

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS CARRERA INGENIERÍA QUÍMICA

"DISEÑO DE UN PROCESO INDUSTRIAL PARA LA OBTENCIÓN DE ETANOL A PARTIR DE CAÑA DE AZÚCAR (Saccharum officinarum) PARA GELFRESH LAB"

Trabajo de Integración Curricular

Tipo: Proyecto Técnico

Presentado para optar al grado académico de:

INGENIERO QUÍMICO

AUTOR: SAMANTHA DANIELA GAIBOR GAIBOR

DIRECTOR: Ing. CÉSAR ARTURO PUENTE GUIJARRO PhD.

Riobamba-Ecuador

© 2021, Samantha Daniela Gaibor Gaibor

Se autoriza la reproducción total o parcial, con fines académicos por cualquier medio o procedimientos, incluyendo las citas bibliográficas del documento, siempre y cuando se reconozca el Derecho de Autor.

Yo, Samantha Daniela Gaibor Gaibor, declaro que el presente Trabajo de Integración Curricular es de mi autoría y que los resultados del mismo son auténticos y originales. Los textos constantes en el documento que provienen de otras fuentes están debidamente citados y referenciados. Como autora asumo la responsabilidad legal y académica de los contenidos de este Trabajo de Integración Curricular.

Riobamba, 10 de marzo de 2021

Samantha Daniela Gaibor Gaibor

C.I. 0202080313

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS CARRERA DE INGENIERÍA QUÍMICA

El Tribunal del Trabajo de Integración Curricular certifica que: el Trabajo de Integración Curricular: Tipo Proyecto Técnico, "DISEÑO DE UN PROCESO INDUSTRIAL PARA LA OBTENCIÓN DE ETANOL A PARTIR DE CAÑA DE AZÚCAR (Saccharum officinarum) PARA GELFRESH LAB" realizado por la señorita: SAMANTHA DANIELA GAIBOR GAIBOR, ha sido minuciosamente revisado por los Miembros del Trabajo de Integración Curricular, el mismo que cumple con los requisitos científicos, técnicos, legales, en tal virtud el Tribunal autoriza su presentación.

FIRMA FECHA

Ing. Danielita Fernanda Borja Mayorga, MSc.

2021-09-10

PRESIDENTE DEL TRIBUNAL

Ing. Cesar Arturo Puente Guijarro, PhD.

2021-09-10

DIRECTOR DEL TRABAJO DE INTEGRACIÓN CURRICULAR

Dr. Fabian Ernesto Arias Arias, PhD.

2021-09-10

MIEMBRO DEL TRABAJO DE

INTEGRACIÓN CURRICULAR

DEDICATORIA

El presente trabajo se lo dedico en primer lugar a Dios, quien me guío en el camino de la Ingeniería Química y quien no me permitió rendirme a lo largo de mi formación académica hasta el gran día, el día en que mi sueño de ser Ingeniera Química fuera realidad.

A mi mami, quien es mi inspiración de vida, quien me motiva día a día a esforzarme y a salir adelante como ella lo ha hecho a lo largo de su vida.

A mi papi, quien me ha apoyado a su manera en que debo luchar para que nadie me subestime.

A mis hermanos, Carla y Andrés, quienes me inspiran día a día a luchar por mi carrera para emprender siempre cosas nuevas entre los tres y que de seguro en un futuro lo lograremos.

A mis amigos, quienes me motivan a seguir adelante en mis proyectos con sus grandes frases que sacan sonrisas y un enorme estallido al corazón.

Samantha Daniela Gaibor Gaibor

AGRADECIMIENTO

Agradezco a Dios por ser mi pilar en mis momentos de debilidad. Sólo él sabe las veces que me he querido rendir y no lo he hecho porque me hizo fuerte y me hizo entender que rendirme no era una opción para poder lograr mis sueños.

A la Escuela Superior Politécnica del Chimborazo quien me formó para ser una excelente profesional en la carrera de Ingeniería Química desde el primer día en que empecé a estudiar.

A mi mami, quien me apoyó con los recursos necesarios para poder realizar el trabajo y estuvo en todos los momentos que le necesitaba a lo largo de este gran reto de convertirme en una profesional.

A mis hermanos, quienes me motivaron a dar mi último esfuerzo con todas las ganas posibles, de manera que ya sea toda una Ingeniera Química.

Al Ing. César Arturo Puente Guijarro PhD., quien aceptó apoyarme desde un inicio en mi Trabajo de Integración Curricular como director y me ha guiado en este proceso final de Ingeniería Química.

Al Ing. Fabián Ernesto Arias Arias, quien me apoyó siendo miembro de mi Trabajo de Integración Curricular y me supo guiar en todo lo que estuvo a su alcance para que lograra graduarme con éxito.

A los técnicos docentes de los diferentes laboratorios, el Ing. Mauricio Álvarez, la Ing. Patricia Layedra y la Ing. Carla Haro, quienes me apoyaron en los procesos del presente trabajo con sus recomendaciones y su guía.

A todos los docentes que me enseñaron las materias con dedicación y entusiasmo, motivándome a seguir adelante en mi estudio a lo largo de mi vida universitaria.

A mis amigos, quienes me ayudaron a confiar en mí misma de que lo lograré a mi tiempo y espacio, suavizando así el estrés de todo el proceso para convertirme en Ingeniera Química.

Samantha Daniela Gaibor Gaibor

TABLA DE CONTENIDOS

ÍNDIC	E DE TABLASxiii		
ÍNDICE DE FIGURASxvi			
ÍNDICE DE GRÁFICOSxvii			
ÍNDIC	ÍNDICE DE ANEXOSxviii RESUMENxix		
RESUN			
ABSTR	ACT ixg		
INTRO	DUCCIÓN1		
CAPÍT	ULO I		
1.	DIAGNÓSTICO DEL PROBLEMA2		
1.1.	Identificación del Problema		
1.2.	Justificación del Proyecto		
1.3.	Beneficiarios directos e indirectos		
1.3.1.	Beneficiarios Directos		
1.3.2.	Beneficiarios Indirectos		
1.4.	Objetivos4		
1.4.1.	Objetivo general4		
1.4.2.	Objetivos específicos		
1.5.	Localización del proyecto		
CAPÍT	ULO II		
2.	FUNDAMENTOS TEÓRICOS		
2.1.	Caña de azúcar		
2.1.1.	Composición		
2.1.1.1.	Composición de la materia insoluble		
2.2.1.2.	Composición del jugo		
2.1.2.	Producción8		
2.1.2.1.	Producción mundial		
2.1.2.2.	Producción en el Ecuador9		
2.1.3.	<i>Usos</i>		
2.2.	Alcohol		
2.2.1.	Tipos de alcohol		
2.2.1.1.	Etanol por su obtención		

2.2.1.2.	Etanol por su grado alcoholico	12
2.2.2.	Propiedades físicas del etanol	12
2.2.3.	Producción	13
2.2.3.1.	Producción a nivel mundial	13
2.2.3.2.	Producción en el Ecuador	13
2.2.4.	Usos	13
2.2.5.	Proceso de obtención de etanol por fermentación	14
2.2.5.1.	Lavado	14
2.2.5.2.	Molienda	15
2.2.5.3.	Clarificación	15
2.2.5.4.	Fermentación	15
2.2.5.5.	Destilación	16
2.2.5.6.	Deshidratación	16
CAPÍT	ULO III	
3.	MARCO METODOLÓGICO	17
3.1.	Tipo de estudio	17
3.2.	Métodos	17
3.2.1.	Método inductivo	17
3.2.2.	Método deductivo	17
3.2.3.	Método experimental	18
3.3.	Parte experimental	18
3.3.1.	Obtención del jugo de caña	18
3.3.1.1.	Pretratamiento de la caña de azúcar	18
3.3.1.2.	Extracción del jugo de caña	19
3.3.1.3.	Pretratamiento del jugo de caña	20
3.3.1.3.	Caracterización del jugo de caña	22
3.3.2.	Obtención del etanol	25
3.3.2.1.	Fermentación del jugo de caña	25
3.3.2.2.	Destilación del jugo fermentado	26
3.3.2.3.	Rectificación del etanol	27
3.3.2.4.	Deshidratación con tamices moleculares	28
3.3.2.5.	Caracterización del etanol obtenido	29
3.3.2.6.	Diagrama del proceso de obtención de etanol a partir de la caña de azúcar	31
3.4.	Variables del proceso	33
3.5.	Datos experimentales	35

3.5.1.	En el lavado	35
3.5.1.1.	Cálculo del porcentaje de impurezas removidas por el lavado	35
3.5.2.	En la filtración	36
3.5.2.1.	Cálculo del porcentaje de sólidos retenidos	36
3.5.3.	En la clarificación y filtración	36
3.5.3.1.	Cálculo del porcentaje de sólidos precipitados	36
3.5.4.	En la caracterización del jugo de caña	37
3.5.4.1.	Sólidos totales	37
3.5.4.2.	Cenizas totales	38
3.5.4.3.	Acidez	38
3.5.4.4.	Densidad	39
3.5.4.5.	pH, índice de refracción, Brix y temperatura	40
3.5.5.	En la fermentación	40
3.5.6.	En la caracterización del etanol obtenido	41
3.5.6.1.	Acidez	41
3.5.6.2.	pH del etanol obtenido	42
3.6.	Balance de materia y energía	42
3.6.1.	Balance de materia	42
3.6.1.1.	En el lavado	42
3.6.1.2.	En la molienda	43
3.6.1.3.	En la filtración	44
3.6.1.4.	En la clarificación y filtración	45
3.6.1.5.	En la fermentación	46
3.6.1.6.	En la destilación	46
3.6.1.7.	En la rectificación	48
3.6.1.8.	En la deshidratación	49
3.6.1.9.	Rendimiento de la caña de azúcar para la obtención de etanol	49
3.6.2.	Balance de energía	50
3.6.2.1.	Datos necesarios para el balance de energía	50
3.6.2.2.	En la destilación	51
3.6.2.3.	En la rectificación	52
3.7.	Dimensionamiento de los equipos	53
3.7.1.	Diseño del recipiente de recepción y lavado de la caña de azúcar	53
3.7.1.1.	Cantidad de caña de azúcar a utilizar para la producción de la empresa	53
3.7.1.2.	Volumen a ocupar por la caña de azúcar	53
3.7.1.3.	Volumen total de carga	53
3.7.1.4.	Volumen total del recipiente	54

3.7.1.5.	Altura de la mesa de recepción y lavado	54
3.7.1.6.	Área de la superficie de la mesa	55
3.7.1.7.	Cantidad estimada de caña de azúcar después del lavado	56
3.7.2.	Diseño de la picadora de caña de azúcar	56
3.7.3.	Diseño del molino de caña de azúcar	57
3.7.3.1.	Cantidad estimada de jugo obtenido por la molienda	57
3.7.4.	Diseño del equipo filtrador	58
3.7.4.1.	Cantidad estimada de jugo después del filtrado	58
3.7.5.	Diseño de un equipo de clarificación	58
3.7.5.1.	Volumen total del clarificador	58
3.7.5.2.	Diámetro del clarificador	59
3.7.5.3.	Diámetro total del clarificador	59
3.7.5.4.	Altura del clarificador	59
3.7.5.5.	Altura total del clarificador	59
3.7.5.6.	Selección del tipo de agitador para el clarificador	60
	Dimensionamiento de las partes del sistema de agitación del clarificador	
3.7.5.8.	Cálculo del número de Reynolds de la agitación	62
3.7.5.9.	Cálculo de la potencia que necesita el sistema de agitación	62
	. Cálculo de la potencia real necesaria para el sistema de agitación	
3.7.5.11	. Tiempo de agitación en el clarificador	64
3.7.5.12	. Cantidad estimada de jugo después del proceso de clarificado	64
	Diseño de un equipo de fermentación	
3.7.6.1.	Volumen total del fermentador	64
3.7.6.2.	Diámetro del fermentador	65
3.7.6.3.	Diámetro total del fermentador	65
3.7.6.4.	Altura del fermentador	65
3.7.6.5.	Altura total del fermentador	65
3.7.6.6.	Dimensionamiento de las partes del sistema de agitación del fermentador	66
3.7.6.7.	Cálculo del número de Reynolds de la fermentación	67
3.7.6.8.	Cálculo de la potencia que necesita el sistema de agitación	67
3.7.6.9.	Potencia real necesaria para el sistema de agitación en el fermentador	68
3.7.6.10	. Tiempo de agitación en el fermentador	69
	Sistema de calentamiento	
3.7.6.12	. Cantidad estimada de jugo con 11% de etanol después del proceso de fermentacio	<i>ón</i> 71
3.7.7.	Columna de destilación	
3.7.7.1.	Cálculo del número de platos de la columna de destilación	71
	Cálculos y datos necesarios para el diseño de la columna de destilación	

3.7.7.3. Condiciones de operación de la destilación	74
3.7.7.4. Equilibrio etanol agua	75
3.7.7.5. Cálculo de los puntos de intersección	76
3.7.7.6. Cálculo para la recta operativa de enriquecimiento	77
3.7.7.7. Cálculo para la recta de alimentación	77
3.7.7.8. Cálculo para la recta operativa de agotamiento	78
3.7.7.9. Número de platos	79
3.7.7.10. Eficiencia global del proceso	81
3.7.7.11. Número real de platos	82
3.7.7.12. Densidad de vapor	82
3.7.7.13. Cálculo del coeficiente k	83
3.7.7.14. Velocidad de los vapores	83
3.7.7.15. Diámetro de la columna de destilación	84
3.7.7.16. Altura de la columna	84
3.7.7.17. Altura total de la columna	85
3.7.7.18. Diseño de los intercambiadores de calor	85
3.7.7.19. Cantidad estimada de etanol al 50% a obtener después del proceso de destilación	ón 89
3.7.8. Diseño de la columna de rectificación	89
3.7.8.1. Cálculos y datos necesarios para el diseño de la columna de destilación	90
3.7.8.2. Condiciones de operación de la destilación	92
3.7.8.3. Cálculo de los puntos de intersección	93
3.7.8.4. Cálculo para la recta operativa de enriquecimiento	94
3.7.8.5. Cálculo para la recta de alimentación	94
3.7.8.6. Cálculo para la recta operativa de agotamiento	94
3.7.8.7. Número de platos	95
3.7.8.9. Eficiencia global del proceso	97
3.7.8.10. Número real de platos	98
3.7.8.11. Densidad de vapor	98
3.7.8.12. Cálculo del coeficiente k	99
3.7.8.12. Velocidad de los vapores	99
3.7.8.13. Altura de la columna	100
3.7.8.14. Altura total de la columna	100
3.7.8.15. Diseño de los intercambiadores de calor	101
3.7.8.16. Cantidad estimada de etanol al 90% a obtener después del proceso de destilación	ón 104
3.7.9. Deshidratador	105
3.7.9.1. Cantidad mínima ideal de zeolita	105
3.7.9.2. Cantidad máxima ideal de zeolita	105

3.7.9.3.	. Volumen que ocupa la zeolita a emplear	106
3.7.9.3.	. Volumen total del deshidratador	106
3.7.9.4.	. Altura del deshidratador	106
3.7.9.5.	. Altura total del deshidratador	107
3.7.9.6.	. Área transversal del deshidratador	107
3.7.9.7.	Diseño de los intercambiadores de calor	107
3.7.9.8.	. Cantidad estimada de etanol al 96% a obtener después del proceso	o de deshidratación
		109
3.8.	Equipos adicionales	109
3.8.1.	Báscula de suelo	109
3.8.2.	Refractómetro	109
3.8.3.	pHmetro	110
3.9.	Análisis costo-beneficio	110
3.9.1.	Costos variables	110
3.9.2.	Costos fijos	111
3.9.3.	Precio de producción de etanol	111
3.9.4.	Precio de venta del etanol	112
3.9.5.	Punto de equilibrio mensual y anual	112
3.9.6.	Maquinarias y equipos	112
3.9.7.	Proyección de ventas y su presupuesto	113
3.9.8.	Proyección de costo y su presupuesto	113
3.9.9.	Flujo de caja	115
CAPÍT	TULO IV	
4.	RESULTADOS	116
4.1.	Resultados	116
4.1.1.	Caracterización de la materia prima	116
4.1.2.	Caracterización del etanol	116
4.1.3.	Rendimientos de los procesos en laboratorio	117
4.1.4.	Dimensionamiento de los equipos	117
4.1.5.	Análisis costo-beneficio	120
4.2.	Análisis y discusión de resultados	121
CONC	LUSIONES	123
RECO	MENDACIONES	124
GLOS	ARIO	

BIBLIOGRAFÍA ANEXOS

ÍNDICE DE TABLAS

Tabla 1-1: Datos de ubicación de la Facultad de Ciencias de la ESPOCH	5
Tabla 2-1: Datos de ubicación de la Facultad de Ciencias de la ESPOCH	6
Tabla 1-2: Composición de la materia insoluble de la caña de azúcar	7
Tabla 2-2: Composición del jugo de la caña de azúcar	8
Tabla 3-2: Propiedades físicas del etanol.	12
Tabla 1-3: Proceso del pretratamiento de la caña de azúcar.	19
Tabla 2-3: Proceso de la extracción del jugo de caña	21
Tabla 3-3: Proceso del pretratamiento del jugo de caña	22
Tabla 4-3: Determinación de sólidos totales del jugo de caña	23
Tabla 5-3: Determinación de cenizas totales del jugo de caña	24
Tabla 6-3: Determinación de acidez del jugo de caña	24
Tabla 7-3: Determinación de pH del jugo de caña	25
Tabla 8-3: Determinación de la densidad del jugo de caña	25
Tabla 9-3: Determinación del índice de refracción, ° Brix y temperatura	26
Tabla 10-3: Proceso de fermentación del jugo de caña.	27
Tabla 11-3: Proceso de destilación del jugo fermentado.	28
Tabla 12-3: Proceso de rectificación del etanol.	29
Tabla 13-3: Proceso de deshidratación del etanol.	29
Tabla 14-3: Requisitos del etanol anhidro grado carburante desnaturalizado	30
Tabla 15-3: Variables del proceso de obtención del etanol a partir de la caña de azúcar	33
Tabla 16-3: Datos experimentales de la caña de azúcar antes y después del lavado	35
Tabla 17-3: Porcentaje de impurezas removidas por el lavado.	36
Tabla 18-3: Datos experimentales de la filtración del jugo de caña.	36
Tabla 19-3: Datos experimentales de la clarificación y filtración del jugo de caña	36
Tabla 20-3: Datos experimentales de los sólidos totales del jugo de caña.	37
Tabla 21-3: Contenido de sólidos totales en el jugo de caña.	37
Tabla 22-3: Datos experimentales de cenizas totales en el jugo de cala	38
Tabla 23-3: Contenido de cenizas totales del jugo de caña.	38
Tabla 24-3: Datos experimentales de la acidez del jugo de caña.	38
Tabla 25-3: Acidez del jugo de caña.	39
Tabla 26-3: Datos experimentales de la densidad del jugo de caña.	39
Tabla 27-3: Densidad del jugo de caña	40
Tabla 28-3: Datos experimentales las diferentes características del jugo de la caña	40
Tabla 29-3: Datos experimentales a lo largo del proceso de fermentación.	40
Tabla 30-3. Datos experimentales de la acidez del etanol	41

