320	25,8	8,0	4,2	1,4	0
180									32,1	9,9	5,2	1.7	0
220	MARKET STATES		SECTION AND ADDRESS.	STORESTON.		STREET, STREET	DISSESS.	TO SHOW THE	46.5	14,4	7,5	2.5	0 1225
240		心海红湖	and the			12:50	E		ALTERNO SEL	16,9	8,8	3.0	125
260 280	KARIO S			na fórmula	de Hazen-V	Villiams		or standard	BULL	19,6 22,5	10,2	3,4	
300	THE REAL PROPERTY.	Q = vaz	zão em (m³/l	n)	an)		- Constitution	Biological State		25,6	13,4	4.5	1
320		D = diá	metro em (r	dia em (m/se n)	(A)	5		A LANGE		28,9	15.0	5,1	
340 360		J = per	da de carga	unitária (m/	m)	- E	BANK BANK	a calcinate	59-000	32,3	16,8	5,7 6,3	1
380	EDSOCIOES !			depende d das paredes		material,	STEE STEEL		THE PARTY	39,7	20,7	7.0	2
400		-		2000	- Company	De Transport	100		5.1	43,6	22,7	7,7 9,5	2
450 500	OBS.	: Em se tratar	ido de tubos u	sados, deve-s	e acrescentar	3% aos valore	s acima	美国科学			28,3 34,4	9,5	3
550	para para	cada ano de	uso da tubula	ção. Quando los, as perda	forem utiliza	dos tubos pi	ásticos		Total Control	100	41.0	11,6	3
600	aprox	imadamente,	não se aplicar	ndo entretanto				C 45 450			48,2	16,2	5
650 700		gates rápidos tubulação de		tilizar os vaior	es abaixo da	linha em neor	to para	2000			A PROPERTY.	18.8	6
750	não u	iltrapassar a v	elocidade de	1,8 m/s.	1000	-	and the same	THE RESIDENCE OF THE PARTY OF T	1451255	100000	March 1979	21,6	7


Flujo de fluidos en válvulas, accesorios y tuberías de Crane.

APÉNDICE A - PROPIEDADES FÍSICAS DE ALGUNOS FLUIDOS Y CARACTERÍSTICAS DEL FLUJO EN VÁLVULAS, ACCESORIOS Y TUBERÍAS

A = 41

A-21a. Rugosidad relativa de los materiales de las tuberías Y factor de fricción para flujo en régimen de turbulencia total

Diámetro interior de la tuberia en milmetros - «

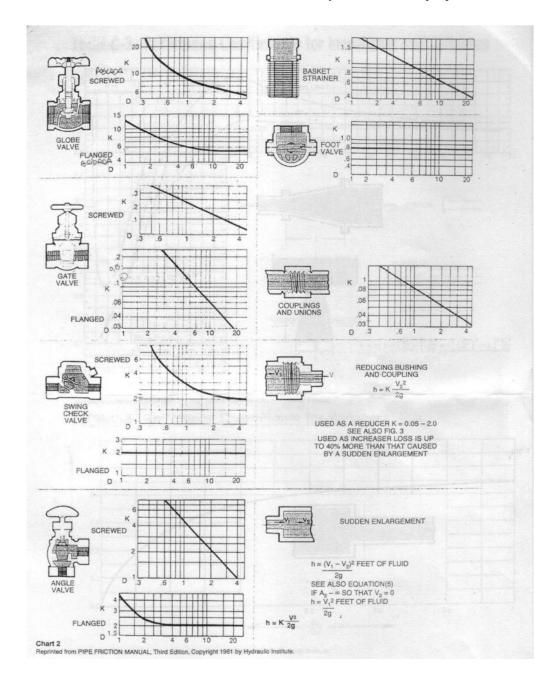
(La ugosidad absoluta g en milimetros)

CRANE

Adaptación de datos extraidos ce la referencia 18 de la Bibliografia. Problema: Determinense las rugosidades absoluta y relativa y el factor de rozamiento para flujo en turbulencia total, en una tuberia de hierro fundido de 250 mm de diámetro interior. Solución: La rugosidad absoluta $(\varepsilon) = 0.26...$ Rugosidad relativa $(\varepsilon/d) = 0.001$. .Factor de fricción para flujo en régimen de turbulencia total (f) = 0.0196

ANEXO I

Pérdidas secundarias de tubería PVC - PLASTIGAMA


PÉRDIDAS DE CARGA EN ACCESORIOS DE PVC

Pérdidas de fricción en accesorios, convertidas a metros de longitud de tubería de PVC.

DIÁMETRO NOMINAL		20	25	32	40	50	63	75	90	110	160	200
PÉRDIDAS DE CARGA							(m)					
TEE		0.70	08.0	0.90	1.50	2.20	2.30	2.40	2.50	2.60	3.60	5.00
CODO 90°		1.10	1.20	1.50	2.00	3.20	3.40	3.70	3.90	4.30	5.40	5.50
CODO 45°		0.40	0.50	0.70	1.00	1.30	1.50	1.70	1.80	1.90	2.60	3.50
CODO 90° L/R		0.40	0.50	0.60	0.70	1.20	1.30	1.40	1.50	1.60	2.10	2.60
CODO 45° L/R	1	0.20	0.30	0.40	0.50	0.60	0.70	08.0	0.90	1.00	1.20	1.40
VÁLVULA CHECK		2.50	2.70	3.80	4.90	6.80	7.10	8.20	9.30	10.40	13.90	17.60
VÁLVULA DE BOLA	40	11.10	11.40	15.00	22.00	35.80	37.90	38.00	40.00	42.30	56.70	72.10
VÁLVULA DE COMPUERTA		0.10	0.20	0.30	0.40	0.70	0.80	0.90	0.90	1.00	1.20	1.40

ANEXO J

TECH-C2, coeficientes de resistencia para válvulas y ajustes.

ANEXO K

Datos tomados del turco en el Complejo Vulcano Green.

	TEMPERATUR	A Y HUMEDAD E	N EL INTERIOR	R DEL TURCO		
	Sitio					-
	tomado	Fechas	11/05/2013	12/05/2013	Promedio	
	Exterior del					
	turco		13.4	13.5	13.5	
	Interior del					
	turco	T	37.0	37.0	37.0	
	Cuarto de	Temperatura				
	espera		24.8	24.7	24.8	
	Cuarto al					
	sauna		28.5	28.5	28.5	
	Interior del	11				
	turco	Humedad	78.0	79.0	78.5	
						Ambiente interior
	Darad 1	Tomnerstore	37	37	37	del turco
	Pared 1	Temperatura				Ambiente exterio
			24.8	24.8	24.8	cuarto de espera
						Ambiente interior
			37	37	37	del turco
	Pared 2	Temperatura				Ambiente exterio
Termo			24.8	24.8	24.8	cuarto de espera
nigrómetro						Ambiente interior
J		_	37	37	37	del turco
	Pared 3	Temperatura				Ambiente exterio
			13.5	13.5	13.5	del complejo
						Ambiente interior
	_		37	37	37	del turco
	Pared 4	Temperatura				Ambiente Interior
			28.5	28.5	28.5	del sauna
						Ambiente interior
	1_	_	37	37	37	del turco
	Puerta	Temperatura			1	Ambiente exterio
			24.8	24.8	24.8	cuarto de espera
						Ambiente interior
			37	37	37	del turco
	Piso	Temperatura				Ambiente exterio
			12.2	12.2	12.2	piso
						Ambiente interior
			37	37	37	del turco
	Techo	Temperatura				Ambiente exterio
			24.8	24.8	24.8	techo

ANEXO L
Osanger, densidad del aire a diferentes temperaturas.

Altitud	DENSIDAD (Kg/Mt3)							
(Mt)	0°C	5°C	10°C	15 °C	25 °C	30 °C	35 °C	.40 °€
0	1,28	1,25	1,23	1,21	1,17	1,15	1,12	1,10
500	1,21	1,19	1,17	1,15	1,11	1,09	1,07	1,05
1000	1,14	1,12	1,1	1,08	1,05	1,03	1,01	0,99
1500	1,07	1,06	1,04	1,02	0,98	0,97	0,95	0,92
2000	1,01	0,99	0,97	0,96	0,92	0,91	0,89	0,87
2500	0,94	0,92	0,91	0,89	0,86	0,85	0,83	0,81
3000	0,87	0,86	0,84	0,83	0,8	0,79	0,77	0,76
3500	0,81	0,79	0,78	0,76	0,74	0,73	0,71	0,69
4000	0,74	0,73	0,71	0,7	0,68	0,67	0,65	0,64
4500	0,67	0,66	0,65	0,64	0,62	0,61	0,60	0,59
5000	0,61	0,6	0,58	0,57	0,56	0,55	0,53	0,52
5500	0,54	0,53	0,52	0,51	0,50	0,49	0,48	0,46
6000	0,47	0,47	0,45	0,44	.0,44	0,43	0,42	0,41
6500	0,40	0,40	0,39	0,38	0,37	0,36	0,36	0,35

Propiedades termodinámicas de gases a presión atmosférica, Apuntes de transferencia de calor.