Tabla 31-3: Datos experimentales del pH del etanol.	42
Tabla 32-3: Entalpías con relación a las diferentes concentraciones de etanol	50
Tabla 33-3: Datos experimentales de los diferentes cambios de temperatura en el proceso	50
Tabla 34-3: Flujos másicos del proceso de experimentación	51
Tabla 35-3: Características de una picadora de caña de azúcar	56
Tabla 36-3: Características de un molino de caña de azúcar	57
Tabla 37-3: Características de un equipo filtrador del jugo de caña de azúcar	58
Tabla 38-3: Igualdades para un sistema de agitación estándar	61
Tabla 39-3: Dimensiones de las partes del clarificador con su sistema de agitación	61
Tabla 40-3: Igualdades para un sistema de agitación estándar para biorreactor	66
Tabla 41-3: Dimensiones de las partes del clarificador con su sistema de agitación	66
Tabla 42-3: Datos adicionales para diseño de la columna de destilación	73
Tabla 43-3: Condiciones de operación para la destilación.	75
Tabla 44-3: Datos de equilibrio etanol-agua	75
Tabla 45-3: Datos para la recta operativa de enriquecimiento.	77
Tabla 46-3: Datos para la recta de alimentación	78
Tabla 47-3: Datos para la recta operativa de agotamiento.	78
Tabla 48-3: Datos de la interpolación.	80
Tabla 49-3: Datos para la eficiencia global del proceso	81
Tabla 50-3: Datos adicionales para el diseño del condensador	85
Tabla 51-3: Condiciones de operación de la columna de rectificación.	93
Tabla 52-3: Datos para la recta operativa de enriquecimiento.	94
Tabla 53-3: Datos para la recta de alimentación.	94
Tabla 54-3: Datos para la recta operativa de agotamiento.	95
Tabla 55-3: Datos de la interpolación.	97
Tabla 56-3: Características de báscula de suelo recomendado.	110
Tabla 57-3: Características del refractómetro recomendado	110
Tabla 58-3: Características del pHmetro recomendado	111
Tabla 59-3: Costo de materia prima, aditivos e insumos para producir 200L de e	tanol al
96%	111
Tabla 60-3: Costos variables de producción al mes.	111
Tabla 61-3: Otros costos variables a tener en cuenta al mes	112
Tabla 62-3: Costos fijos del proceso de producción al mes	112
Tabla 63-3: Punto de equilibrio mensual y anual	113
Tabla 64-3: Costos, depreciación, mantenimiento y seguro de maquinarias y equipos	113
Tabla 65-3: Proyección de ventas y su presupuesto	114
Tabla 66-3: Proyección de costo y su presupuesto	114

Tabla 67-3: Flujo de caja	115
Tabla 1-4: Resultados de la caracterización de la materia prima (Jugo clarificado)	116
Tabla 2-4: Resultados de la caracterización del etanol.	116
Tabla 3-4: Resultados de los procesos en laboratorio	117
Tabla 4-4: Resultados del dimensionamiento de los equipos.	117
Tabla 5-4: Resultados del análisis costo-beneficio	121

ÍNDICE DE FIGURAS

Figura 1-1:	Georreferencia de la Facultad de Ciencias de la ESPOCH	
Figura 2-1:	Georreferencia de GelFresh Lab6	
Figura 1-2:	Producción mundial de la caña de azúcar desde el año 2010 hasta el 20199	
Figura 2-2:	Países con mayor producción de caña de azúcar desde el 2014 hasta el 20189	
Figura 3-2:	Producción de caña de azúcar a nivel nacional10	
Figura 4-2:	Proceso de producción del alcohol a partir de la caña de azúcar14	
Figura 1-3:	Diagrama del proceso de pretratamiento de la caña de azúcar	
Figura 2-3:	Diagrama del proceso de la extracción del jugo de caña de azúcar21	
Figura 3-3:	Diagrama del proceso del pretratamiento del jugo de caña	
Figura 4-3:	Diagrama del proceso de fermentación del jugo de caña27	
Figura 5-3:	Diagrama del proceso de destilación del jugo de caña	
Figura 6-3:	Diagrama del proceso de rectificación del etanol	
Figura 7-3:	Diagrama del proceso de deshidratación del etanol30	
Figura 8-3:	Diagrama del proceso de obtención de etanol a partir de la caña de	
	azúcar32	
Figura 9-3:	Altura de la mesa según una ergonomía correcta para realizar diferentes	
	trabajos55	
Figura 10-3:	Selección del tipo de agitador según la viscosidad y el volumen del líquido a	
	agitar61	
Figura 11-3:	Diseño del clarificador con sus respectivas partes63	
Figura 12-3:	Número de Reynolds vs Número de Potencia para tipos de agitadores tipo	
	turbina64	
Figura 13-3:	Diseño del fermentador con sus respectivas partes	
Figura 14-3:	Número de Reynolds vs Número de Potencia para tipos de agitadores tipo	
	turbina69	
Figura 15-3:	Eficiencia global a partir de la volatilidad relativa y la viscosidad en	
	destilación83	
Figura 16-3:	Determinación del coeficiente k por McCabe para columna de destilación84	
Figura 17-3:	Eficiencia global a partir de la volatilidad relativa y la viscosidad en	
	rectificación99	
Figura 18-3:	Determinación del coeficiente k por McCabe para columna de	
	rectificación	

ÍNDICE DE GRÁFICOS

Gráfico 1-3: Variación de Brix y pH en el proceso de fermentación	42
Gráfico 2-3: Curva de equilibrio etanol-agua	77
Gráfico 3-3: Curva de equilibrio etanol-agua con las diferentes rectas calculadas	80
Gráfico 4-3: Gráfica x _{interpolación} vs y _{deseada}	81
Gráfico 5-3: Curva de equilibrio etanol-agua con las diferentes rectas calculadas	97
Gráfico 6-3: Gráfica x _{interpolación} vs y _{deseada}	98

ÍNDICE DE ANEXOS

ANEXO A: RESULTADOS DE LA CARACTERIZACIÓN DE LA MATERIA PRIMA Y DEL ETANOL OBTENIDOS EN EL LABORATORIO DE INVESTIGACIÓN

ANEXO B: RESULTADOS DEL LABORATORIO LASA DE LA CARACTERIZACIÓN DEL ETANOL OBTENIDO

ANEXO C: CERTIFICADO DE APROBACIÓN POR LA EMPRESA GELFRESH LAB DEL TRABAJO DE INTEGRACIÓN CURRICULAR

ANEXO D: CARACTERIZACIÓN DEL JUGO DE CAÑA

ANEXO E: ELABORACIÓN DEL ETANOL

ANEXO F: CARACTERIZACIÓN DEL ETANOL

RESUMEN

El presente trabajo se lo realizó con el objetivo de diseñar un proceso industrial para la obtención del etanol a partir de la caña de azúcar (Saccharum officinarum) para la empresa GelFresh Lab, la cual se dedica a la producción y comercialización de productos de desinfección; para lo cual requieren de etanol al 96%. El proceso está constituido por lavado, corte y molienda de la caña de azúcar, filtración, clarificación, fermentación y destilación del jugo de la caña, y la rectificación y deshidratación hasta obtener un etanol de 96%. El proyecto se trabajó en el Cantón Echeandía, provincia de Bolivar, hasta el proceso de la fermentación y el resto del proceso en la ESPOCH. La caracterización de la composición de materia prima se realizó a través de las técnicas del laboratorio de investigación, teniendo características como 5,2438g/100ml de sólidos totales; 0,0609% de cenizas totales; 0,6014gH2SO4/L de acidez; 0,901g/ml de densidad; un pH de 4,5; un índice de refracción de 1,46381 y 19,98 grados Bx. El producto obtenido tuvo un grado alcohólico de 96%, medido en laboratorio con el alcoholímetro, resaltando que con un cromatógrafo de gases fue de 94,7%. Además, en el dimensionamiento de los equipos se estimó las cantidades a procesar con un rendimiento a nivel global de 6,29%, sin embargo, se espera que a nivel industrial con el proceso propuesto se supere al menos con el 1,21%. Se concluyó, por medio del análisis costo beneficio, que el proyecto es viable con un tiempo de recuperación de dos años y 10 meses, siendo el costo de producción de 1,17 dólares por litro de etanol, reduciendo gastos en 0,13 dólares por litro. Se recomienda que se extienda el estudio para que el proceso sea parte de una economía circular, de modo que los desechos sean aprovechados para generar un beneficio económico y un compromiso ambiental.

clave: <CAÑA DE AZÚCAR (Saccharum officinarum)>, <ETANOL>, <CLARIFICACIÓN>, <FERMENTACIÓN>, <DESTILACIÓN>, <DESHIDRATACIÓN>.

1712-DBRA-UTP-2021

ABSTRACT

The aim of this work was to design an industrial process to obtain ethanol from sugar cane (Saccharum officinarum) for GelFresh Lab Company, which produces and commercializes disinfectant products; for which they require 96% ethanol. The process consists of washing, cutting and grinding the sugar cane, after that, the filtration, clarification, fermentation, distillation, rectification and dehydration of cane juice until obtaining an ethanol of 96%. The project, until the fermentation process, was carried out in Echeandía County, Bolivar Province, and the next step of the process at ESPOCH. The characterization of the composition of raw material was carried out by means of research laboratory techniques, having characteristics such as 5.2438g/100ml of total solids; 0.0609% of total ash; 0.6014gH2SO4/L acidity; 0.901g/ml density; pH 4.5; refractive index 1.46381 and 19.98 degrees Bx. The product obtained had an alcoholic strength of 96%, measured in the laboratory with the alcoholometer, highlighting that with a gas chromatograph it was 94.7%. In addition, in equipment sizing, the quantities to be processed were estimated with a global yield of 6.29%, however, it is expected that at an industrial level with the proposed process it will be exceeded at least 1.21%. It was concluded, through the cost-benefit analysis, that the project is viable with a recovery time that will take two years and 10 months, with a production cost of 1.17 dollars per liter of ethanol, reducing expenses by 0.13 dollars per liter. It is recommended the study be extended so that the process be part of a circular economy and in this way the waste be used to generate an economic benefit and an environmental commitment.

Keywords: <SUGAR CANE (*Saccharum officinarum*)>, <ETHANOL>, <CLARIFICATION>, <FERMENTATION>, <DISTILLATION>, <DEHYDRATION>.

INTRODUCCIÓN

En la actualidad los productos de desinfección son parte de nuestra vida diaria y se han vuelto indispensables para la prevención de un virus que se ha llevado la vida de muchas personas a nivel mundial. GelFresh es una empresa dedicada a la producción y comercialización de dichos productos. Esta empresa tiene como principal producto el gel antiséptico y para su elaboración utilizan etanol al 96%, por lo cual en el presente proyecto se ha propuesto diseñar un proceso industrial para la obtención del etanol a partir de la caña de azúcar (*Saccharum officinarum*), que es una materia prima fácil de adquirir y con buena cantidad de azúcar que puede ser transformada en etanol.

El proceso de obtención de etanol debe ser cuidadoso en cuanto a la extracción del jugo de caña pues de él depende el rendimiento de la producción de etanol anhidro. Este producto se acerca a la pureza del 100%, por lo cual debe pasar por procesos de rectificación hasta lograr la concentración que se desea. El proceso es largo y conlleva tiempo si no se tiene los equipos que aceleran dicho proceso. Por ejemplo, un biorreactor puede hacer fermentar en horas lo que en días se lograría. De igual forma aumentar los grados de alcohol depende del equipo que se utilice, por lo cual su diseño viene siendo una parte muy importante para el rendimiento del proceso. Todos estos detalles son discutidos en el presente trabajo.

Emprender siempre va a ser un reto difícil pero no es imposible cuando se hacen los respectivos análisis de todo lo que se necesita, es por ello que un análisis costo beneficio ayuda a comprender lo que va a pasar con el negocio en un futuro, viéndose si es viable o no y el tiempo de recuperación de la inversión. Entonces, de esta manera la empresa a emprender en un nuevo negocio o producción va a tomar una decisión en si ejecuta o no el proyecto. En efecto esta es una parte muy importante para GelFresh Lab, por lo cual fue uno de los requisitos de la empresa.

De esta manera, la presente investigación está integrado por cuatro capítulos que permiten dar respuesta a la necesidad de la empresa. Así en el primer capítulo se presentan los detalles del problema, junto a los objetivos que se pretende en el proyecto. En el segundo capítulo se muestra la investigación bibliográfica de todo lo que implica el tema propuesto. En el tercero se encuentra el desarrollo de la parte experimental y la realización de los cálculos de ingeniería y en el cuarto capítulo se hallan los resultados con el respectivo análisis.

CAPÍTULO I

1. DIAGNÓSTICO DEL PROBLEMA

1.1. Identificación del Problema

Cuando una situación se pone difícil, cada persona o grupo de personas tiene dos opciones: sumergirse en la tristeza y no hacer nada o levantarse y hacer algo. El año 2020 es uno de los años que marcó una historia en el estilo de vida de todo el mundo por la pandemia del COVID-19. La mejor lucha contra este virus es la prevención, lo cual llevó a que el consumo de productos de la desinfección, como geles y alcoholes antibacteriales, creciera entre diez y quince veces y con ello la aparición de nuevas empresas dedicadas a la producción y comercialización de los mismos (El Universo, 2020).

Una de las empresas que empezó a trabajar en dichos procesos es GelFresh Lab. La institución fue instaurada en el 2018 con el objetivo de crear productos de buena calidad al servicio de la comunidad. Sin embargo, la producción y comercialización de productos de desinfección empezó desde marzo 2020. Actualmente, su línea de productos en venta está compuesto por alcohol antibacterial, alcohol gel antibacterial, amonio 5G concentrado, desinfectante con amonio cuaternario, cloro comercial, protectores faciales y mascarillas KN-95 (GelFresh Lab, 2020).

Cabe destacar que, de todos los productos en venta, GelFresh Lab tiene como principal producción el gel antiséptico. Esta empresa produce 60L de gel antiséptico con 42L de alcohol etílico de 96% al día. El etanol es adquirido a una fuente externa a un valor de \$1,30 más IVA el litro. Por lo tanto, la empresa quiere crear su propio alcohol que ayude a su producción, de tal manera que se minimice los gastos que actualmente tiene y adicionalmente entrar a un nuevo mercado competitivo.

Por tal razón, este proyecto tiene como finalidad diseñar un proceso industrial óptimo en donde se obtenga un etanol al 96% a partir de caña de azúcar (*Saccharum officinarum*), con las características fisicoquímicas y organolépticas requeridas por la empresa. Con lo cual GelFresh Lab pueda seguir brindado sus productos con la calidad que el cliente está acostumbrado, aumentando sus beneficios.

1.2. Justificación del Proyecto

El etanol es un compuesto orgánico que tiene diferentes aplicaciones dentro de las diferentes industrias a nivel mundial. El uso del etanol está en industrias de automoción y transporte, de alimentos y bebidas, farmacéuticas, de cosméticos y cuidado personal y de la generación de energía (Mordor Intelligence, 2020).

En el Ecuador, el interés por la producción y uso del etanol está en continuo crecimiento, por lo cual el país necesita aumentar significativamente la producción de etanol. Este crecimiento incluye una expansión en los campos de caña de azúcar y la capacidad de refinería, junto a la aplicación de nuevas tecnologías y prácticas de manejo (GAIN (Global Agricultural Information Network), 2018).

GelFresh Lab es una empresa que se encuentra dentro del sector industrial de cosméticos y cuidado personal, donde su principal producto es el gel antibacterial. Así, cabe destacar que el etanol al 96% es uno de los requisitos indispensables para diferentes productos de cuidado personal como el gel antibacterial, utilizado principalmente por su capacidad para desinfectar (Llumiquinga, 2018, p.16).

Además, una empresa siempre busca nuevas alternativas para reducir costes y aumentar sus servicios. GelFresh Lab no es la excepción. Un ingeniero químico es capaz de brindar soluciones para conseguir dicho objetivo. Por tal razón, el diseño de un proceso industrial para obtener etanol a partir de la caña de azúcar es conveniente estudiar, enfocándose primordialmente en conseguir un menor costo de producción del costo al que compran dicho producto.

1.3. Beneficiarios directos e indirectos

1.3.1. Beneficiarios Directos

El presente proyecto beneficia directamente a la empresa GelFresh Lab que produce el gel antibacterial a partir del etanol para luego comercializarlo en el mercado. De manera que el costo que se está generando al comprarlo, el proceso industrial para obtener etanol lo reduzca, lo cual beneficiará con un ingreso mayor al que están recibiendo.

1.3.2. Beneficiarios Indirectos

El presente proyecto beneficia indirectamente a los productores de la caña de azúcar y a los consumidores del etanol al 96% pues la empresa tiene como objetivo a largo plazo de meterse al mercado competitivo de la producción de etanol.