ANEXO M

T		C _p	$\mu \cdot 10^7$	v · 106	k · 103	cr - 10%	
(K)	(kg/m^3)	(kJ/kg·K)	$(N \cdot s/m^2)$	(m ² /s)	(W/m·K)	(m ² /s)	Pre
Aire							1
100	3.5562	1.032	71.1	2.00	9.34	2.54	0.736
150	2.3364	1.012	103.4	4.426	13.8	5.84	0.758
200	1.7458	1.007	132.5	7.590	18.1	10.3	0.737
250	1.3947	11.006	159.6	11.44	22.3	15.9	0.720
300	1.1614	1.007	184.6	15.89	26.3	22.5	0.707
		7					
350	0.9950	1.009	208.2	20.92	30.0	29.9	0.700
400	0.8711	1.014	230.1	26.41	33.8	38.3	0.690
450	0.7740	1.021	250.7	32.39	37.3	47.2	0.686
500	0.6964	1.030	270.1	38.79	40.7	56.7	0.684
550	0.6329	1.040	288.4	45.57	43.9	66.7	0.683
					-//		
600	0.5804	1.051	305.8	52.69	46.9	76.9	0.685
650	0.5356	1.063	322.5	60.21	49.7	87.3	0.690
700	0.3330	1.075	338.8	68.10	52.4	98.0	0.695
750	0.4643	1.087	354.6	76.37	54.9	109	0.702
800	0.4354	1.007	369.8	84.93	57.3	120	0.702
000	0.4334	1.099	309.0	,04.93	51.5	120	0.709
850	0.4097	1.110	384.3	93.80	59.6	131	0.716
900	0.3868	1.121	398.1	102.9	62.0	143	0.720
950	0.3666	1.131	411.3	112.2	64.3	155	0.723
1000	0.3482	1.141	424.4	121.9	66.7	168	0.726
1100	0.3166	1.159	449.0	141.8	71.5	195	0.728
1200	0.2902	1.175	473.0	162.9	76.3	224	0.728
1300	0.2679	1.189	496.0	185.1	82	238	0.719
1400	0.2488	1.207	530	213	91	303	0.703
1500	0.2322	1.230	557	240	100	350	0.685
1600	0.2177	1.248	584	268	106	390	0.688
							teon
1700	0.2049	1.267	611	298	113	435	0.685
1800	0.1935	1.286	637	329	120	482	0.683
1900	0.1833	1.307	663	362	128	534	0.677
2000	0.1741	1.337	689	396	137	589	0.672
2100	0.1658	1.372	715	431	147	646	0.667
2200	0.1582	1.417	740	468 .	160	714	0.655
2300	0.1582	1.478	766 •	506			
2400		1.478	792	547	175 196	783	0.647
2500	0.1448		818	589		869	0.630
3000	0.1389	1.665 2.726	955	841	222 486	960 1570	0.613

ANEXO N

Propiedades del vapor húmedo.

VAPOR DE AGUA HUMEDO

Temperatura °C	Den: Kg/	sidad m³		And the state of t		Viscosidad dinámica η.10³ (Kg/m.seg		Número de Prandt Pr		
	Líquido	Vapor	Líquido	Vapor	Líquido	Vapor	Líquido	Vapor	Líquido	Vapor
0	1000	0,0049	4,21	1,86	0,569	0,0163	1,75	0,0085	13,00	0,97
5	1000	0,0068	4,20	1,86	0,578	0,0167	1,50	0,0087	10,90	0,96
10	1000	0,0094	4,19	1,86	0,587	0,0171	1,30	0,0088	9,29	0,96
15	999	0,0128	4,19	1,87	0,595	0,0175	1,14	0,0090	7,99	0,96
20	998	0,0173	4,18	1,87	0,603	0,0179	1,00	0,0092	6,95	0,96
25	997	0,0230	4,18	1,88	0,611	0,0183	0,89	0,0094	6,09	0,96
30	996	0,0304	4,18	1,88	0,618	0,0187	0,80	0,0095	5,39	0,96
40	992	0,0512	4,18	1,89	0,632	0,0195	0,59	0,0100	3,89	0,95
60	983	0,130	4,19	1,91	0,653	0,0212	0,46	0,0106	2,97	0,95
80	972	0,293	4,20	1,95	0,670	0,0229	0,351	0,0113	2,20	0.96
100	958	0,598	4,22	2,01	0,681	0,0248	0,279	0,1120	1.73	0.97
125	939	1.30	4,26	2,12	0,687	0,0273	0,220	0,0130	1.36	1,01
150	917	2,55	4,32	2,29	0,687	0,0300	0,181	0,0139	1,14	1,07
200	865	7,86	4,51	2,91	0,665	0,0375	0,134	0,0157	0,91	1,22
250	799	19,98	4,87	3,94	0,616	0,0495	0,107	0,0175	0,85	1,39
300	712	46,19	5,65	6,18	0,541	0,0720	0,085	0,0198	0,89	1,70

ANEXO O

Datos tomados de la sauna en el Complejo Vulcano Green.

	TEMPERATURA	Y HUMEDAD EI	N EL INTERIOR	DEL SAUNA		
	Sitio tomado	Fechas	11/05/2013	12/05/2013	Promedio	
	Exterior turco		13.5	13.5	13.5	
	Interior turco	Temperatura	28.5	28.5	28.5	
	Cuarto espera	remperatura	24.6	24.6	25.6	
	Cuarto al turco		37.0	37.0	37.0	
	Interior turco	Humedad	77.0	77.0	77.0	
	Pared 1		28.5	28.5	28.5	Ambiente interior sauna
		Temperatura	24.6	24.6	24.6	Ambiente exterior cuarto espera
		Pared 2 Temperatura	28.5	28.5	28.5	Ambiente interior sauna
Termo higrómetro	Pared 2		24.6	24.6	24.6	Ambiente exterior cuarto espera
			37.0	37.0	37.0	Ambiente interior sauna
	Pared 3	Temperatura	13.5	13.5	13.5	Ambiente exterior complejo
	Down d 4	Tomoroundtour	28.5	28.5	28.5	Ambiente interior sauna
	Pared 4	Temperatura	37.0	37.0	37.0	Ambiente Interior turco
	Puerta		37.0	37.0	37.0	Ambiente interior sauna
		Temperatura	24.8	24.8	24.8	Ambiente exterior cuarto espera

Poder calorífico de diferentes sustancias.

ANEXO P

Combustiveis		Poder Calorif	ico Inferior (F	PCI) [1]			Poder Ca	lorifico Sup	erior (PC	S) [1]	Densidade	
Gasosos @ 0 C and 1 atm	Btu/ft3 [2]	Btu/lb [3]	MJ/kg [4]	kWh/kg	kcal/kg	Btu/ft3 [2]	Btu/lb [3]	MJ/kg [4]	kWh/kg	kcal/kg	grams/ft3	g/m3
Gás Natural	983	20.267	47	13	11.259	1.089	22.453	52	15	12.474	22	777
Hidrogênio	290	51.682	120	33	28.712	343	61.127	142	39	33.959	3	90
Gás Refinaria	1.458	20.163	47	13	11.201	1.584	21.905	51	14	12.169	33	1.158
Líquidos	Btu/gal [2]	Btu/lb [3]	MJ/kg [4]	kWh/kg	kcal/kg	Btu/gal [2]	Btu/lb [3]	MJ/kg [4]	kWh/kg	kcal/kg	grams/gal	g/cm3
Petróleo Cru	129.670	18.352	43	12	10.195	138.350	19.580	46	13	10.878	3.205	0,847
Gasolina	116.090	18.679	43	12	10.377	124.340	20.007	47	13	11.115	2.819	0,745
Reformulated or low-sulfur gasoline	113.602	18.211	42	12	10.117	121.848	19.533	45	13	10.851	2.830	0,747
CA reformulated gasoline	113.927	18.272	42	12	10.151	122.174	19.595	46	13	10.886	2.828	0,747
Diesel	128.450	18.397	43	12	10.221	137.380	19.676	46	13	10.931	3.167	0,837
Diesel baixo enxofre	129.488	18.320	43	12	10.178	138.490	19.594	46	13	10.885	3.206	0,847
Petroleum naphtha	116.920	19.320	45	12	10.733	125.080	20.669	48	13	11.482	2.745	0,725
NG-based FT naphtha	111.520	19.081	44	12	10.601	119.740	20.488	48	13	11.382	2.651	0,700
Residual oil	140.353	16.968	39	11	9.426	150.110	18.147	42	12	10.082	3.752	0,991
Methanol	57.250	8.639	20	6	4.799	65.200	9.838	23	6	5,466	3.006	0,794
Ethanol	76.330	11.587	27	7	6.437	84.530	12.832	30	8	7.129	2.988	0,789
Butanol	99.837	14.775	34	10	8.208	108.458	16.051	37	10	8.917	3.065	0,810
Acetone	83.127	12.721	30	8	7.067	89.511	13.698	32	9	7.610	2.964	0,783
E-Diesel Additives	116.090	18.679	43	12	10.377	124.340	20.007	47	13	11.115	2.819	0,745
Liquefied petroleum gas (LPG)	84.950	20.038	47	13	11.132	91.410	21.561	50	14	11.979	1.923	0,508
Liquefied natural gas (LNG)	74.720	20.908	49	14	11.616	84.820	23.734	55	15	13.186	1.621	0,428
Dimethyl ether (DME)	68.930	12.417	29	8	6.898	75.610	13.620	32	9	7.567	2.518	0,665
Dimethoxy methane (DMM)	72.200	10.061	23	7	5.590	79.197	11.036	26	7	6.131	3.255	0,860
Methyl ester (biodiesel, BD)	119.550	16.134	38	10	8.963	127.960	17.269	40	11	9.594	3.361	0,888
Fischer-Tropsch diesel (FTD)	123.670	18.593	43	12	10.329	130.030	19.549	45	13	10.861	3.017	0,797
Renewable Diesel I (SuperCetane)	117.059	18.729	44	12	10.405	125.294	20.047	47	13	11.137	2.835	0,749
Renewable Diesel II (UOP-HDO)	122.887	18.908	44	12	10.504	130.817	20.128	47	13	11.182	2.948	0,779
Renewable Gasoline	115.983	18.590	43	12	10.328	124.230	19.911	46	13	11.062	2.830	0,748
Liquid Hydrogen	30.500	51.621	120	33	28.678	36.020	60.964	142	39	33.869	268	0,071
Methyl tertiary butyl ether (MTBE)	93.540	15.094	35	10	8.385	101.130	16.319	38	11	9.066	2.811	0,743
Ethyl tertiary butyl ether (ETBE)	96.720	15.613	36	10	8.674	104.530	16.873	39	11	9.374	2.810	0,742
Tertiary amyl methyl ether (TAME)	100.480	15.646	36	10	8.692	108.570	16.906	39	11	9.392	2.913	0,770

ANEXO Q

Catálogo MAGEN, eco – energy, Heliocol colector solar.