1.4. Objetivos

1.4.1. Objetivo general

- Diseñar un proceso industrial para la obtención del etanol a partir de la caña de azúcar (Saccharum officinarum) para la empresa GelFresh Lab.

1.4.2. Objetivos específicos

- Obtener etanol de 96% a partir de la caña de azúcar con un proceso óptimo de producción.
- Establecer las variables del proceso para fabricar etanol a nivel industrial a partir de los datos conseguidos a nivel de laboratorio.
- Validar el proceso de producción de etanol a través de la caracterización del producto final según normativa.
- Realizar un análisis costo beneficio del proyecto.

1.5. Localización del proyecto

El desarrollo del proyecto se realizó en el laboratorio de procesos industriales, de investigación, de análisis instrumental de la Facultad de Ciencias de la Escuela Superior Politécnica de Chimborazo, ubicada en el cantón Riobamba de la provincia de Chimborazo, Ecuador.

Tabla 1-1: Datos de ubicación de la Facultad de Ciencias de la ESPOCH

Parámetros	Valores
Coordenadas	1°39'20''S 78°40'43''
Altitud, msnm	2817
Temperatura, °C	13,53
Precipitación, mm/mes	762,25
Humedad relativa, %	75

Fuente: Google Earth, 2021 y TWC Product and Technology LLC, 2021

Realizado por: Gaibor, Samantha, 2021.

Figura 1-1: Georreferencia de la Facultad de Ciencias de la ESPOCH

Fuente: Google Earth, 2021.

Cabe destacar que los procesos previos a la fermentación fueron realizados en la zona de Limón del cantón de Echeandía, de la provincia de Bolívar, cuya temperatura ambiental fue de 27°C. Sin embargo, las pruebas físico-químicas y el resto del proceso del proyecto fueron realizados en la ubicación detallada anteriormente.

La posible implementación del proyecto se realizará en la empresa GelFresh Lab que se encuentra ubicada en Ambato, Sector Guachi Grande, Barrio San José, Calle California y Vía Tisaleo.

Tabla 2-1: Datos de ubicación de la Facultad de Ciencias de la ESPOCH

Parámetros	Valores
Coordenadas	1°18′12′′S 78°38′55′′
Altitud, msnm	2890
Temperatura, °C	14,72
Precipitación, mm/mes	762,51
Humedad relativa, %	77

Fuente: Google Earth, 2021 y TWC Product and Technology LLC, 2021.

Realizado por: Gaibor, Samantha, 2021.

Figura 2-1: Georreferencia de GelFresh Lab

Fuente: Google Earth, 2021.

CAPÍTULO II

2. FUNDAMENTOS TEÓRICOS

2.1. Caña de azúcar

Es una hierba tropical cuyo nombre científico es *Saccharum officinarum*, que tiene un importante valor dentro de los cultivos a nivel mundial, por sus usos nutricionales y económicos (Zulu et al. 2019).

2.1.1. Composición

La caña de azúcar está compuesta por 2 partes: la materia insoluble y el jugo. En general, la materia insoluble constituye aproximadamente el 15% de la caña de azúcar y el jugo, el 85% (Larrahondo Aguilar, 2017, p.4).

2.1.1.1. Composición de la materia insoluble

La materia insoluble se refiere a la parte fibrosa sólida de la caña de azúcar, es decir, el bagazo de la planta (Asagekar y Joshi, 2014: p.2).

Tabla 1-2: Composición de la materia insoluble de la caña de azúcar

Contenido	Rango
Humedad (%)	48,8 - 65
Cenizas (%)	1 - 3,9
Proteína cruda (%)	0,8 - 2,4
Fibra cruda (%)	43 - 58,5
Celulosa (%)	35,8 - 58,4
Lignina (%)	9,9 - 22,3
Hemicelulosa (%)	16,4 - 42,4

Fuente: OECD, 2011.

Realizado por: Gaibor, Samantha, 2021.

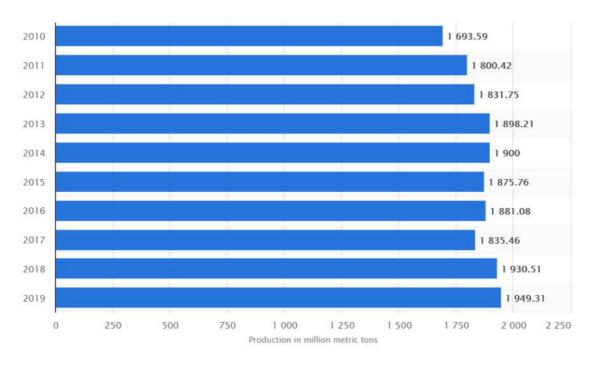
2.2.1.2. Composición del jugo

El jugo es la parte líquida de la caña de azúcar, que por lo general se extrae con ayuda de un trapiche, que es el equipo que separa al jugo de la materia insoluble por comprensión (Valencia y Villacís, 2008: p.28).

Tabla 2-2: Composición del jugo de la caña de azúcar

Contenido	Rango
Cenizas (%)	0,61 - 0,75
Sólidos totales (g/100ml)	4,32 - 5,82
Brix (°)	13 - 22,40
pH	4,95 - 5,65
Acidez (gH2SO4/L)	0,10 - 0,68
POL (Sacarosa aparente) (%)	9,56 - 21,19
Azúcares reductores (g/100ml)	0,21 - 2,09

Fuente: Martini et al., 2011 y Cobeña y Loor, 2016.


Realizado por: Gaibor, Samantha, 2021.

2.1.2. Producción

De acuerdo con la Asociación de Trabajo Justo (2012, p.5) la caña de azúcar se cultiva en más de 90 países con una producción total de 1,69 mil millones de toneladas en todo el mundo.

2.1.2.1. Producción mundial

A nivel mundial la producción de caña de azúcar está en constante crecimiento, por ejemplo, en el año 2010 se produjeron alrededor de 1693 millones de toneladas y en el 2019 alrededor de 1949 millones de toneladas, viéndose notoriamente un incremento del 15,12% en la producción (Statista, 2021).

Figura 1-2: Producción mundial de la caña de azúcar desde el año 2010 hasta el 2019 **Fuente:** Statista, 2021.

El país que se destaca en la producción de la caña de azúcar es Brasil, tanto que se produce el 39% de toda la caña de azúcar en el mundo, seguido por India, China, Tailandia y Pakistán (Knoema, 2018).

		2018	2017	2016	2015	2014
1	Brazil	746,828,157	758,646,205	768,594,154	750,290,277	736,108,487
2	India	376,900,000	306,069,000	348,448,000	362,333,000	352,142,000
3	China	108,718,971	104,905,705	103,788,445	107,728,911	126,153,469
4	Thailand	104,360,867	101,870,298	90,220,174	94,138,465	103,697,005
5	Pakistan	67,173,975	83,332,740	75,482,253	65,482,334	62,826,458
6	Mexico	56,841,523	56,954,993	56,446,821	55,396,061	56,672,829
7	Colombia	36,276,860	34,833,514	34,759,606	36,139,166	38,157,132
8	Guatemala	35,568,207	25,951,271	33,533,403	33,869,277	33,239,196
9	Australia	33,506,830	36,561,497	34,403,004	32,379,153	30,517,650
10	United States of Ameri	31,335,984	30,153,015	29,136,968	29,140,590	27,600,190

Figura 2-2: Países con mayor producción de caña de azúcar desde el 2014 hasta el 2018 **Fuente**: Knoema, 2018.

2.1.2.2. Producción en el Ecuador

Por lo general la zafra o tiempo de cosecha de la caña de azúcar en el Ecuador se lleva a partir del mes de junio, después de 12 a 18 meses de su cultivo, cuando la caña ya está madura (Aguilar, 2009, pp.7-9). La cosecha anual en el Ecuador es aproximadamente de 131000 ha, donde alrededor de

81000 ha son destinadas para fabricar azúcar y etanol, y lo restante se lo utiliza para producir panela y licores artesanales (Bernal, 2020).

NACIONAL				
Año	Superficie (Ha)		Producción	Ventas
	Plantada	Cosechada	(Tm.)	(Tm.)
2017	134.950	127.081	9.344.983	8.751.116
2018	132.771	115.321	7.840.635	6.382.088
2019	144.116	137.337	10.088.870	6.372.328

Figura 3-2: Producción de caña de azúcar a nivel nacional

Fuente: INEC- ESPAC, 2019.

Conviene destacar que en el país existe un Centro de Investigación de la Caña de Azúcar (CINCAE), el cual tiene como objetivo desarrollar variedades de caña de azúcar que no se vean afectadas por plagas, y por ende la producción se incremente. La financiación de este centro se debe gracias a los 3 grandes ingenios azucareros del país: La Troncal, San Carlos y Valdez (CINCAE, 2020).

Los ingenios San Carlos y Valdez se encuentran localizados en la provincia de Guayas, la cual se destaca en la producción del 81,54% de este cultivo a nivel nacional (INEC- ESPAC, 2019). El ingenio La Troncal se encuentra en la provincia del Cañar. Acerca de otros ingenios se puede enfatizar el Inés María, IANCEM y Monterrey, los cuales están localizados en Los Ríos, Imbabura y Loja respectivamente (Álvarez Salgado y García Padilla, 2013: p.23).

Es necesario mencionar que los ingenios se encargan de al menos el 50% de la producción de la caña de azúcar y el otro 50% está a cargo de los pequeños y medianos productores, es decir los cañicultores (El Comercio, 2018). De esta manera se puede ver que en el Ecuador no solo se encargan las grandes empresas, como los ingenios, de la producción de esta materia prima, sino que también está la parte de los agricultores independientes o las microempresas, que pueden ser de gran ayuda para un proyecto de emprendimiento.

2.1.3. *Usos*

Los principales usos de la caña de azúcar se basan principalmente en su jugo para la obtención de azúcar y etanol. Sin embargo, el jugo también sirve para la producción de falerno, melaza, ron y otros alcoholes tradicionales dependiendo de la región como la cachaca de Brasil o el guarapo en Ecuador (OECD, 2011, p.13). Asimismo, cabe destacar que los subproductos como las puntas de caña de azúcar, bagazo, tortas de filtración, melaza y vinaza, son también utilizadas para diferentes productos que se van destacando poco a poco para con el fin de disminuir la contaminación ambiental provocada en los distintos procesos de transformación de este cultivo.

Por ejemplo, las puntas de la caña de azúcar se utilizan principalmente como alimento para los animales del campo (OECD, 2011, p.19). En cambio, el bagazo tiene como principal uso ser el combustible para generar energía dentro del proceso de producción en el que se vea involucrado. Por lo que se refiere a otros usos que se le da son de materia prima para productos cuya composición requiera de celulosa como en la fabricación de papel, pulpa y materiales de construcción, o de hemicelulosa como el furfural, que es un solvente que ayuda a la refinación de aceites en la industria petrolera (Cheesman, 2005, p.9).

Por otro lado, la torta de filtración es utilizada casi por completo como fertilizante, teniendo también un uso limitado como alimento de los animales debido a su contenido de cera (OECD, 2011, p.19). Con respecto a la melaza su principal aplicación se destaca en la producción de etanol (Peña y Arango, 2009, p.7), utilizada también como alimento para animales, potenciador de sabor, edulcorante y almíbar (OECD, 2011, p.19). Al mismo tiempo se ha demostrado que la melaza también es utilizada como aditivo para elaborar ensilajes, los cuales ayudan a conservar los forrajes, como desechos agroindustriales o alimentos, necesario para el desarrollo productivo de los animales (Vargas et al., 2014:pp.2049-2058).

Por último, uno de los subproductos que es muy investigado es la vinaza, que se destaca por su uso como fertilizante. Sin embargo también es aplicado en los alimentos de animales de ceba, como cerdos (García et al., 1991: p.8) o pollos (Hidalgo et al., 2009: p.12). De esta manera se puede ver que la caña de azúcar es utilizada en diversas aplicaciones y dependiendo de lo que se quiera producir, se va a utilizar las diferentes partes de la caña de azúcar o los subproductos del proceso de transformación en el cual se vea utilizada.

2.2. Alcohol

El alcohol es el nombre común que se le da al etanol. El etanol es un compuesto químico conocido también como alcohol etílico, cuya formula molecular es CH₃CH₂OH (Rodríguez et al., 1989, p.6). Es un líquido incoloro, inflamable y ligeramente tóxico (Cresswell, 2007, p.14).

2.2.1. Tipos de alcohol

2.2.1.1. Etanol por su obtención

Existen dos principales tipos de etanol según cómo se obtienen: a partir de la fermentación y de manera sintética. Las materias primas más frecuentes para la fermentación son el maíz y la caña de azúcar. Sin embargo, otras materias primas que se destacan son la remolacha azucarera y cereales. En cambio, el etileno es la materia prima principal para obtener etanol de manera sintética (Kecerdasan y Ikep, 2013:).

2.2.1.2. Etanol por su grado alcohólico

Otra manera de clasificar al etanol es mediante su grado alcohólico. Una bebida puede tener un contenido de etanol muy baja hasta una muy alta, por lo general las bebidas elaboradas artesanalmente en Ecuador son con mayor grado alcohólico, alcanzando los 60° GL. No obstante, a nivel mundial la bebida alcohólica con más grados de alcohol alcanza a los 95° GL, siendo este el Vodka Spirytus (ABC, 2014). Por otro lado, el etanol que se acerca a su pureza se le llama etanol anhidro, que va desde los 96° GL hasta los 100° GL, subclasificándose en etanol anhidro grado carburante y en etanol anhidro grado carburante desnaturalizado (Instituto Ecuatoriano de Normalización, 2009, p.2).

2.2.2. Propiedades físicas del etanol

Tabla 3-2: Propiedades físicas del etanol

Propiedad	Valor
Presión de vapor a 20°C (mmHg)	59,3
Viscosidad a 20°C (cP)	1200
Punto de ebullición (°C)	78,4
Punto de fusión (°C)	-114,1
Densidad (kg/m³)	789
Conductividad térmica a 20°C (W/m.K)	0,19
Capacidad calorífica másica (kJ/kg°C)	2,412
Punto de inflamación (°C)	18,3

Fuente: Manno, 2014 y Lauzurique et al., 2013.

Realizado por: Gaibor, Samantha, 2021.

2.2.3. Producción

2.2.3.1. Producción a nivel mundial

A lo largo de todo el mundo, los países que se destacan en la producción de etanol son Estados Unidos y Brasil, tanto que los dos destacados empresarios de esta industria, Patricia Woertz y Rubens Ometto son de estos dos piases respectivamente. En relación a Estados Unidos la empresa que está liderando es Archer Daniels Midland capaz de producir 6511 millones de litros al año en Estados Unidos. En cambio en Brasil, la empresa líder es Copersucar, teniendo la capacidad de producir 4800 millones de litros al año (Connectas, 2021).

2.2.3.2. Producción en el Ecuador

En el Ecuador, las empresas destiladoras del alcohol que se destacan están asociadas los principales ingenios azucareros antes nombrados. Así la destiladora asociada al ingenio San Carlos es Soderal S. A., al ingenio Valdez, Codana S.A., y al ingenio La Troncal, Producargo S.A. La empresa que produce más litros de alcohol por día es Producargo S.A., siendo su producción de 75000L/día, esta empresa se ubica en Cañar. Las otras dos empresas nombradas se ubican en Guayas, produciendo 32000L/día la destiladora Soderal S.A. y 50000L/día Codana S.A. (Bajaña Guano, 2019, p.22).

Existen programas y acuerdos que impulsan a los cañicultores y productores de alcohol artesanal para que vendan su producto a estas destiladoras, de modo que aporten a la elaboración del alcohol anhidro, viendo de esta manera la importancia que tiene este tipo de alcohol en nuestro país.

2.2.4. *Usos*

La distribución de los diferentes usos del etanol en todo el mundo se puede resumir en que su utilización como combustible representa el 73% de la producción, para bebidas alcohólicas ocupa el 17% de la producción y para uso industrial ocupa el 10% (Kecerdasan y Ikep, 2013).

El principal uso del etanol industrial es como solvente en diferentes productos, tales como farmacéuticos, cosméticos, detergentes, limpiadores domésticos, recubrimientos, y tintas. Asimismo, sirve de intermediario químico para la fabricación de diferentes compuestos químicos como el ácido acético, acetato de etilo, acrilato de etilo, éteres de glicol, etilaminas, entre otros. También se lo utiliza como aditivo para alimentos y bebida. Por lo que se refiere a un contexto más grande el etanol es muy utilizado como combustible o aditivo para ellos, por ejemplo, la gasolina E5, es decir con una concentración de etanol del 5% (Kecerdasan y Ikep, 2013).

2.2.5. Proceso de obtención de etanol por fermentación

En el trabajo propuesto se va a diseñar el proceso industrial un etanol anhidro grado carburante desnaturalizado a partir de la fermentación debido a que se partirá de la caña de azúcar hasta llegar a un grado del 96%. El proceso de manera general empieza por la limpieza de la materia prima, seguida de la molienda para obtener el jugo de la caña, el cual es clarificado para mayor eficiencia en la fermentación, después se lo destila y se rectifica según sea necesario para dichos grados alcohólicos.

La investigación realizada por Montoya R. et al. (2005, p.3) en donde se realizó la evaluación económica del proceso de obtención de alcohol carburante a partir de caña de azúcar y maíz se muestra el proceso industrial de transformación de la caña de azúcar, de una forma sintetizada y general.

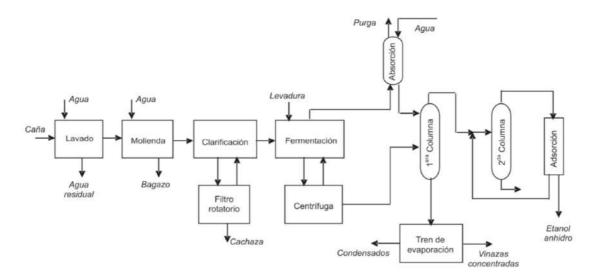


Figura 4-2: Proceso de producción del alcohol a partir de la caña de azúcar

Fuente: Montoya R. et al., 2005.

2.2.5.1. Lavado

Cuando la caña de azúcar es ingresada, debe pasar por un proceso de preparación antes de la extracción del jugo de caña y la primera parte de este es el lavado. Aquí se consume una cantidad de agua considerable para eliminar todo tipo de materia indeseable que proviene del campo. En este lavado se pierde un gran contenido de sacarosa y agua, por lo que para evitar tantas pérdidas la caña es lavada entera y a mano (Vizueta Méndez, 2013, p.28). Sin embargo, hoy en día se han buscado alternativas para reemplazar el lavado con agua, resaltando principalmente el lavado en seco, que retira la materia rara de la caña por medio de un sistema de rodillos vibratorios (Vega, 2004, p.6).

2.2.5.2. *Molienda*

Por lo general en los ingenios, antes de la molienda, la caña pasa por una trozadora, picadora y por unas cuchillas oscilantes que ayudan a disminuir el tamaño de la caña, con lo cual la extracción de sacarosa en los molinos se hace más eficiente (Vizueta Méndez, 2013, p.30). Cuando esta preparación acaba, la caña entra en el molino que comúnmente es llamado trapiche, el cual separa el bagazo del jugo mediante compresión (Valencia y Villacís, 2008, p.11). En este proceso, existe un subproceso que consiste en la adición de agua al cual se le llama imbibición, lo que permite extraer mayor cantidad de sacarosa (Dias et al., 2011: p.15).

2.2.5.3. Clarificación

El jugo recibe un tratamiento que ayuda a separar las impurezas que están presentes en él mediante la decantación. El tratamiento consiste en agregar oxido de calcio y ácido sulfúrico para contrarrestar el aumento de pH y disminuirlo hasta 4,5. Seguidamente se procede a esterilizar el jugo a 105°C previo al siguiente paso. El precipitado obtenido es tratado posteriormente para recuperar lo máximo posible, por lo general se lo hace con un filtro rotatorio al vacío, donde la parte líquida es retornada al proceso de clarificación (Montoya R. et al., 2005: p.23).

2.2.5.4. Fermentación

La fermentación que ocurre en la producción de etanol es la fermentación alcohólica. Es una reacción química que transforma los carbohidratos en alcohol con ayuda de las levaduras. Las levaduras más utilizadas a nivel industrial son la *Saccharomyces cerevisiae* (Vázquez y Dacosta, 2007:p.5). Sin embargo, existen más investigaciones con otros microorganismos como la Zymomonas mobilis (Dunn, 2015, p.4).

El jugo de caña de azúcar contiene como principal azúcar la sacarosa, que está formada de D-glucosa y D-fructuosa (Farlex, 2021), por lo que en la fermentación las levaduras transforman, la glucosa y parte de la fructuosa en etanol. Esta transformación está dada por la siguiente reacción:

$$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$$

 $Glucosa \rightarrow 2Etanol + 2Dioxido de carbono$

Según Vázquez y Dacosta (2007:p.5) la glucosa industrialmente tiene un rendimiento del 97 y 93% en la transformación, sabiendo que produce teóricamente 0,511g de etanol y el resto es CO₂. Otro aspecto importante a destacar, es que el equipo utilizado para este proceso se lo llama biorreactor o fermentador, el cual logra que la reacción de la fermentación se dé una forma exitosa, definiéndose así un parámetro como la productividad (g/lh), que define cuanto etanol se produce en un determinado tiempo y volumen.

2.2.5.5. Destilación

La destilación es proceso que mediante la diferencia de los puntos de ebullición se produce la separación entre el etanol y agua, que es una mezcla binaria azeotrópica (Lauzurique et al., 2013, p.3). Para la obtención del alcohol anhidro, con una primera destilación, para la cual se utiliza una columna de destilación, los grados de etanol que se alcanzan son 45-50% (p/p) y después con una columna de rectificación se puede obtener 90-92% (p/p), alcanzando purezas máximas de 95,5% (p/p), (Chuquín Vasco, 2013, p.38), debido a que el punto azeotrópico que se forma cuando el etanol está a estas concentraciones ya no permite la separación etanol agua (Vargas citado en Lauzurique et al., 2013, p.7).

2.2.5.6. Deshidratación

Debido a que los grados finales de la destilación no son el objetivo, es necesario emplear la deshidratación, con lo cual la pureza se incrementa hasta un 100%. Existen diversas técnicas alternativas para lograrlo como la destilación azeotrópica, al vacío, extractiva, por cambio de presión, por pervaporación o absorción por tamices moleculares (Pérez Bermúdez y Garrido Carralero, 2011: p.3). De todos estos tipos de deshidratación este trabajo se centrará en la absorción de tamices moleculares, explicándose a continuación la razón de la elección.

- Por tamices moleculares

Esta técnica de deshidratación utiliza la operación unitaria de absorción. Es una de las técnicas más utilizadas a nivel industrial, sustituyendo poco a poco a la destilación azeotrópica a pesar de que los costos de inversión son muy elevados debido a la automatización requerida para el control del proceso. Esto se debe a que sus beneficios son mayores, por ejemplo, se realiza una eficiente deshidratación con una facilidad de operación, ahorrando costos en energía y operación (Pérez Bermúdez y Garrido Carralero, 2011: p.5).

Los tamices moleculares son "sustancias granulares de forma cilíndrica o esférica fabricados a partir de aluminosilicatos de potasio" (Riofrío López y Arellano Pérez, 2014: p.38). El material que actúa como tamiz molecular a nivel industrial es la zeolita 3A que adsorbe moléculas con diámetros menores de 0,32nm (Pérez Bermúdez y Garrido Carralero, 2011: p.5), siendo adsorbidos las moléculas del agua y del etanol no. Cuando estos materiales están saturados pasan a un proceso de recuperación, por lo que a nivel industrial se usan varias columnas que cuando una se esté regenerando la otra siga trabajando (Riofrío López y Arellano Pérez, 2014: p.38).

CAPÍTULO III

3. MARCO METODOLÓGICO

3.1. Tipo de estudio

El diseño de un proceso industrial para la obtención de etanol a partir de caña de azúcar (Saccharum officinarum) para Gelfresh Lab es un proyecto tipo técnico, en el cual se realizará revisión bibliográfica sobre normativas y técnicas para lograr desarrollarlo de manera exitosa. Asimismo, se empleará conocimientos de operaciones y procesos unitarios que se ha adquirido a lo largo de la carrera, con lo cual me permitirá alcanzar mis objetivos.

3.2. Métodos

El proyecto es de tipo técnico por lo cual se basará en métodos científicos como el deductivo, inductivo y experimental con el fin de que su desarrollo permita alcanzar los objetivos planteados en el mismo.

3.2.1. Método inductivo

La empresa GelFresh Lab tiene un problema en particular para lo cual se generó una solución en general. GelFresh Lab trabaja con un alcohol adquirido a otra empresa, por lo cual quiere tener la oportunidad de crear dicho producto que tenga las características necesarias su utilización. Cabe destacar que el producto se basó en la Norma Técnica Ecuatoriana. NTE INEN 2 478:2009 que nos dictó los requisitos del alcohol anhidro deseado. De esta manera se realizó pruebas físico químicas que permitieron saber si el producto está dentro del límite de la normativa.

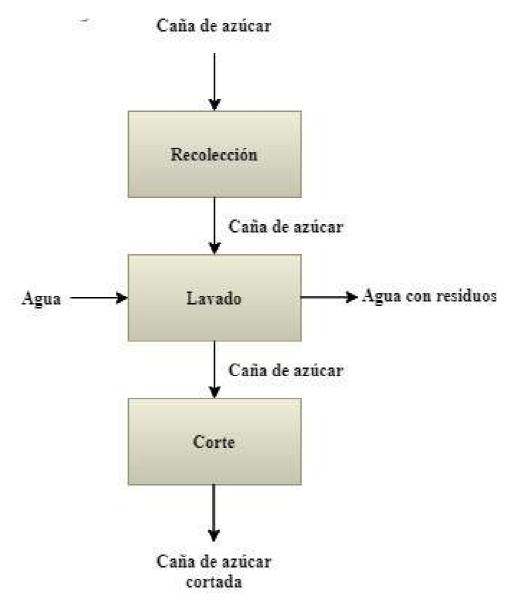
3.2.2. Método deductivo

Con la utilización de fuentes bibliográficas acerca del tema a investigar se tuvo un panorama de manera general, de la cual se estableció un proceso y diseñó el mismo a un nivel industrial obteniendo la mayor efectividad tanto en el producto final como en el costo del mismo. De esta manera se consiguieron resultados específicos para el problema que se planteó.

3.2.3. Método experimental

Fue el método apropiado para poder obtener el alcohol anhidro a nivel del laboratorio y a partir de allí dimensionar los equipos para el proceso a nivel industrial. Además, con este método se procedió a la caracterización tanto de la materia prima como del producto final, de tal forma que se pudo obtener resultados precisos a los requerimientos de la empresa.

3.3. Parte experimental

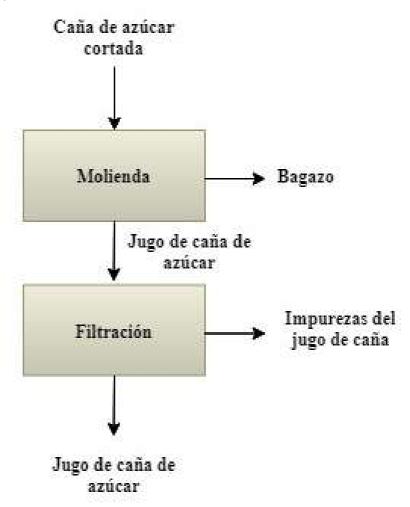

3.3.1. Obtención del jugo de caña

3.3.1.1. Pretratamiento de la caña de azúcar

El pretratamiento que se le dio a la caña de azúcar fue con el fin de menorar las impurezas provenientes de la caña de azúcar recién cortadas del campo y aumentar el rendimiento de la sacarosa que se extraerá posteriormente.

Tabla 1-3: Proceso del pretratamiento de la caña de azúcar

Proceso	Descripción
Recolección	Se recogió 70kg de caña de azúcar de la zona de Limón del cantón
Recolection	Echeandía.
Lavado	Se lavó la caña de azúcar con abundante agua para retirar los residuos
	provenientes del campo.
Corte	Se cortó la caña de azúcar en 3 pedazos para hacer más fácil la molienda.


Figura 1-3: Diagrama del proceso de pretratamiento de la caña de azúcar **Realizado por:** Gaibor, Samantha, 2021.

3.3.1.2. Extracción del jugo de caña

Se utilizó el trapiche mecánico perteneciente a la familia Pilamunga de la zona de Limón del cantón de Echeandía, cuyo funcionamiento era con el motor a Diesel Changfa. Se extrajo 55L de jugo de caña, quedando 19,51kg de bagazo.

Tabla 2-3: Proceso de la extracción del jugo de caña

Proceso	Descripción		
Molienda	Las cañas de azúcar reducidas de tamaño fueron colocadas a mano en el		
	molino extrayendo su jugo por un lado y por el otro el bagazo.		
Filtración	El jugo de caña se filtró con ayuda de tela Nylon para eliminar las		
	impurezas que más se puedan.		

Figura 2-3: Diagrama del proceso de la extracción del jugo de caña de azúcar **Realizado por:** Gaibor, Samantha, 2021.

3.3.1.3. Pretratamiento del jugo de caña

Antes de iniciar con del proceso de transformación de los azúcares a etanol, se debe tratar el jugo, para ello pasó por un proceso de agregación de cal u óxido de calcio y ácido sulfúrico para contrarrestar el pH básico que se forma con la cal.

Tabla 3-3: Proceso del pretratamiento del jugo de caña

Proceso	Descripción
Clarificación	Se agregó la solución de 5g de cal al jugo de caña de azúcar extraído.
	Después se tomó 2ml de ácido sulfúrico hasta llegar a 4,5 de pH.
Filtración	El jugo de caña clarificado se filtró con ayuda de tela Nylon para eliminar
	las impurezas sedimentadas.

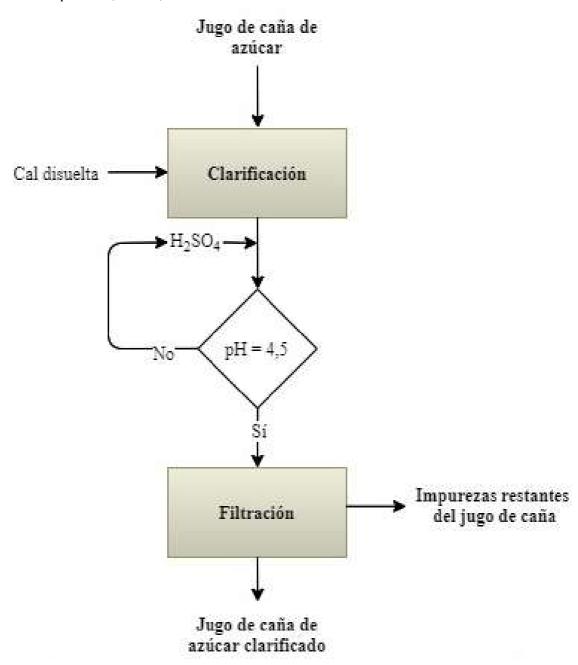


Figura 3-3: Diagrama del proceso del pretratamiento del jugo de caña

3.3.1.3. Caracterización del jugo de caña

El jugo de caña no tiene una norma para caracterizarlo por lo que se siguió las instrucciones del laboratorio de investigación y bromatología de la Facultad de Ciencias de la ESPOCH. De esta manera se hizo las pruebas de sólidos totales, cenizas, pH, densidad, índice de refracción, ° Brix, temperatura y acidez. Cabe destacar que cada análisis se lo hizo por triplicado, es decir tres veces el mismo proceso para obtener datos comparativos con respecto a los resultados.

Tabla 4-3: Determinación de sólidos totales del jugo de caña

Materiales		Cálculo
 Estufa Desecador con desencante Cápsula Pinzas Balanza analítica 		$ST = \left(\frac{M_2 - M_C}{V_m}\right) * 100$
		Donde: - ST = Sólidos totales (g/ml) - M ₂ = masa de la cápsula con la muestra seca (g) - M _C = masa de la cápsula vacía (g) - V _m = Volumen de la muestra (ml)
Procedimiento	 V_m= Volumen de la muestra (ml) Se pesó la cápsula vacía previamente tratada (4 horas en la estufa a 105°C) y desecada, hasta obtener peso constante. Se pesó 50ml de muestra en la cápsula. Se colocó la cápsula en un recipiente para realizar Baño María hasta que se reduzca el agua de la muestra. Se procedió a secar con una toalla adsorbente la parte exterior de la cápsula. Se colocó la cápsula en la estufa a 105°C durante 2h. Se sacó la cápsula y se la puso en el desecador. Se dejó enfriar hasta que alcance a temperatura ambiente (30 minutos aproximadamente). Se pesó la capsula. Se colocó de nuevo en la estufa, repitiéndose el proceso hasta obtener un peso constante. 	

Fuente: Laboratorio de Bromatología, 2021.

Tabla 5-3: Determinación de cenizas totales del jugo de caña

Materiales		Cálculo	
- Mufla		$\%C_{s} = \left(\frac{M_{2} - M_{C}}{M_{1} - M_{C}}\right) * 100$	
- Desecador con	desencante		
- Reverbero		Donde:	
- Crisol		- %C _s = Porcentaje de cenizas totales (%)	
- Pinzas		- M_2 = masa del crisol con la ceniza (g)	
- Balanza analític	ca	- M_1 = masa del crisol con la muestra de ensayo (g)	
		- M _C = masa del crisol vacío (g)	
	- Se pesó el o	crisol vacío previamente tratado (4 horas en la estufa a	
	105°C) y de	secado, hasta obtener peso constante.	
	- Se pesó 5ml de muestra en el crisol.		
	- Se llevó el c	risol hasta el reverbero, que se encontraba en el extractor	
	de gases hasta carbonizar (que la muestra se torne de color negro y		
	que no exist	a visualización de humo).	
Procedimiento	- Se colocó el crisol en la mufla a una temperatura de 500°C durante 2		
Trocedimento	horas.		
	- Se sacó el crisol y se lo puso en el desecador.		
	- Se dejó enfriar hasta que alcance a temperatura ambiente (30 minutos		
	aproximadamente).		
	- Se pesó el ci	risol.	
	- Se colocó de nuevo en la estufa, repitiéndose el proceso hasta obtener		
	un peso cons	stante.	
Fuente: Laboratorio de Brot	I 		

Fuente: Laboratorio de Bromatología, 2021. Realizado por: Gaibor, Samantha, 2021.

Tabla 6-3: Determinación de acidez del jugo de caña

	Materiales		Cálculo
-	Matraz Erlenmeyer de 500ml		$C_{} = \frac{C_1 * V_1}{C_1 * V_2}$
-	Bureta de 25ml		V_m
		Do	onde:
		-	C ₁ = Concentración del NaOH (M)
		-	V ₁ = Volumen de solución 0,1M de NaOH
			utilizado en titulación (ml)
		-	C _m = Concentración de la muestra
		-	$V_{m}=\ Volumen\ de\ la\ muestra\ colocada\ para\ la$
			prueba.

	1M de hidróxido de sodio, debidamente		
valorado con ftalato ácido de sodio.			
- Se colocó 250ml de agua destilada en un matraz Erlenmey		estilada en un matraz Erlenmeyer de	
Procedimiento	500ml.		
- Se añadió 25ml de muestra y 5 gotas de fenolftaleína.		5 gotas de fenolftaleína.	
	Se tituló utilizando la bureta	y la solución de NaOH preparada con	
	anterioridad.		

Fuente: Laboratorio de Bromatología, 2021. Realizado por: Gaibor, Samantha, 2021.