Características Únicas del Heliocol Forma Cilíndrica Aletas Tecnología de Inyección de Todas las partes son redondeadas, sin Proporcionan fuerza añadida a la Sobremoldeado unidad evitando la expansión ángulos vivos, a fin de evitar la Proceso de inyección único que térmica diferencial y la distorsión del concentración de tensiones o el riesgo conecta los tubos verticales al colector de reventón a altas presiones. para crear un panel que es teralmente una pieza única de plástico. Material Especialmente Formulado Probado en laboratorios autorizados, Diseño de los de demostrada estabilidad frente a Tubos Individuales los efectos de una radiación UVcontinua, condiciones Minimiza los efectos del meteorológicas extremas y viento sobre el panel y envejecimiento. crea una extraodinaria iterestations. estabilidad mecánica. Pinzas Cocodrilo Montan firmemente el panel a **Barras Espaciadoras** cualquier tipo de techo con una Evitan la distorsión del panel con el mínima penetración. tiempo y la abrasión de los tubos verticales debida a la expansión térmica del panel. Partes y Accesorios Estructura Modular Fabricados enteramente en plástico, Permite una conexión rápida y para una sencilla conexión entre los firme entre paneles, para crear paneles y tuberías estándar. cualquier área de absorción

Dimensiones y Parámetros de Diseño

Tipo de Colectores		HC-50 1.2x3.85m 4'x12.5'	HC-40 1.2x3.23m 4'x10.5'	HC-38 1.2x2.92m 4'x10'	HC-30 1.2x2.31m 4'x8'
No. Cat de M.E.E		127112	127111	127110	127108
Largo	m	3,85	3,23	2,92	2,31
Ancho	m	1.2	1.2	1.2	1.2
Superficie	m²	4,65	3,85	3,52	2,77
Peso "Seco"	Kg.	10	8.5	8.2	6.8
Capacidad	Lit.	14.4	11.7	11.4	7.1
Peso "Húmedo"	Kg.	24	20.5	19.6	15.8
No. de Espaciadores	*	12	10	9	7
Peso de Área Llena	Kg./m²	5.16	5.3	5.3	5.7
Rec. Velocidad de Flujo	Lit./hr	1200	900	900	720

deseada sobre cualquier tipo de

techo

Caída de Presión en el Panel vs. Velocidad de Flujo [mbar]=0.00003 x (I/h)2 + 0.0134(I/h) + 0.2343 100 E 80 Presión 60 40 -6 20 Caida 0 750 1000 1250 Velocidad de Flujo [L/h]

Certificación de Contacto con Productos Alimenticios y Agua Potable

El polipropileno está certificado para ser usado con agua potable de acuerdo con el estándar estadounidense NSF-61, y el alemán DVGW-W270; y para contacto con productos alimenticios según la especificación del estándar sutzo KsV-817041 y el británico SI2000-3162.

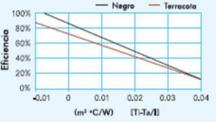
Resistencia Química

El polipropileno es altamente resistente a: corrosión, sarro, cloro, bromo, lodo, ácido clorhídrico, sales, agua de mar y otros desinfectantes de piscinas.

Índice de Rendimiento de F.S.E.C y Producción Diaria de Energía

Temperatura de l Agua	Modelo/ Unidades	H.C-50	H.C-40	H.C-38	H.C-30
	kJ/día	48,600	41,000	37,000	29,400
Fria 35°C (95°F)	BTU/día	46,100	38,900	35,100	27,900
Madia 5010 (12215)	kJ/día	17,400	14,700	13,300	10,500
Media 50°C (122°F)	BTU/día	16,500	14,000	12,600	10,000

Gráfico de Eficiencia y Ecuaciones del Colector


(Verificado por F.S.E.C. según la norma ASHRAE 96-1989)

Negro	Terracota
η = 0.828 • 18.52 (Ti-Ta) / I	η = 0,727 - 15,59 (Τι-Τα) /
Unidades de (Ti-Ta)	/ ■ son [m² C/Watt]
η = 0.828 - 3.26 (Ti-Ta) / I	η = 0.727 - 2.75 (Ti-Ta) /
Unidades de (Ti-Ta)	/ I son [h / ft² F/BTU]

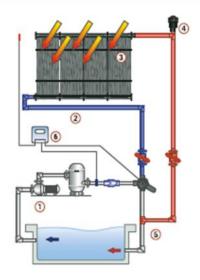

	*C	20	40	60
Temperatura del Agua	+F	68	104	140
Presión de Operación Máxima	bar	8	6	4
Recomendada	psi	120	90	60
Presión de Ruptura	bar	25	18	14
rresion de Kuptura	psi	360	260	200

Gráfico de Eficiencia de Heliocol Negro

¿Cómo Trabaja el Colector Solar?