Tabla 7-3: Determinación de pH del jugo de caña

	- Potenciómetro		
Materiales	Vaso de precipitación de 250ml		
	- Varilla de agitación		
	- Se encendió el equipo previamente calibrado con las respectivas		
	soluciones buffer (4, 7 y 10)		
	- Se limpió el electrodo utilizando agua destilada.		
	- En el vaso de precipitación de 250ml se colocó 100ml de la muestra.		
Duccedimiente	- Se agitó suavemente para homogeneizar la muestra.		
Procedimiento	- Se introdujo el electrodo en el vaso de la muestra, sin que toque		
	ninguna pared del mismo.		
	- Se presionó medir y se esperó hasta que visualizó listo en la pantalla		
	del equipo.		
	- Se leyó la medida del pH y se registró el valor.		

Fuente: Laboratorio de Investigación ESPOCH, 2021.

Tabla 8-3: Determinación de la densidad del jugo de caña

	Materiales	Cálculo
-	Balanza analítica	$a = \frac{P_2 - P_1}{P_2 - P_2}$
-	Picnómetro	V_p
_	Probeta de 10ml	Donde:
		ρ = densidad (g/ml)
		P1 = Peso del picnómetro vacío (g)
		P2 = Peso del picnómetro con la muestra de ensayo (g)
		Vp = Volumen del picnómetro (ml)

	Se pesó el picnómetro vacío previamente tratado (4 horas en la estufa
	a 105°C) y desecado, hasta obtener peso constante.
Procedimiento	Se tomó 10ml de jugo en una probeta de 10ml.
- Se añadió los 10ml en el picnómetro.	
	Se pesó el picnómetro con la muestra en la balanza.

Fuente: Laboratorio de Investigación ESPOCH, 2021.

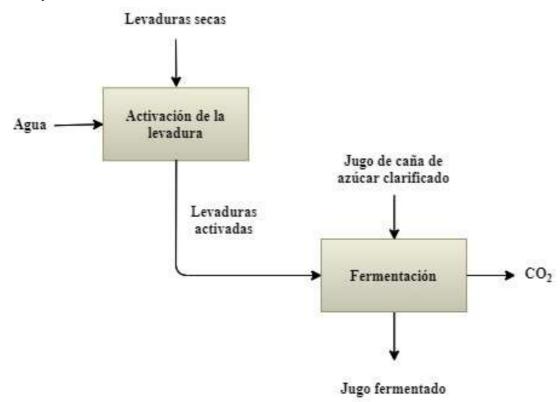
Realizado por: Gaibor, Samantha, 2021.

Tabla 9-3: Determinación del índice de refracción, ° Brix y temperatura

	- Refractómetro
Materiales	- Pipeta de Pasteur
Whaterfales	- Vaso de precipitación de 50ml
	- Varilla de agitación
	- Se encendió el equipo y se abrió la tapa del equipo.
	- Se calibró el equipo (se limpió la superficie con una toalla adsorbente
	y se agregó una gota de agua destilada, se cerró la tapa hasta que se
	calibre y, por último, se abrió la tapa y se limpió de nuevo la
	superficie).
Procedimiento	- En el vaso de precipitación de 50ml se colocó la muestra.
Procedimento	- Se agitó suavemente para homogeneizar la muestra.
	- Se introdujo una gota de la muestra en la superficie del equipo.
	- Se presionó empezar y se esperó hasta que visualizó los números sin
	cambio alguno en la pantalla.
	- Se leyó el índice de refracción, ° Brix y temperatura, registrando los
	respectivos valores.

Fuente: Laboratorio de Investigación ESPOCH, 2021.

Realizado por: Gaibor, Samantha, 2021.


3.3.2. Obtención del etanol

3.3.2.1. Fermentación del jugo de caña

La fermentación del jugo se lo hizo con las levaduras *Saccharomyces cerevisiae*, SafAle S-33, que son levaduras secas, por lo cual lo primero que se hizo fue activarlas. Después se las agregó en el jugo de caña ya tratado y se dejó en reposo hasta que el proceso esté completo. Se fue tomando en el proceso el pH, el índice de refracción, ° Brix y temperatura.

Tabla 10-3: Proceso de fermentación del jugo de caña

Proceso	Descripción
	Las levaduras SafAle S-33 tenían sus propias instrucciones para su uso y
Activación de la	activación, por lo tanto, se siguió dicho proceso. Se debía agregar 65g/hL,
levadura	por lo tanto, se pesó 35,75g por los 55L de jugo que se tenía. Después las
	levaduras pesadas se las agregó en 357,5ml de jugo a una temperatura de
	30°C. Se agito suavemente por 30 minutos y se agregó al jugo.
Fermentación	Se dejó en reposo, permitiendo que exista salida de CO ₂ y evitando la
	entrada el O2. Dichas condiciones se lograron con ayuda de un airlock.
	Este proceso se demoró 78 horas y se lo hizo a temperatura ambiente (27
	°C).

Figura 4-3: Diagrama del proceso de fermentación del jugo de caña **Realizado por:** Gaibor, Samantha, 2021.

3.3.2.2. Destilación del jugo fermentado

La destilación se realizó en el laboratorio de procesos industriales y permitió que se obtenga etanol al 50% a partir del jugo de caña.

Tabla 11-3: Proceso de destilación del jugo fermentado

Proceso	Descripción
	Se preparó el equipo de destilación (limpieza y conexión del tanque de
	gas). Se colocó 55L de jugo de caña fermentado en el equipo. Se encendió
Destilación	el equipo y se lo hizo funcionar según indicaciones. Se controló que la
Destilación	temperatura del equipo sea la temperatura de ebullición del etanol, 78,4
	°C. Además, se recolectaba el etanol cada hora, al igual que se medía el
	volumen y los grados de alcohol respectivos.

Figura 5-3: Diagrama del proceso de destilación del jugo de caña

Realizado por: Gaibor, Samantha, 2021.

3.3.2.3. Rectificación del etanol

Cuando se obtuvo el etanol destilado al 50° de alcohol, se lo rectificó mediante una destilación fraccionada en el laboratorio de Química Orgánica, con lo cual se llegó a 90° de alcohol.

Tabla 12-3: Proceso de rectificación del etanol

Proceso	Descripción
	Se preparó el equipo de destilación (conectar las mangueras, refrigerantes, termómetro, balón de destilación y matraz Erlenmeyer, y ubicar el reverbero). Se colocó 1000ml de etanol en el balón de
Rectificación	destilación. Se encendió el reverbero y se controló que la temperatura del equipo sea la temperatura de ebullición del etanol, 78,4 °C. Se recolectaba el etanol cada que el matraz Erlenmeyer se llenaba. En ese momento se medía el volumen y los grados de alcohol respectivos.

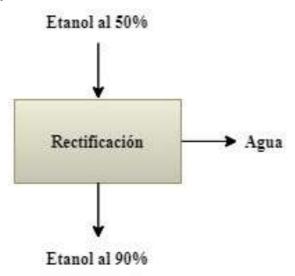


Figura 6-3: Diagrama del proceso de rectificación del etanol

Realizado por: Gaibor, Samantha, 2021.

3.3.2.4. Deshidratación con tamices moleculares

Se aumentó el grado de alcohol con los tamices moleculares zeolita A3 debido a que el grado de alcohol deseado era el 96%.

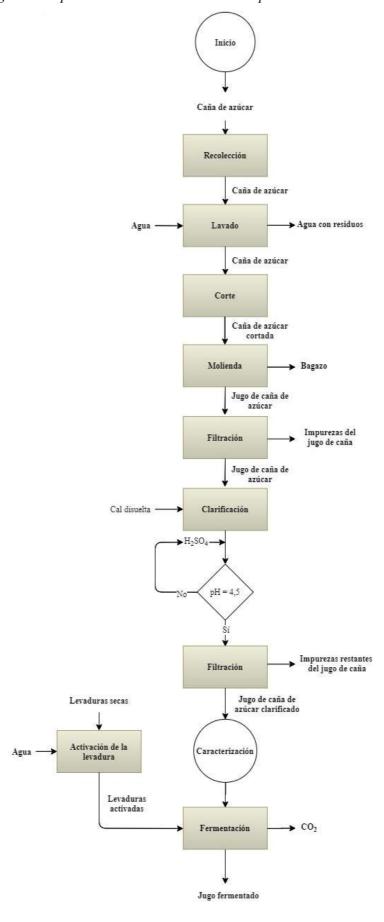
Tabla 13-3: Proceso de deshidratación del etanol

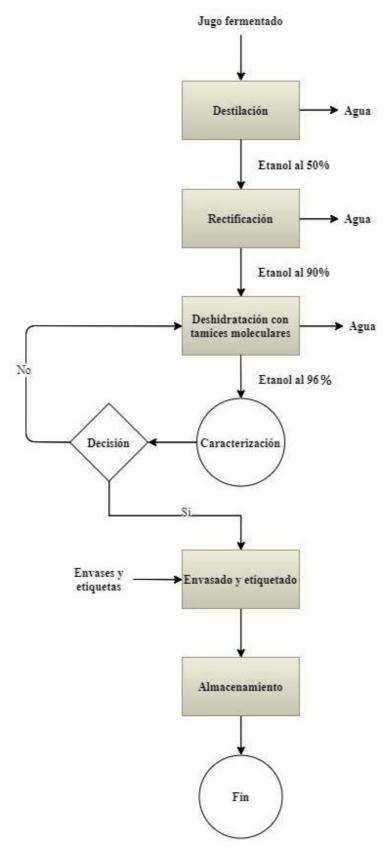
Proceso	Descripción
	Se pesó los tamices moleculares zeolita A3. Se agregó 100g a un matraz
Separación	Erlenmeyer de 2000ml con 1000ml de etanol al 90%. Se lo dejó reposar
	por 24 horas, tomando los grados alcohólicos cada 3 horas.

Figura 7-3: Diagrama del proceso de deshidratación del etanol

3.3.2.5. Caracterización del etanol obtenido

La caracterización del etanol fue necesario debido a que la implementación del producto debe ser certera para la empresa. Para ello, el producto se caracterizó siguiendo la Norma Técnica Ecuatoriana. NTE INEN 2 478:2009, que detalla los respectivos métodos de ensayo para los diferentes requisitos del producto. Cabe destacar que las pruebas que se realizaron en el laboratorio de Investigación y Bromatología son el pH y la acidez total, mientras que los otros análisis fueron realizados por el Laboratorio Guijarro Lasa S.A.


Tabla 14-3: Requisitos del etanol anhidro grado carburante desnaturalizado


REQUISITOS	UNIDAD	MÍNIMO	MÁXIMO	MÉTODO DE ENSAYO
φ Contenido de etanol	%	96,3		ASTM D 5501
Acidez total (Como ácido acético)	mg/100ml		3,0	NTE INEN 341
Conductividad eléctrica	μS/m		500	ASTM D 1125
Densidad a 20°C	kg/m3		791,5	ASTM D 4052
Contenido de cloruros	mg/l		32	ASTM D 512

φ Contenido de agua	%		0,3	ASTM E 203
Contenido de cobre	mg/kg		0,1	ASTM D 1688
Residuo por evaporación	mg/100ml		5,0	ASTM D 381
рНе		6,5	9,0	ASTM D 6423
φ Contenido de desnaturalizantes	%	2	3	ASTM D 6729

Fuente: Instituto Ecuatoriano de Normalización, 2009.

3.3.2.6. Diagrama del proceso de obtención de etanol a partir de la caña de azúcar

Figura 8-3: Diagrama del proceso de obtención de etanol a partir de la caña de azúcar **Realizado por:** Gaibor, Samantha, 2021.

3.4. Variables del proceso

Tabla 15-3: Variables del proceso de obtención del etanol a partir de la caña de azúcar

Variables	Tipo de variable	Subvariable	Concepto	Equipo o aparato de medición	Efecto en el proceso	Parámetros
Caña de azúcar	Dependiente	Grado de maduración	Tiempo en el cual la caña de azúcar está lista para cosecha.	Visual	Mejor rendimiento en la obtención de etanol.	10 a 15 meses
Lavado	Independiente	Cantidad de caña de azúcar	zúcar Magnitud de masa inicial Balanza del campo		70kg	
Molienda	Dependiente	Tiempo	Magnitud de duración de la actividad.	Cronómetro	Tiempo en el cual se obtiene el jugo	1min
Hambian	Independiente	Cantidad de caña de azúcar a moler	Magnitud de masa para extraer el jugo	Balanza	Se obtiene el jugo de caña para la obtención del etanol.	107,33g
	Dependiente	Tiempo	Magnitud de duración de la actividad	Cronómetro	Tiempo en el cual se clarifica el jugo	20 a 30min
	Берениене	pН	Magnitud de acidez de la muestra	Potenciómetro	Mejor rendimiento de obtención de etanol	4,5 a 5
Clarificación		Cantidad de jugo a clarificar	Magnitud de volumen del jugo	Probeta	Cantidad de jugo al que se le eliminará el resto de impurezas presentes	55L
	Independiente	Cantidad de cal utilizado	Magnitud de masa de cal utilizada para disolución 1:10	Balanza	Sedimenta las impurezas presentes en el jugo	5g
		Cantidad de ácido sulfúrico agregado	Magnitud de volumen del ácido sulfúrico a utilizar	Pipeta Pasteur	Regula el pH	2ml
Activación de	Dependiente	Tiempo	Magnitud de duración de la actividad	Cronómetro	Activa a las levaduras para su función.	30min
levadura	Dependiente	Temperatura	Magnitud de calor que existe en la actividad	Termómetro	Condición necesaria para activar levadura	30°C

	Independiente	Cantidad de levadura utilizada	Magnitud de masa de levadura utilizada para disolución 1:10	Balanza	Buena y rápida fermentación	35,75g
Fermentación Dependiente	Dependiente	Tiempo	Magnitud de duración de la actividad	Cronómetro	Tiempo de transformación de azúcares en alcohol y dióxido de carbono	78h
		Temperatura	Magnitud de calor en el proceso	Termómetro	Permite que las levaduras trabajen de una forma exitosa	28°C
Destilación y	Dependiente	Tiempo	Magnitud de duración de la actividad	Cronómetro	Tiempo de separación del etanol de la muestra	16h
rectificación	Берениене	Temperatura	Magnitud de calor en el proceso	Termómetro	Obtención del etanol por diferencia de punto de ebullición	78°C
	Dependiente	Tiempo	Magnitud de duración de la actividad	Cronómetro	Tiempo de deshidratación de la muestra etanol-agua	24h
Deshidratación	Independiente	Cantidad de tamices moleculares utilizados	Magnitud de masa de tamices moleculares	Balanza	Rapidez en la deshidratación de la mezcla etanol-agua para los grados deseados	100g

3.5. Datos experimentales

3.5.1. En el lavado

Tabla 16-3: Datos experimentales de la caña de azúcar antes y después del lavado

Muestra	Altura (cm)	Diámetro (cm)	Masa inicial (g)	Masa final (g)
1	322,00	5,50	2355,30	2326,06
2	315,00	5,20	2365,00	2333,02
3	335,00	5,30	2356,60	2325,65
4	350,00	5,70	2366,00	2333,87
5	345,00	5,30	2362,00	2330,63
6	320,00	5,60	2360,80	2327,44
7	323,00	5,30	2357,60	2321,94
8	345,00	5,50	2360,10	2326,30
9	335,00	5,20	2364,10	2336,27
10	344,00	5,80	2363,30	2334,83
Promedio	333,40	5,44	2355,30	2326,06

Realizado por: Gaibor, Samantha, 2021.

3.5.1.1. Cálculo de la densidad de la caña de azúcar

$$\rho_{ca\tilde{n}a} = \frac{Masa\ inicial\ (g)}{\pi * \left(\frac{\text{Diámetro}\ (\text{cm})}{2}\right)^{2} * Altura\ (cm)}$$

$$\rho_{ca\tilde{n}a} = \frac{2055,30\ g}{\pi * \left(\frac{5,5cm}{2}\right)^{2} * 322cm}$$

$$\rho_{ca\tilde{n}a} = 0,31\frac{g}{cm^{3}}$$

3.5.1.1. Cálculo del porcentaje de impurezas removidas por el lavado

$$\% Removido = \frac{Masa\ inicial-Masa\ final}{Masa\ inicial}*100$$

$$\% Removido = \frac{2355,30g-2326,06g}{755g}*100$$

$$\% Removido = 1,24\%$$

Tabla 17-3: Porcentaje de impurezas removidas por el lavado

Muestra	1	2	3	4	5	6	7	8	9	10	Promedio
%Removido	1,24	1,35	1,31	1,36	1,33	1,41	1,51	1,43	1,18	1,2	1,33
$ ho_{ca\tilde{n}a}$	0,31	0,36	0,32	0,27	0,31	0,30	0,33	0,29	0,33	0,26	0,31

3.5.2. En la filtración

Tabla 18-3: Datos experimentales de la filtración del jugo de caña

Medio filtrante	$P_{N}(g)$	$P_{NS+M}(g)$
Nylon	17,188	17,847

Realizado por: Gaibor, Samantha, 2021.

3.5.2.1. Cálculo del porcentaje de sólidos retenidos

$$\%Retenido = \frac{P_{NS+M} - P_N}{I} * 100\%$$

Donde:

 P_N = Peso de la tela Nylon (g)

 P_{NS+M} = Peso de la tela Nylon seca con la muestra (g)

J = Peso de la muestra que se filtró (g)

$$\% Retenido = \frac{17,692g - 17,188g}{49,56g} * 100\%$$

 $\% Retenido = 1,02\%$

3.5.3. En la clarificación y filtración

Tabla 19-3: Datos experimentales de la clarificación y filtración del jugo de caña

Medio filtrante	P _{N2} (g)	P _{N2S+M} (g)		
Nylon	17,452	17,638		

Realizado por: Gaibor, Samantha, 2021.