- A través de una válvula motorizada controlada, la bomba de la piscina, ya existente, lleva el agua al Sensor Solar. Mediante las bombas de las piscinas existentes, el agua es dirigida a los colectores solares a través de una válvula motorizada controlada.
- El agua de la piscina ingresa a los colectores solares por la parte inferior y llega a la parte superior a través de los tubos individuales del colector.
- La energía solar calienta el agua a medida que fluye a través de los colectores.
- La Campana de liberación/evacuación de aire protege al sistema de la congelación.
- Luego, el agua caliente regresa a la piscina, y el ciclo se repite hasta que ha sido calentada suficientemente por el sol.
- El proceso de calentamiento solar es totalmente automático, utilizando un sensor de temperatura y un controlador diferencial.

ANEXO R

Aquarenovable

AQUARENOVABLE

DIEGO DE MENDEZ OE3-49 Y ULLOA 2235-966 / 2529-461 / 097651525 / 097651564 1792310067001

PROFORMA N° CTZ3903

Fecha: 17-dic-2013 Ruc: 9999999999

Cliente: SR. EDDY PACHECO Telefono

Direccion:

Vendedor: Katherine

CANTIDAD		DETALLE	PRECIO	TOTAL	Nro.
30.00	HC-40	PANEL SOLAR HELIOCOL 4X10.5 PIES (3.20 X1.20MTS) 3.8MCUADRADOS	228.88	6,866.40	1
1.00	HC-121B	VALVULA DE VACIO HELIOCOL BLANCA-GRIS	20.83	20.83	2
1.00	HC-121C	VALVULAS DESFOGE DE AIRE HELIOCOL NEGRA	20.83	20.83	3
72.00	HC-PKC	COLLARIN UNIDAD	9.44	679.68	4
12.00	HC-117	CONECTOR PARA TUBO CPVC HELIOCOL	8.07	96.84	5
12.00	HC-106A	TAPON FINAL HELIOCOL	5.38	64.56	6
1.00	HC-GLCTAB	CONTROL DIFERENCIAL GODL LINE GL-235	326.14	326.14	7
2.00	HC-GLCSEN	SENSOR GOLD LINE	34.52	69.04	8
1.00	MO	MANO DE OBRA PANELES SOLARES	1,800.00	1,800.00	9
1.00	MVI	MATERIALES VARIOS DE INSTALACION	1.800.00	1.800.00	10

	SUBTOTAL	11,744.32
CONTRIBUYENTE ESPECIAL	DESCUENTO	0.00
Resolucion. NACP-PCTRSGE12-00181 del 04/04/2012	IVA 12%	1,409.32
	TOTAL	13,153.64

ANEXO S

Análisis del agua de abastecimiento para la caldera.

LABORATORIO DE ANÁLISIS TÉCNICOS FACULTAD DE CIENCIAS

Casilla 06-01-4703

Telefax: 2998 200 ext 332

Riobamba - Ecuador

INFORME DE ANÁLISIS DE AGUAS

Análisis solicitado por: Srs. Alex Ruiz y Eddy Pacheco

Fecha de Análisis: 23 de diciembre del 2013

Fecha de Entrega de Resultados: 23 de Diciembre 2013

Tipo de muestras: Agua de abastecimiento al caldero de la piscina

Localidad: Complejo Turístico Vulcano Green

Código LAT/222-12

Análisis Químico

Determinaciones	Unidades	*Método	Resultados
pH	Und.	4500-B	6.9
Conductividad	μSiems/cm	2510-B	520.0
Dureza	mg/L	2340-C	216.0
Calcio	mg/L	2530-F	48.0
Alcalinidad	mg/L	2320-B	300.0
Sólidos Disueltos	mg/L	2530-D	335
Indice de Languelier			- 0.2

Observaciones: Agua ligeramente corrosiva

Atentamente.

Dra. Gina Álvarez R.

RESP. LAB. ANÁLISIS TÉCNICOS

Nota: El presente informe afecta solo a la muestra analizada

ANEXO T

Análisis del agua de la piscina.

LABORATORIO DE ANÁLISIS TÉCNICOS FACULTAD DE CIENCIAS

Casilla 06-01-4703

Telefax: 2998 200 ext 332

Riobamba - Ecuador

INFORME DE ANÁLISIS DE AGUAS

Análisis solicitado por: Srs. Alex Ruiz y Eddy Pacheco

Fecha de Análisis: 23 de diciembre del 2013

Fecha de Entrega de Resultados: 23 de Diciembre 2013

Tipo de muestras: Agua de piscina de recreación (Piscina Grande)

Localidad: Complejo Turístico Vulcano Green

Código LAT/222-12

Análisis Químico

Determinaciones	Unidades	*Método	**Limites	Resultados
pH	Und.	4500-B	6.5 - 8.5	7.84
Turbiedad	UNT	2550-B	15	4.2
Conductividad	μSiems/cm	2510-B		780.0
Cloro Residual	mg/L	4500-CI-G	max 3.0	0.4
Temperatura	°C	2550-B	< 30	26.8
Coliformes Totales	UFC/100mL	Compact	< 1000	Ausentes
Coliformes Fecales	UFC/100mL	Compact Dry	< 200	Ausentes

^{*}Métodos Normalizados. APHA, AWWA, WPCF 17 ed.

Observaciones:

Atentamente.

Dra. Gina Álvarez R.

RESP. LAB. ANALISIS TÉCNICOS

Nota: El presente informe afecta solo a la muestra analizada

^{**}TULAS TABLA 9. Límites para aguas de recreación por contacto directo

ANEXO U

Ablandador para el agua de alimentación de la caldera

ZEO-TECH WATER SOFTENERS

STANDARD FEATURES:

- . Single Unit Flows up to 925 apm
- FDA Approved Epoxy Lined Steel Tanks with 100 psig Design Pressure
- Top Mounted Manway
- Schedule 80 PVC Hub and Lateral Distributors
- Factory Assembled Diaphragm Valve Nest
- Steel External Piping
- Meter Initiated Regeneration
- Automatic Brine Float Valve
- Backwash Flow Controller

ADVANTAGES:

- Materials and Coatings Selected to Withstand Corrosive Environments
- Reliable, Low Restriction Valves
- Non-Clogging Distributors Allow Operation Over Wide Flow Rate Range and for Even Distribution
- Standard Designs Reduce Cost and Delivery Time
- Simple Operation Reduces
 Operator Training Requirements

OPTIONS:

- ASME Code Vessel
- · Butterfly Valves
- Stainless Steel or Fiberglass Pressure Tanks
- Salt Silo and Bulk Brining System
- Stainless Steel, Copper, PVC, or Galvanized External Piping
- Stainless Steel Internal Piping and Distributors
- Pre-piped and Wired Systems Mounted on Skid
- Interconnecting Piping Between Multiple Units
- · Manual Unit Isolation Valves
- Allen Bradley PLC

For Options Not Listed Here Please Contact Res-Kem Res-Kem Zeo-Tech Softeners are available in a wide range of selfcontained packages configured in single, double, and multiple unit systems to remove calcium and magnesium hardness from your water. Res-Kem Zeo-Tech Softeners are used for municipal, institutional, and industrial water softening applications. Single units are rated for flows up to 925 gpm. For larger flow rates, contact Res-Kem to determine whether larger or multiple units would be appropriate. Both options are available from Res-Kem.

Economical and efficient, Res-Kem Zeo-Tech Softeners can be equipped for manual, semi-automatic, or full-automatic operation. Regardless of the configuration, only limited technical expertise is required for operation. Res-Kem Zeo-Tech Softeners will integrate into a complete water treatment system without expensive custom field engineering and programming.

Triple 48" Diameter Softener System with Optional Stainless Steel Butterfly Valves, Piping, and Instrumentation

Why use an Industrial Water Softener?

Calcium and magnesium are hard scale forming minerals that build up on piping, heat exchangers, water heaters, boilers, and any steam equipment. This buildup results in costly repairs, increased energy consumption, plugged heat exchangers and boiler tubes.

The following facilities are examples of ideal applications for water softening equipment:

- Beverage Plants
- Boiler Feedwater
- Laundries
- Food Processing Plants
- Municipal Water Plants
- Hospitals
- Manufacturing Plants
- Institutions

FEATURES AND SPECIFICATIONS

Model Prefix	Vessel Diameter inches	Flow Rate Range	Resin Quantity cubic feet	400-000	y Range ins	Inlet/Outlet Pipe Size Range inches	Brine Tank Diameter x Height inches	Approximate Dimensions L x D x H inches
ZSO-20	20	26-54	5-7	150,000	210,000	1 to 1 ½	24x54	56x32x94
ZSO-24	24	37-75	7-10	210,000	300,000	1 1/2 to 2	24x54	60x36x94
ZSO-30	30	59-118	11-16	330,000	480,000	2 to 2 ½	30x60	72x42x98
ZSO-36	36	85-170	16-24	480,000	720,000	2 to 3	39x48	87x48x98
ZSO-42	42	115-230	21-32	630,000	960,000	2 1/2 to 3	50x60	104x54x101
ZSO-48	48	150-225	28-42	840,000	1,260,000	2 1/2 to 4	50x60	110x60x101
ZSO-54	54	190-380	36-53	1,080,000	1,590,000	3 to 4	60x46	126x66x110
ZSO-60	60	235-470	44-65	1,320,000	1,950,000	3 to 4	72x46	144x72x110
ZSO-66	66	285-570	53-79	1,590,000	2,370,000	3 to 4	72x46	150x78x110
ZSO-72	72	340-680	64-94	1,920,000	2,820,000	4 to 6	84x46	168x84x110
760 70	70	400 705	75 444	2,250,000	2 220 000	1 to 6	Not included	174v00v110
ZSO-84	84	460-925	87-128	2,610,000	3,840,000	4 to 6	Not Included	180x96x110

Flow Rate Range: Minimum Flow 12 gpm/ft2 to Maximum Flow 24 gpm/ft2 Resin Quantity: Bed Depth 27 – 40 inches Capacity Range: Regeneration Level is 15lbs NaCl /ft3

Parámetros de control de agua para caldera.