3.5.3.1. Cálculo del porcentaje de sólidos precipitados

$$\%SP = \frac{P_{N2S+M} - P_{N2}}{IC} * 100\%$$

Donde:

 P_{N2} = Peso de la tela Nylon 2 (g)

 P_{N2S+M} = Peso de la tela Nylon 2 seca con la muestra (g)

JC = Peso de la muestra que se clarificó y filtró (g)

$$\%SP = \frac{17,638g - 17,452g}{49,05g} * 100\%$$

$$\%Retenido = 0,38\%$$

3.5.4. En la caracterización del jugo de caña

3.5.4.1. Sólidos totales

Tabla 20-3: Datos experimentales de los sólidos totales del jugo de caña

Tiempo (h)	M _{C1M} (g)	M _{C2M} (g)	M _{C1} (g)	$M_{C2}(g)$	V _m (ml)
0	139,8125	143,3891			
2	125,7324	129,2561			
4	111,6523	115,1231	88,8057	92,3738	50
6	97,5722	100,9901	00,0007	72,3750	30
24	91,4321	94,9912			
26	91,4321	94,9912			

Realizado por: Gaibor, Samantha, 2021.

- Cálculo del contenido de sólidos totales en el jugo de caña

$$ST = \left(\frac{M_{C1M} - M_{C1}}{V_m}\right) * 100$$

$$ST = \left(\frac{91,4321g - 88,8057g}{50ml}\right) * 100$$

$$ST = 5,2528\%$$

$$ST = \frac{5,2528g}{100ml}$$

Tabla 21-3: Contenido de sólidos totales en el jugo de caña

Muestra	Sólidos totales (g/100ml)	
1	5,2528	
2	5,2348	
Promedio	5,2438	

3.5.4.2. Cenizas totales

Tabla 22-3: Datos experimentales de cenizas totales en el jugo de cala

Tiempo (h)	M _{C1M} (g)	M _{C2M} (g)	M _{C1} (g)	M _{C2} (g)
0	43,3571	38,8619		
2	41,2342	37,9941		
4	40,3113	37,0263	39,1802	34,8147
6	40,2437	35,8825	37,1802	54,6147
24	39,1825	34,8174	1	
26	39,1825	34,8174		

Realizado por: Gaibor, Samantha, 2021.

- Cálculo del contenido de cenizas totales del jugo de caña

$$\%C_{s} = \left(\frac{M_{C1Mf} - M_{C1}}{M_{C1Mi} - M_{C1}}\right) * 100$$

$$\%C_{s} = \left(\frac{39,1825g - 39,1802}{43,3571 - 39,1802}\right) * 100$$

$$\%C_{s} = 0,055\%$$

Tabla 23-3: Contenido de cenizas totales del jugo de caña

Muestra	Cenizas totales (%)
1	0,0551
2	0,0667
Promedio	0,0609

Realizado por: Gaibor, Samantha, 2021.

3.5.4.3. Acidez

Tabla 24-3: Datos experimentales de la acidez del jugo de caña

Muestra	V _m (ml)	C _{NaOH} (N)	V _{NaOH} (ml)
1	25		30,3
2	23	0,9998	29,6
3	1:10		29,95

- Cálculo de la acidez del jugo de caña

$$C_{m} = \frac{C_{1} * V_{1}}{V_{m}}$$

$$C_{m} = \frac{0,9998N * 0,8ml}{25ml * 10}$$

$$C_{m} = 0,0032N$$

$$C_{m} = 0,0032 \frac{eqqH_{2}SO_{4}}{L} * 2$$

$$C_{m} = 0,0064 \frac{molH_{2}SO_{4}}{L} * \frac{98,08 \ gH_{2}SO_{4}}{1 \ molH_{2}SO_{4}}$$

$$C_{m} = 0,6276 \frac{g}{L}$$

Tabla 25-3: Acidez del jugo de caña

Muestra	C (N)	C (gH ₂ SO ₄ /L)
1	0,0032	0,6276
2	0,0032	0,6276
3	0,0028	0,5491
Promedio	0,0031	0,6014

Realizado por: Gaibor, Samantha, 2021.

3.5.4.4. Densidad

Tabla 26-3: Datos experimentales de la densidad del jugo de caña

Muestra	V _p (ml)	$P_1(g)$	$P_2(g)$
			23,778
1	10	14,795	23,882
			23,755

Realizado por: Gaibor, Samantha, 2021.

Donde:

P₁ = Peso del picnómetro vacío (g)

P₂ = Peso del picnómetro con la muestra (g)

V_p = Volumen de la muestra en el picnómetro (ml)

- Cálculo de la densidad

$$\rho = \frac{P_2 - P_1}{V_p}$$

$$\rho = \frac{23,778g - 14,795g}{10ml}$$

$$\rho = 0,8983 \frac{g}{ml} = 0,8983 \frac{kg}{L}$$

Tabla 27-3: Densidad del jugo de caña

Muestra	ρ (g/ml)
1	0,8983
2	0,9087
3	0,896
Promedio	0,901

Realizado por: Gaibor, Samantha, 2021.

3.5.4.5. pH, índice de refracción, Brix y temperatura

Tabla 28-3: Datos experimentales las diferentes características del jugo de la caña

pН	Índice de refracción	Brix (°Bx)	Temperatura (°C)
4,5	1,36381	19,98	20

Realizado por: Gaibor, Samantha, 2021.

3.5.5. En la fermentación

Tabla 29-3: Datos experimentales a lo largo del proceso de fermentación

Tiempo (h)	Brix (°Bx)	pН
2	19,98	4,500
4	19,01	4,496
6	18,35	4,488
8	17,47	4,476
24	16,61	4,121
26	15,26	4,183
28	14,95	4,105
30	14,12	4,027
48	13,37	3,949

50	12,36	3,872
52	11,63	3,794
54	10,93	3,716
72	9,97	3,638
74	9,14	3,560
76	8,32	3,483
78	8,20	3,364

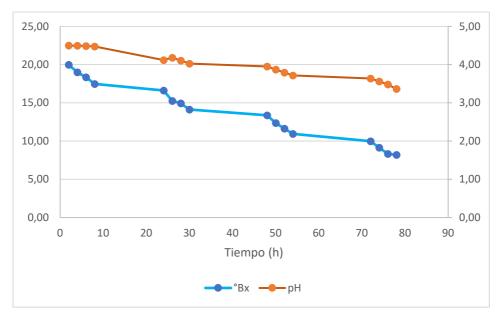


Gráfico 1-3: Variación de Brix y pH en el proceso de fermentación

Realizado por: Gaibor, Samantha, 2021.

3.5.6. En la caracterización del etanol obtenido

3.5.6.1. *Acidez*

Tabla 30-3: Datos experimentales de la acidez del etanol

Muestra	V _m (ml)	C _{NaOH} (N)	V _{NaOH} (ml)
1	25		0,1
2	23	0,9998	0,1
3	1:10		0,1

- Cálculo de la acidez del etanol

$$AT = 2.4 * \frac{V_1}{G}$$

$$AT = 2.4 * \frac{0.1}{96}$$

$$AT = 2.492 * 10^{-3} \frac{gCH_3COOH}{100ml}$$

$$AT = 2.492 \frac{mgCH_3COOH}{100ml}$$

3.5.6.2. pH del etanol obtenido

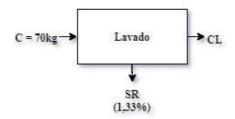
Tabla 31-3: Datos experimentales del pH del etanol

рН	
6,73	

Realizado por: Gaibor, Samantha, 2021.

3.6. Balance de materia y energía

3.6.1. Balance de materia


El balance de materia sigue la Ley de Conservación de Materia, en el cual se detalla que "la materia ni se crea ni se destruye, sólo se transforma". Con los balances que se presentan a continuación se puede observar cómo la caña de azúcar fue transformada a etanol en el laboratorio.

De forma general el balance de materia está regido a que todo lo que entra sale. Así se tiene que su ecuación es:

$$Entrada = Salida$$

3.6.1.1. *En el lavado*

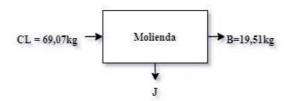
En el lavado de la caña de azúcar entera se removió el 1,33% de las impurezas provenientes del campo.

$$C = SR + CL$$

$$CL = C - SR$$

$$CL = 70kg - \frac{1,33}{100} * 70kg$$

$$CL = 70kg - 0,93kg$$


$$CL = 69,07kg$$

$$\%Rendimiento = \frac{Materia\ que\ sale}{Materia\ que\ entra}*100\%$$
 $\%Rendimiento = \frac{69,07kg}{70kg}*100\%$
 $\%Rendimiento = 98,67\%$

El proceso de lavado tiene un rendimiento de 98,63% debido a que el 1,33% de las impurezas provenientes del campo son removidas en este proceso.

La caña de azúcar lavada fue cortada pero su balance de materia permanece igual, ya que el corte se lo realizó para facilidad de molienda y de esta manera la materia de entrada en molienda son los mismos que la materia de salida en el lavado, 69,07kg.

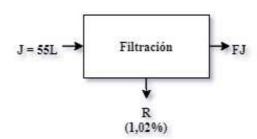
3.6.1.2. En la molienda

$$CL = J + B$$

 $J = CL - B$
 $J = 69,07kg - 19,51kg$
 $J = 49,56kg$

$$\%Rendimiento = \frac{Materia\ que\ sale}{Materia\ que\ entra}*100\%$$
 $\%Rendimiento = \frac{49,56kg}{69,07kg}*100\%$ $\%Rendimiento = 71,75\%$

El proceso de molienda de la caña de azúcar que se utilizó tiene un rendimiento del 71,75% para producir el jugo del mismo, dejando un rendimiento de bagazo del 28,25%, que puede ser utilizado para diferentes proyectos según quisiera la empresa.


3.6.1.3. En la filtración

En el proceso de filtración, los datos son en volumen, por lo tanto, para obtener el volumen inicial del balance se divide la masa del jugo por la densidad antes ya calculada.

$$V_{J} = \frac{J}{\rho_{J}}$$

$$V_{J} = \frac{49,56kg}{0,901\frac{kg}{L}}$$

$$V_{J} = 55L$$

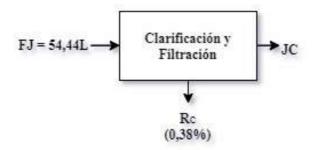
$$J = FJ + R$$

$$FJ = J - R$$

$$FJ = 55L - \frac{1,02}{100} * 55L$$

$$FJ = 55L - 0,561L$$

$$FJ = 54,439L$$


$$\% Rendimiento = \frac{\textit{Materia que sale}}{\textit{Materia que entra}} * 100\%$$

$$\% Rendimiento = \frac{54,439L}{55L} * 100\%$$

$$\% Rendimiento = 98,98\%$$

El proceso de filtración tiene el 98,98% de rendimiento pues los sólidos retenidos en el proceso fueron del 1,02%.

3.6.1.4. En la clarificación y filtración

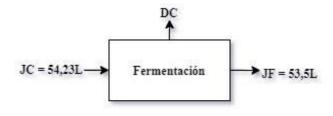
Gracias a la adición de cal se logró la precipitación de los sólidos restantes en el jugo. Además, con la filtración se conoció que la cantidad de sólidos que precipitaron y por lo tanto que se retuvieron en el proceso, los cuales fueron del 0,38%.

$$FJ = JC + R_c$$

$$JC = FJ - R_C$$

$$JC = 54,44L - \frac{0,38}{100} * 54,44L$$

$$JC = 54,44L - 0,21L$$


$$JC = 54,23L$$

$$\%Rendimiento = \frac{Materia\ que\ sale}{Materia\ que\ entra}*100\%$$
 $\%Rendimiento = \frac{54,23L}{54,44L}*100\%$ $\%Rendimiento = 99,62\%$

La clarificación y su posterior filtración tiene un rendimiento del 99,62% ya que en dicho proceso se retienen las impurezas sobrantes después del proceso de filtrado, que en este caso fue del 0,38%.

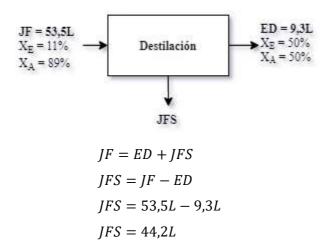
3.6.1.5. En la fermentación

La fermentación produce la transformación del azúcar presente en el jugo de caña clarificado en etanol y dióxido de carbono.

$$JC = JF + DC$$

$$DC = JC - JF$$

$$DC = 54,23L - 53,5L$$


$$DC = 0,73L$$

$$\%Rendimiento = \frac{Materia\ que\ sale}{Materia\ que\ entra}*100\%$$
 $\%Rendimiento = \frac{53,5L}{54,23L}*100\%$ $\%Rendimiento = 98,65\%$

El rendimiento del proceso de fermentación fue 98,65% con respecto al jugo que se deseaba, transformando sus azúcares a un 11% de concentración de etanol en el jugo fermentado. El dióxido de carbono que se obtuvo se logró visualizar con ayuda del airlock, pues en él se observaban las burbujas provenientes del proceso. Entonces el 1,35% del restante proceso fue por formación de este gas.

3.6.1.6. En la destilación

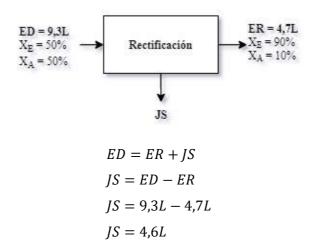
En el proceso de destilación ya se tenía conocimiento del contenido de alcohol inicial y final gracias a la ayuda del alcoholímetro, por lo tanto, se procedió a hacer un balance por cada componente, tomando de manera general el porcentaje de alcohol y el resto como agua.

- Balance etanol

$$X_{E} * JF = X_{E2} * ED + X_{E3} * JFS$$

$$X_{E3} = \frac{X_{E} * JF - X_{E2} * ED}{JFS}$$

$$X_{E3} = \frac{0.11 * 53.5L - 0.5 * 9.3L}{44.2L}$$


$$X_{E3} = 0.0279$$

$$X_{E3} = 2.79\%$$

$$\%Rendimiento = \frac{Materia\ que\ sale}{Materia\ que\ entra}*100\%$$
 $\%Rendimiento = \frac{9,3L}{53,5L}*100\%$ $\%Rendimiento = 17,38\%$

La destilación tuvo un rendimiento del 17,38%, debido a que el contenido de etanol de la muestra era bajo, como lo es un 11%. Además, se ve afectado por el equipo, quedando el jugo fermentado que se destiló con un 2,79% reduciéndose no en su totalidad los grados de alcohol en un 8,21%, por las causas antes nombradas.

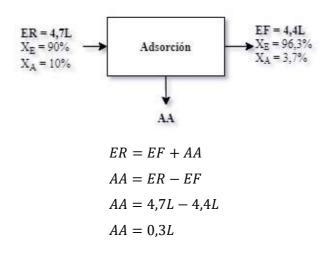
3.6.1.7. En la rectificación

- Balance de etanol

$$X_{E} * ED = X_{E2} * ER + X_{E3} * JS$$

$$X_{E3} = \frac{X_{E} * ED - X_{E2} * ER}{JS}$$

$$X_{E3} = \frac{0.5 * 9.3L - 0.9 * 4.7L}{4.6L}$$


$$X_{E3} = 0.0913$$

$$X_{E3} = 9.13\%$$

$$\%Rendimiento = \frac{Materia\ que\ sale}{Materia\ que\ entra}*100\%$$
 $\%Rendimiento = \frac{4,6L}{9,3L}*100\%$ $\%Rendimiento = 49,46\%$

La destilación tuvo un rendimiento del 49,46%, debido a al equipo y al punto azeotrópico entre el agua y etanol, haciendo difícil la extracción de etanol a mayor concentración. Asimismo, se debe destacar que el etanol sobrante tenía una concentración del 9,13% por lo cual se redujo el 40,87% de su contenido inicial, no reduciéndose en su totalidad por las causas antes nombradas.

3.6.1.8. En la deshidratación

$$\%Rendimiento = \frac{Materia\ que\ sale}{Materia\ que\ entra}*100\%$$
 $\%Rendimiento = \frac{4,4L}{4,7L}*100\%$ $\%Rendimiento = 93,62\%$

El rendimiento de deshidratación por absorción de los tamices moleculares fue de 93,62%, debido a que los tamices moleculares, zeolita A3, solo absorben las moléculas del agua, por lo tanto, el agua adsorbida es 0,3L, representado el 6,38% del rendimiento del proceso.

3.6.1.9. Rendimiento de la caña de azúcar para la obtención de etanol

$$\%R_{Total} = \frac{Materia\ que\ sale}{Materia\ que\ entra}*100\%$$
 $\%R_{Total} = \frac{4.4\ L}{70\ kg}*100\%$
 $\%R_{Total} = 6.29\%$

El porcentaje de rendimiento es bajo debido a la transformación que sufre la caña de azúcar a lo largo del proceso, es decir en el lavado, molienda, filtración, clarificación, fermentación, destilación, rectificación y deshidratación.

3.6.2. Balance de energía

El balance de energía se realizará en los procesos de destilación y rectificación debido a que son los principales para entender la transformación de la energía y de los componentes mismo. En la investigación de Ones et al., (2010, p.12) se puede encontrar las entalpías para las diferentes mezclas de etanol agua, con lo cual se puede trabajar.

3.6.2.1. Datos necesarios para el balance de energía

Tabla 32-3: Entalpías con relación a las diferentes concentraciones de etanol

Fase del etanol	Parte del proceso	Fracción etanol-agua	H (kJ/kg)
Líquido saturado	Jugo fermentado	0,0279	410
	sobrante (JFS)		
	Fondo de destilado 2	0,0913	385
	Jugo fermentado (JF)	0,1100	380
	Etanol destilado (EF)	0,5000	310
	Etanol rectificado	0,9000	240
	(ER)		
Vapor saturado	En el destilado	0,5000	1950
	En el rectificado	0,9000	1320

Fuente: Ones et al., 2010.

Realizado por: Gaibor, Samantha, 2021.

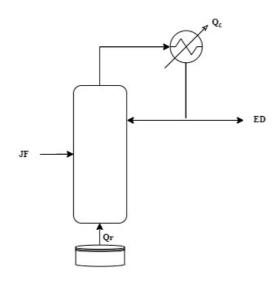
El etanol obtenido tanto en el proceso de destilación como en el de rectificación pasó por cambios de temperatura ambiente a su temperatura de vapor y terminando en su temperatura ambiente.