ANEXO V

PARÁMETROS DE CONTROL DE AGUA PARA CALDEROS				
AGUA DE ALIMENTACIÓN	1/2000			
Oxigeno Disuelto	< 0.05			
pH	> 8			
Dureza Total	< 70 ppm			
Aceites y/o grasas	Ausencia			
Sólidos Suspendidos	Ausencia			
Materia Orgánica	<0.5 ppm			
Sólidos Totales Disueltos (TDS)	< 300 ppm			
AGUA INTERNA DE LA CALDERA				
	30-50 ppm			
Fosfato (como PO4)	Max. 700 ppm			
Alcalinidad total (como CaCO ₃)	200-400 ppm			
Hidróxidos (como CaCO ₃)	10.5-12			
pH Sólidos Totales Disueltos (TDS)	900-3500 ppm			
Hierro (Máximo)	2 ppm			
Dureza	< 10 ppm			
Sulfitos	30-60 ppm			
Sílice (Máximo)	150 ppm como SiO ₂			
ppm = partes por millón				
ppin - partes por milion	ELECON VI			
elecon@hotmail.es ,	Telf: 072871093 Cuenca-Ecuador			

ANEXO W

Aislante térmico de fibra de vidrio

www.rufinonavarro.com

Exposición de baños y cocinas:

Almacén y oficinas:

C/ Solana 72 Esqu. C/ Azufre

28850 Torrejón de Ardoz (Madrid)

Tif: 91 678 10 74 Fax: 91 678 11 67

Tif: 91 656 60 07 Fax: 91 656 21 91

T

FIBRA DE VIDRIO

MANTA PAPEL M1021			URSA
m² Rollo fibra de vidrio con papel	11 x 1'2 m y 80 mm	13,20 m ² /rollo	2,15 €/m ²
	8'5 x 1'2 m y 100 mm	10,20 m ² /rollo	2,87 €/m ²
	6'5x1'2 m y 120 mm	7,80 m²/rollo	3,53 €/m²
MANTA FIELTRO M0021	-	•	URSA
m² Rollo fibra de vidrio desnudo	10 x 1'2 m y 80 mm	12 m ² /rollo	1.95 €/m ²
	8 x 1'2 m y 100 mm	9.60 m ² /rollo	2.56 €/m²
1 1 1 1	6 x 1'2 m y 120 mm	7,20 m ² /rollo	3,16 €/m ²
PANEL FIELTRO P0051		*	URSA
m ² Plancha fibra de vidrio	1'35 x 0'6 m y 50 mm	12'96 m ² /paq.	1.85 €/m ²
	1'35 x 0'6m y 60 mm	10°53 m²/paq.	2,21 €/m²
	1'35 x 0'6 m y 75mm	8'10 m ² /paq.	3,04 €/m ²
Plancha fibra de vidrio	1'35 x 0'6 m y 50 mm	Unidades sueltas	1,96 €/ud.
PANEL PAPEL P1051			URSA
m² Plancha fibra de vidrio con papel	1'35 x 0'6 y 60 mm	10,53 m ² /paq.	2,56 €/m ²
	1'35 x 0'6 y 75 mm	8'10 m ² /paq.	3,48 €/m²

URSA TERRA (Especial para tabiquería c	artón-yeso)			URSA
m² Rollo lana mineral	T 18 R	13'50 x 0'60m y 45mm	16,20 m ² /rollo	2,10 €/m ²
		10'80 x 0'60m y 65mm	12,96 m ² /rollo	2,70 €/m²
m² Plancha lana mineral	T 18 P	1'35 x 0'60m y 45mm	12,96 m ² /paq.	2,10 €/m²
		1,35 x 0'60m y 65mm	8,10 m ² /paq.	3,10 €/m²

PANEL URSA TERRA SOL (Aislamiento para suelos)	T 70 P			URSA
m² Plancha lana mineral		1'20 x 0'6 m y 20 mm	10,80 m ² /paq.	3,80 €/ m ²
	1	1'20 x 0'6 m v 20 mm	UNIDADES SUELTAS	3.50 €/ ud.

PANEL ARENA Especial para tabiquería cartón-yeso)			ISOVER
m² Plancha fibra de vidrio desnudo	1'35 x 0'6 m y 40 mm	14,58 m ² /paq.	2,77 €/ m ²
	1'35 x 0'6 m v 60 mm	12.96 m ² /pag.	4.18 €/ m ²