Tabla 33-3: Datos experimentales de los diferentes cambios de temperatura en el proceso

Temperatura inicial (T _i) (°C)	Temperatura vapor (T_f) (°C)	Temperatura final (°C)
22	78	22

Realizado por: Gaibor, Samantha, 2021.

Para los flujos másicos que se presentan en los cálculos se consideró la densidad del etanol y del jugo de caña respectivamente, además de un tiempo utilizado de 8 horas.


$$\dot{m}_{JF} = \frac{53,5L * 0,901 \frac{kg}{L}}{8h}$$

$$\dot{m}_{JF} = 6.03 \frac{kg}{h}$$

Tabla 34-3: Flujos másicos del proceso de experimentación

Elemento	Flujo másico (kg/h)
Jugo fermentado (JF)	6,03
Jugo fermentado sobrante (JFS)	4,98
Etanol destilado (ED)	0,92
Etanol sobrante (JS)	0,45
Etanol rectificado (ER)	0,46

3.6.2.2. En la destilación

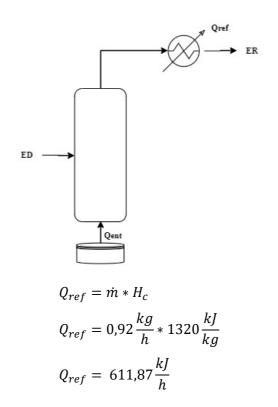
$$Q_{c} = \dot{m} * H_{c}$$

$$Q_{c} = \frac{53,5L * 0,901 \frac{kg}{L}}{8h} * 1950 \frac{kJ}{kg}$$

$$Q_{c} = 0,92 \frac{kg}{h} * 1950 \frac{kJ}{kg}$$

$$Q_{c} = 1788,56 \frac{kJ}{h}$$

Haciendo un balance global de la energía se tiene:


$$JF * h_{JF} + Q_r = ED * H_{ED} + JFS * h_{JFS} + Q_c$$

$$6,03 \frac{kg}{h} * 380,00 \frac{kJ}{kg} + Q_r = 0,92 \frac{kg}{h} * 310,00 \frac{kJ}{kg} + 4,98 \frac{kg}{h} * 410 \frac{kJ}{kg} + 1788,56 \frac{kJ}{h}$$

$$2289,67 \frac{kJ}{h} + Q_r = 284,34 \frac{kJ}{h} + 2040,99 \frac{kJ}{h} + 1788,56 \frac{kJ}{h}$$

$$Q_r = 1824,22 \frac{kJ}{h}$$

3.6.2.3. En la rectificación

Haciendo un balance global de la energía se tiene:

$$\begin{split} ED*h_{ED} &+ Q_{ent} = ER*H_{ER} + JS*h_{JS} + Q_{ref} \\ 0.92\frac{kg}{h}*310.00\frac{kJ}{kg} + Q_{ent} = 0.46\frac{kg}{h}*240.00\frac{kJ}{kg} + 0.45\frac{kg}{h}*240\frac{kJ}{kg} + 611.87\frac{kJ}{h} \\ 284.34\frac{kJ}{h} + Q_{ent} &= 111.25\frac{kJ}{h} + 174.66\frac{kJ}{h} + 611.87\frac{kJ}{h} \\ Q_{ent} &= 613.45\frac{kJ}{h} \end{split}$$

3.7. Dimensionamiento de los equipos

3.7.1. Diseño del recipiente de recepción y lavado de la caña de azúcar

3.7.1.1. Cantidad de caña de azúcar a utilizar para la producción de la empresa

La empresa GelFresh consume 60L por día, por lo que la propuesta será para la producción de 200L de etanol anhidro al 96%. De tal manera que la producción de etanol anhidro del día les sirva para su consumo en 3 días y su venta por si solo si la empresa lo decide.

$$C_{ca\tilde{n}a} = \frac{C_{etanol}}{\%R_{Total}} * 100\%$$

$$C_{ca\tilde{n}a} = \frac{200}{6,29} * 100$$

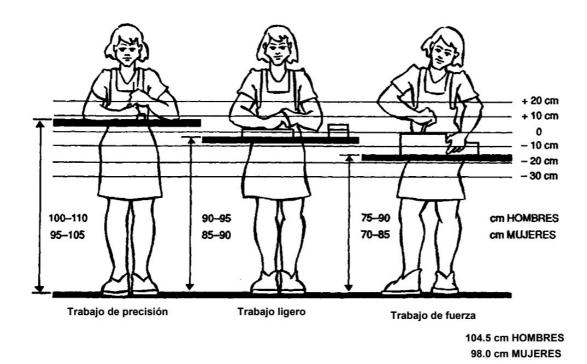
$$C_{ca\tilde{n}a} = 3181,82 \ kg$$

Es decir, se utilizarán 3,18182 ton de caña por lote de producción deseada para la empresa.

3.7.1.2. Volumen a ocupar por la caña de azúcar

$$\begin{split} V_{ca\|a} &= \frac{V_{aguaexp} * C_{ca\|a}}{C} \\ V_{ca\|a} &= \frac{730L * 3181,82 \frac{kg}{lote}}{70kg} \\ V_{ca\|a} &= 33181,82 \frac{L}{lote} \end{split}$$

3.7.1.3. Volumen total de carga


$$V_{TC} = V_{caña} + \frac{C_{caña}}{\rho_{caña}}$$
 $V_{TC} = 33181,82 \frac{L}{lote} + \frac{3181,82 \frac{kg}{lote}}{0,31 \frac{kg}{L}}$
 $V_{TC} = 43516,57 \frac{L}{lote}$

3.7.1.4. Volumen total del recipiente

Para ello se va a considerar un factor de seguridad del 15%

$$V_{recipiente} = V_{TC} * 1,15$$

 $V_{recipiente} = 43516,57 \frac{L}{lote} * 1,15$
 $V_{recipiente} = 50044,056L$
 $V_{recipiente} = 50,044056 m^3$

3.7.1.5. Altura de la mesa de recepción y lavado

Figura 9-3: Altura de la mesa según una ergonomía correcta para realizar diferentes trabajos **Fuente:** Sataloff, et al., 1995

El trabajo que se realizará va a ser de fuerza, ya que eso implica el lavado manual, recomendado tanto para ahorro de dinero como un mejor rendimiento, por lo cual la altura de la mesa será entre 70 y 90cm con una profundidad de recepción de 40cm.

3.7.1.6. Área de la superficie de la mesa

$$A_{sup} = \frac{V_{recipiente}}{h_{profundidad}}$$

$$A_{sup} = \frac{50,044056 \ m^3}{0,4m}$$

$$A_{sup} = 125,11 \ m^2$$

El área superficial es de un rectángulo.

$$A_{sup} = x * y$$

Donde:

x = ancho de la superficie (m)

y = largo de la superficie (m)

$$x = \frac{A_{sup}}{y}$$
$$x = \frac{125,11 \, m^2}{y}$$

La utilización tanto del área a ocupar como del material a utilizar debe ser mínima, entonces su perímetro debe ser mínimo, por lo tanto, se recurre a optimizar.

$$P_{sup} = 2x + 2y$$

$$P_{sup} = 2 * \frac{125,11}{y} + 2y$$

$$P_{sup} = \frac{250,22}{y} + 2y$$

$$P_{sup}' = -\frac{250,22}{y^2} + 2$$

$$0 = -\frac{250,22}{y^2} + 2$$

$$-250,22 + 2y^2 = 0$$

$$y = 11,19m$$

$$x = \frac{125,11}{11,19} \frac{m^2}{m^2}$$

$$x = 11,19m$$

Por lo tanto, el recipiente será de 11,19m tanto de lado como de ancho.

3.7.1.7. Cantidad estimada de caña de azúcar después del lavado

$$CL_{prop} = rac{\% Rendimiento * C_{caña}}{100}$$
 $CL_{prop} = rac{98,67 * 3181,82 rac{kg}{lote}}{100}$
 $CL_{prop} = 3139,5 rac{kg}{lote}$

Tomando en cuenta el rendimiento de 98,67% obtenido del lavado realizado en la experimentación la cantidad de caña a cortar y moler es 3139,5 $\frac{kg}{lote}$.

3.7.2. Diseño de la picadora de caña de azúcar

Una cortadora no posee ecuaciones que ayuden a su diseño por lo cual se ha buscado la mejor opción de equipo para la empresa, de manera que es económico y efectivo para el trabajo.

Tabla 35-3: Características de una picadora de caña de azúcar

Detalles	Equipo
Modelo	Farrel modificado Unisystem
Marca	Colombiana
Precio	2000\$
Peso	2178 kg
Potencia	320 HP
Capacidad	100TCH
Velocidad	580RPM
Ancho	1,2m
Diámetro	1,55m
Cuchillas	48 cuchillas rectangulares

Fuente: Central Tumaco S.A., 2021.
Realizado por: Gaibor, Samantha, 2021.

3.7.3. Diseño del molino de caña de azúcar

Un molino no posee ecuaciones que ayuden a su diseño por lo cual se ha buscado la mejor opción de equipo para la empresa, de manera que es económico y efectivo para el trabajo.

Tabla 36-3: Características de un molino de caña de azúcar

Detalles	Equipo
Fabricante	Cañamiel
Marca	XJT
Precio (\$)	2156
Energía (W)	5.5
Dimensiones (mm)	900 x 858 x 800
Peso (kg)	450
Productividad (kg/h)	1000
Voltaje (V)	8V
Revoluciones por minuto	25
Frecuencia (Hz)	50 Hz

Fuente: Alibaba.com, 2021.

Realizado por: Gaibor, Samantha, 2021.

3.7.3.1. Cantidad estimada de jugo obtenido por la molienda

$$\begin{split} J_{prop} &= \frac{\% Rendimiento*CL_{prop}}{100} \\ J_{prop} &= \frac{71,75*3139,5\frac{\text{kg}}{\text{lote}}}{100} \\ J_{prop} &= \frac{2252,59\frac{kg}{\text{lote}}}{0,901\frac{kg}{L}} \\ J_{prop} &= 2500,10\frac{L}{\text{lote}} \end{split}$$

Tomando en cuenta el rendimiento de 71,75% obtenido del proceso de molienda realizado en la experimentación la cantidad de caña a filtrar es $2500,10\frac{L}{lote}$.

3.7.4. Diseño del equipo filtrador

Un equipo filtrador no posee ecuaciones que ayuden a su diseño por lo cual se ha buscado la mejor opción de equipo para la empresa, de manera que es económico y efectivo para el trabajo.

Tabla 37-3: Características de un equipo filtrador del jugo de caña de azúcar

Detalles	Equipo
Fabricante	STY
Modelo	SY-1500
Precio (\$)	1500
Poder (kv)	0.25-3
Diámetro de la pantalla (mm)	400-2000
Material	Acero al carbono
Cubiertas	1-5

Fuente: Focus Technology Co., 2021. Realizado por: Gaibor, Samantha, 2021.

3.7.4.1. Cantidad estimada de jugo después del filtrado

$$FJ_{prop} = \frac{\%Rendimiento*J_{prop}}{100}$$

$$FJ_{prop} = \frac{98,98*2500,10 \frac{L}{lote}}{100}$$

$$FJ_{prop} = 2474,60 \frac{L}{lote}$$

$$FJ_{prop} = 2,4746 \frac{m^3}{lote}$$

Tomando en cuenta el rendimiento de 98,98% obtenido del proceso de filtrado realizado en la experimentación la cantidad de caña a clarificar es $2474,60 \frac{L}{lote}$.

3.7.5. Diseño de un equipo de clarificación

3.7.5.1. Volumen total del clarificador

$$V_{clar} = JF_{prop} * f_s$$
$$V_{clar} = 2,4746 * 1,15$$

$$V_{clar} = 2,8458 \, m^3$$

3.7.5.2. Diámetro del clarificador

$$D_{clar} = \sqrt[3]{\frac{12 * V_{clar}}{\pi * 4,6}}$$

$$D_{clar} = \sqrt[3]{\frac{12 * 2,8458 m^3}{\pi * 4,6}}$$

$$D_{clar} = 1,332 m$$

3.7.5.3. Diámetro total del clarificador

Por diseño se le debe multiplicar por el factor de seguridad para prevenir que el volumen deseado no se vea afectado por los materiales que forman parte del equipo.

$$\begin{split} &D_{Tclar} = D_{clar} * fs \\ &D_{Tclar} = 1,332 \, m * 1,15 \\ &D_{Tclar} = 1,532 \, m \end{split}$$

3.7.5.4. Altura del clarificador

$$h_{clar} = \frac{V_{clar}}{\pi * r^2}$$

$$h_{clar} = \frac{2,8458 \, m^3}{\pi * \left(\frac{1,532m}{2}\right)^2}$$

$$h_{clar} = 1,5443 \, m$$

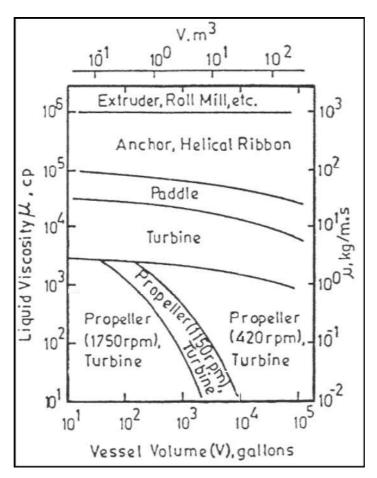
3.7.5.5. Altura total del clarificador

$$h_{Tclar} = h_{clar} * fs$$

 $h_{Tclar} = 1,5443 m * 1,5$
 $h_{Tclar} = 1,776 m$

En el clarificador se tiene que realizar la mezcla entre la cal y el jugo, que tienen una relación de 1:10, por lo cual aparte del recipiente se tiene que diseñar el sistema de agitación.

3.7.5.6. Selección del tipo de agitador para el clarificador


Con ayuda de Madrid, et al., 2014, pp. 4-5, manual que permite conocer la ingeniería de la caña de azúcar, se puede calcular la viscosidad del jugo que se utilizó para el proceso del presente proyecto.

$$\mu_{J} = \frac{0,047}{T_{J}} \left(\frac{kg}{ms}\right)$$

$$\mu_{J} = \frac{0,047}{22}$$

$$\mu_{J} = 2,136 * 10^{-3} \left(\frac{kg}{ms}\right)$$

Recordando que el volumen estimado a ocupar del líquido es 653,72 gal lote

Figura 10-3: Selección del tipo de agitador según la viscosidad y el volumen del líquido a agitar

Fuente: Peny, 1970; citado en Ricaurte, 2016, p.34.

Entonces será un sistema de agitación tipo turbina, debido a que la viscosidad del jugo de caña y el volumen del jugo se interrelacionan en el cuadrante correspondiente a este tipo de agitador. Destacando que como no existe el 10^{-3} en esta tabla, se dedujo que está más abajo, pero sin cambiar del tipo de sistema a utilizar.

3.7.5.7. Dimensionamiento de las partes del sistema de agitación del clarificador

Tabla 38-3: Igualdades para un sistema de agitación estándar

$\frac{D_A}{D_T} = \frac{1}{4}$	$\frac{H}{D_T} = 1$	$\frac{B}{D_T} = \frac{1}{12}$
$\frac{E}{D_A} = 1$	$\frac{W}{D_A} = \frac{1}{8}$	$\frac{S}{D_A} = 1$

Fuente: Coker, 2001; citado en Ricaurte, 2016.

Donde:

 D_T = Diámetro del clarificador

 D_A = Diámetro del agitador

H = Altura que ocupa el líquido

B = Ancho de la placa deflectora

E = Longitud que separa el fondo del clarificador hasta el rodete

S = Longitud entre agitadores

W = Ancho de las aspas de turbina

Al tener estas relaciones para el diseño y sabiendo que D_T mide 1,532 m, se encontrado los resultados de las demás partes del sistema de agitación parte del clarificador.

Tabla 39-3: Dimensiones de las partes del clarificador con su sistema de agitación

D_T (m)	D_A (m)	H (m)	B (m)	E (m)	S (m)	W (m)
1,532	0,3829	1,532	0,1276	0,3829	0,3829	0,0479

Realizado por: Gaibor, Samantha, 2021

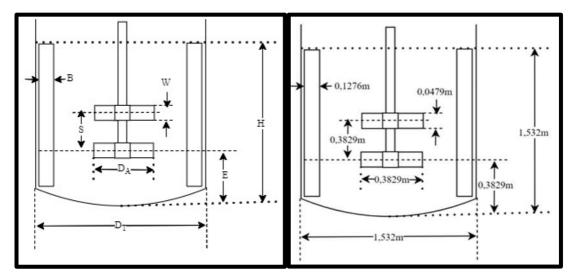
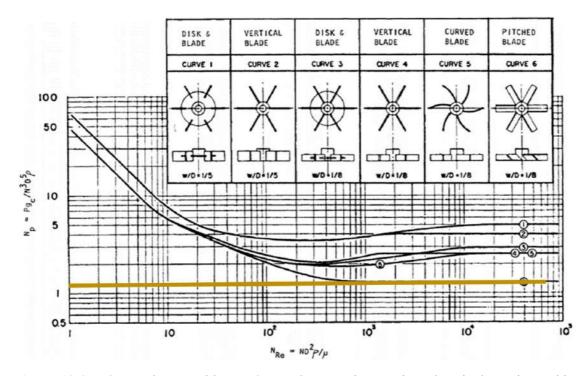


Figura 11-3: Diseño del clarificador con sus respectivas partes

Realizado por: Gaibor, Samantha, 2021.

3.7.5.8. Cálculo del número de Reynolds de la agitación

$$Re = \frac{D_A^2 * N * \rho}{\mu}$$


$$Re = \frac{(0,3829 \, m)^2 * 1\frac{rev}{s} * 901\frac{kg}{m^3}}{2,136 * 10^{-3}\frac{kg}{ms}}$$

$$Re = 61845,71$$

Como el Número de Reynolds es mayor que 4000 significa que el flujo es turbulento mediante la etapa de agitación.

3.7.5.9. Cálculo de la potencia que necesita el sistema de agitación

$$P = N_P * D_A^5 * N^3 * \rho$$

Figura 12-3: Número de Reynolds vs Número de Potencia para tipos de agitadores tipo turbina **Fuente:** Walas, 1990; citado en Ricaurte, 2016.

El número de potencia de este diseño de agitador de tipo turbina Pitched Blade es 1,1.

$$P = 1.1 * (0.3829m)^5 * \left(1 \frac{rev}{s}\right)^3 * 901 \frac{kg}{m^3}$$

$$P = 8.1615 W$$

$$P = 0.0109 HP$$

3.7.5.10. Cálculo de la potencia real necesaria para el sistema de agitación

En la realidad la eficiencia no es al 100% por lo cual se requiere de una mayor potencia.

$$P_{real} = \frac{P}{n}$$

$$P_{real} = \frac{0,0109 \, HP}{0,80}$$

$$P_{real} = 0,0137 \, HP$$

3.7.5.11. Tiempo de agitación en el clarificador

$$t_a = \frac{5,20 * D_T^2}{N_P^{\frac{1}{3}} * N * D_A^2}$$

$$t_a = \frac{5,20 * (1,5318m)^2}{1,1^{\frac{1}{3}} * 1 \frac{rev}{s} * (0,3829m)^2}$$

$$t_a = 80,6s$$

El tiempo de agitación para alcanzar la mezcla homogénea de un 95% entre la cal y el jugo de la caña de azúcar es 80,6s.

3.7.5.12. Cantidad estimada de jugo después del proceso de clarificado

$$JC_{prop} = \frac{\% Rendimiento * FJ_{prop}}{100}$$

$$JC_{prop} = \frac{99,62 * 2474,60 \frac{L}{lote}}{100}$$

$$JC_{prop} = 2465,20 \frac{L}{lote}$$

Tomando en cuenta el rendimiento de 99,62% obtenido del proceso de clarificación realizado en la experimentación la cantidad de caña a fermentar es $2465,20 \frac{L}{late}$.

3.7.6. Diseño de un equipo de fermentación

Después de analizar los tipos de equipos que ayudarían al proceso de fermentación se eligió que el biorreactor más apropiado es tipo Batch, debido a su fácil manejo, costo de implementación es barato y es muy útil para cuando sus operaciones son sencillas, como es el caso de este proyecto (Minor, 2020).

3.7.6.1. Volumen total del fermentador

$$V_{ferm} = JC_{prop} * f_s$$

$$V_{ferm} = 2,4652 * 1,15$$

$$V_{ferm} = 2,8350 m^3$$

3.7.6.2. Diámetro del fermentador

$$D_{ferm} = \sqrt[3]{\frac{12 * V_{ferm}}{\pi * 4,6}}$$

$$D_{ferm} = \sqrt[3]{\frac{12 * 2,8350 m^3}{\pi * 4,6}}$$

$$D_{ferm} = 1,3303 m$$

3.7.6.3. Diámetro total del fermentador

Por diseño se le debe multiplicar por el factor de seguridad para prevenir que el volumen deseado no se vea afectado por los materiales que forman parte del equipo.

$$D_{Tferm} = D_{ferm} * fs$$

$$D_{Tferm} = 1,3303 m * 1,15$$

$$D_{Tferm} = 1,5298 m$$

3.7.6.4. Altura del fermentador

$$h_{ferm} = \frac{V_{ferm}}{\pi * r^2}$$

$$h_{ferm} = \frac{2,8350 \text{ m}^3}{\pi * \left(\frac{1,5298m}{2}\right)^2}$$

$$h_{ferm} = 1,5423 \text{ m}$$

3.7.6.5. Altura total del fermentador

$$h_{Tferm} = h_{ferm} * fs$$

 $h_{Tferm} = 1,5423 m * 1,5$
 $h_{Tferm} = 1,7737 m$

3.7.6.6. Dimensionamiento de las partes del sistema de agitación del fermentador

Tabla 40-3: Igualdades para un sistema de agitación estándar para biorreactor

$\frac{D_{AF}}{D_{TF}} = \frac{2}{5}$	$\frac{H_F}{D_{TF}} = \frac{9}{10}$	$\frac{R_F}{D_{TF}} = \frac{1}{72}$
$\frac{E_F}{D_{AF}} = \frac{1}{3}$	$\frac{W_F}{D_{AF}} = \frac{1}{5}$	$\frac{B_F}{D_{AF}} = \frac{7}{20}$

Fuente: Atiemo-Obeng, 2004; citado en Aguilera y Ramírez, 2017: p.77

Donde:

 D_{TF} = Diámetro del fermentador

 D_{AF} = Diámetro del agitador

 H_F = Altura que ocupa el líquido

 R_F = Longitud entre la pared del fermentador y los deflectores

 E_F = Longitud que separa el fondo del clarificador hasta el rodete

 W_F = Ancho de las aspas de turbina

 B_F = Ancho de la placa deflectora

Al tener estas relaciones para el diseño y sabiendo que D_T mide 1,5298 m, se encontrado los resultados de las demás partes del sistema de agitación parte del fermentador.

Tabla 41-3: Dimensiones de las partes del clarificador con su sistema de agitación

D_{TF} (m)	D_{AF} (m)	H_F (m)	R_F (m)	E_F (m)	W_F (m)	B_F (m)
1,5298	0,6119	1,3768	0,0212	0,204	0,1224	0,2142

Realizado por: Gaibor, Samantha, 2021.

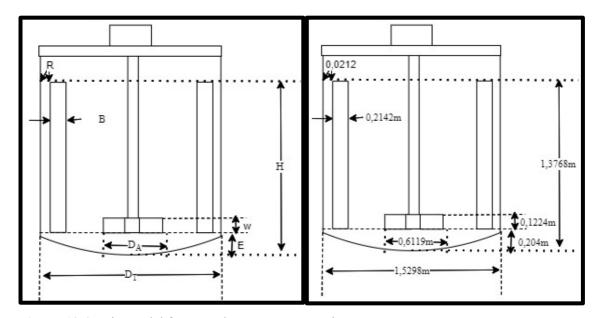
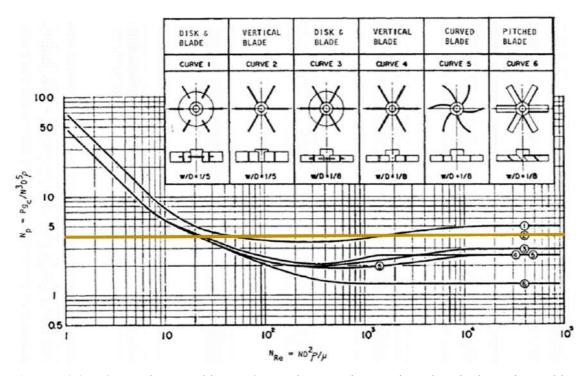


Figura 13-3: Diseño del fermentador con sus respectivas partes

Realizado por: Gaibor, Samantha, 2021.

3.7.6.7. Cálculo del número de Reynolds de la fermentación

$$Re = \frac{D_A^2 * N * \rho}{\mu}$$


$$Re = \frac{(0,6119 \, m)^2 * 1\frac{rev}{s} * 901\frac{kg}{m^3}}{2,136 * 10^{-3}\frac{kg}{ms}}$$

$$Re = 157923,68$$

Como el Número de Reynolds es mayor que 4000 significa que el flujo es turbulento mediante la etapa de fermentación.

3.7.6.8. Cálculo de la potencia que necesita el sistema de agitación

$$PF = N_{PF} * D_{AF}^5 * N^3 * \rho$$

Figura 14-3: Número de Reynolds vs Número de Potencia para tipos de agitadores tipo turbina **Fuente:** Walas, 1990; citado en Ricaurte, 2016.

El número de potencia de este diseño de agitador de tipo turbina Vertical Blade para el fermentador es viene dada por tabla, siendo 4.

$$P = 4 * (0,6119m)^5 * \left(1\frac{rev}{s}\right)^3 * 901\frac{kg}{m^3}$$

$$P = 309,23 W$$

$$P = 0,4147 HP$$

3.7.6.9. Potencia real necesaria para el sistema de agitación en el fermentador

En la realidad la eficiencia no es al 100% por lo cual se requiere de una mayor potencia.

$$PF_{real} = \frac{PF}{n}$$

$$PF_{real} = \frac{0.4147 \ HP}{0.80}$$

$$PF_{real} = 0.5184 \ HP$$

3.7.6.10. Tiempo de agitación en el fermentador

$$t_{aF} = \frac{5,20 * D_T^2}{N_P^{\frac{1}{3}} * N * D_A^2}$$

$$t_{aF} = \frac{5,20 * (1,5298m)^2}{4^{\frac{1}{3}} * 1 \frac{rev}{s} * (0,6119m)^2}$$

$$t_{aF} = 20,47s$$

El tiempo de agitación para alcanzar la mezcla homogénea de un 95% entre las levaduras y el jugo de la caña de azúcar es 20,47s.

3.7.6.11. Sistema de calentamiento

La fermentación, a nivel práctico, se lo realizó en Echeandía donde la temperatura se mantuvo a $27^{\circ}\text{C} \pm 2$, ideal para que las levaduras *Saccharomyces cerevisiae* trabajaran en la transformación de glucosa a etanol. Sin embargo, la empresa GelFresh se encuentra en Ambato cuya temperatura promedio es $14,72^{\circ}\text{C}$, de tal forma que implementar un sistema de calentamiento es necesario para que el proceso de fermentación se lleve de una forma exitosa.

El sistema de calentamiento a diseñar es el enchaquetado o chaqueta de calentamiento, que ha elegido por costo económico y facilidad de mantenimiento frente a otros sistemas como serpentín o resistencias (Aguilera y Ramírez, 2017).

Diámetro de la chaqueta de calentamiento

$$D_C = D_{TF} + 0.3 * D_{TF}$$

 $D_C = 1.5298 m + 0.3 * 1.5298 m$
 $D_C = 1.9888 m$

Espesor de la chaqueta del calentamiento

$$E_C = D_C - D_{TF}$$

 $E_C = 1,9888 m - 1,5298 m$
 $E_C = 0,459 m$

Altura de la chaqueta de calentamiento

$$h_C = h_{Tferm} + E_C$$

 $h_C = 1,7737 m + 0,459 m$
 $h_C = 2,2327 m$

Volumen de la chaqueta de calentamiento

$$V_{c} = \pi * \left(\frac{D_{c}}{2}\right)^{2} * h_{c} - \pi * \left(\frac{D_{T}}{2}\right)^{2} * h_{Tferm}$$

$$V_{c} = \pi * \left(\frac{1,9888 \, m}{2}\right)^{2} * 2,2327 \, m - \pi * \left(\frac{1,5298 \, m}{2}\right)^{2} * 1,7737 \, m$$

$$V_{c} = 6,9354 \, m^{3} - 3,2602 \, m^{3}$$

$$V_{c} = 3,6752 \, m^{3}$$

Calor necesario en la chaqueta de calentamiento

$$Qch = m * CpJ * \Delta T$$

Con ayuda de Madrid, et al. (2014, pp. 4-5) manual que permite conocer la ingeniería de la caña de azúcar, se puede calcular el calor especifico del jugo que se utilizó para el proceso del presente proyecto.

$$CpJ = 4,187 * (1 - 0,006 * Bx) \frac{kJ}{kg^{\circ}C}$$

$$CpJ = 4,187 * (1 - 0,006 * 19,98)$$

$$CpJ = 3,6851 \frac{kJ}{kg^{\circ}C}$$

Esperando que el grado de temperatura sea el máximo de la experimentación, es decir 29°C.

$$Qch = 0.901 \frac{kg}{L} * 2465,20 L * 3,6851 \frac{kJ}{kg^{\circ}C} * (29 - 14,72)^{\circ}C$$

 $Qch = 116882,4855 KJ$

Entonces el jugo de caña que entra en el proceso de fermentación debe recibir 116882,4855 *KJ* para mantenerse en el rango de temperatura donde las levaduras pueden trabajar.

3.7.6.12. Cantidad estimada de jugo con 11% de etanol después del proceso de fermentación

$$JF_{prop} = \frac{\%Rendimiento * JC_{prop}}{100}$$

$$JF_{prop} = \frac{98,65 * 2465,20 \frac{L}{lote}}{100}$$

$$JF_{prop} = 2431,92 \frac{L}{lote}$$

Tomando en cuenta el rendimiento de 98,65% obtenido del proceso de fermentación realizado en la experimentación la cantidad de caña a destilar es $2431,92 \frac{L}{late}$.

3.7.7. Columna de destilación

3.7.7.1. Cálculo del número de platos de la columna de destilación

Los métodos que son utilizados para el cálculo del número de platos de la columna de destilación se pueden sintetizar en tres: dos métodos gráficos, Ponchon-Svarit y McCabe-Thiele, y el método tecnológico, que es a través de una simulación (Otiniano, 2005). Para el presente proyecto se decidió utilizar el método McCabe-Thiele debido a su facilidad de cálculo para estimar las características de diseño del equipo de destilación, necesario para el proceso de producción de etanol.

En la columna de destilación se va a procesar $2431,92 \frac{L}{lote}$ de jugo de caña de azúcar fermentada con una concentración de etanol de 11%.

Para los cálculos se necesita conocer las moles por hora que va a procesar la columna de destilación. El tiempo estimado de la destilación es de 5,5h.

3.7.7.2. Cálculos y datos necesarios para el diseño de la columna de destilación

Fracción molar de la alimentación

Los grados alcohólicos estimados en el jugo fermentado es de 11°GL (11ml/100ml).

$$m_{eta11} = \frac{0.11ml\ C_2H_5OH}{1ml\ mezcla} * \frac{0.789g\ C_2H_5OH}{1ml\ C_2H_5OH} * \frac{1ml\ mezcla}{0.901g\ mezcla} = 0.0963\ \frac{g\ C_2H_5OH}{g\ mezcla}$$

$$m_{agua11} = \frac{0,89ml\ H_2O}{1ml\ mezcla} * \frac{1gH_2O}{1ml\ H_2O} * \frac{1ml\ mezcla}{0,901g\ mezcla} = 0,9878\ \frac{g\ H_2O}{g\ mezcla}$$

$$x_F = \frac{\frac{m_{eta11}}{PM_{Etanol}}}{\frac{m_{eta11}}{PM_{Etanol}} + \frac{m_{agua11}}{PM_{Agua}}}$$

$$x_F = \frac{\frac{0,0963}{46,07}}{\frac{0,0963}{46,07} + \frac{0,9878}{18,02}}$$

$$x_F = 0,0368$$

Fracción molar del destilado

Los grados alcohólicos estimados en el alcohol destilado es de 50°GL (50ml/100ml).

$$m_{eta50} = \frac{0.5ml \; C_2 H_5 O H}{1ml \; mezcla} * \frac{0.789g \; C_2 H_5 O H}{1ml \; C_2 H_5 O H} * \frac{1ml \; mezcla}{0.901g \; mezcla} = 0.4378 \; \frac{g \; C_2 H_5 O H}{g \; mezcla}$$

$$m_{agua50} = \frac{0.5ml\ H_2O}{1ml\ mezcla} * \frac{1gH_2O}{1ml\ H_2O} * \frac{1ml\ mezcla}{0.901g\ mezcla} = 0.5549 \frac{g\ H_2O}{g\ mezcla}$$

$$x_W = \frac{\frac{m_{eta50}}{PM_{Etanol}}}{\frac{m_{eta50}}{PM_{Etanol}} + \frac{m_{agua50}}{PM_{Agua}}}$$

$$x_W = \frac{\frac{0,4378}{46,07}}{\frac{0,4378}{46,07} + \frac{0,5549}{18,02}}$$

$$x_W = 0,2358$$

Fracción molar de los fondos

Los grados alcohólicos estimados en el jugo fermentado es de 2,79°GL (2,79ml/100ml).

$$\begin{split} m_{eta2} &= \frac{0,0279ml \; C_2 H_5 O H}{1ml \; mezcla} * \frac{0,789g \; C_2 H_5 O H}{1ml \; C_2 H_5 O H} * \frac{1ml \; mezcla}{0,901g \; mezcla} = 0,0244 \; \frac{g \; C_2 H_5 O H}{g \; mezcla} \\ m_{agua2} &= \frac{0,9721ml \; H_2 O}{1ml \; mezcla} * \frac{1g H_2 O}{1ml \; H_2 O} * \frac{1ml \; mezcla}{0,901g \; mezcla} = 1,0789 \; \frac{g \; H_2 O}{g \; mezcla} \end{split}$$

$$x_W = \frac{\frac{m_{eta2}}{PM_{Etanol}}}{\frac{m_{eta2}}{PM_{Etanol}} + \frac{m_{agua2}}{PM_{Agua}}}$$

$$x_W = \frac{\frac{0,0244}{46,07}}{\frac{0,0244}{46,07} + \frac{1,0789}{18,02}}$$

$$x_W = 0,0088$$

Tabla 42-3: Datos adicionales para diseño de la columna de destilación

$ \rho_{Etanol}\left(\frac{g}{ml}\right) $	PM_{Etanol} $\left(\frac{kg}{mol}\right)$	$PM_{Agua}\left(\frac{kg}{mol}\right)$	$\sigma_{etanol} \left(\frac{N}{m} \right)$	T_{mV} (°C)	P (mmHg)
0,789	46,07	18,02	20,6	95	760

Fuente: Chuquín Vasco, 2013 y Bonilla Bermeo y & Alvarez Macias, 2011.

Donde,

 ρ_{Etanol} = Densidad del etanol (g/ml)

 PM_{Etanol} = Peso molecular del etanol (kg/mol)

 PM_{Agua} = Peso molecular del agua (kg/mol)

 σ_{etanol} = Tensión superficial del etanol (N/m)

 T_{mV} = Temperatura media de vapores (°C)

P = Presión absoluta media (mmHg)

Peso molecular del jugo fermentado

$$PM_{JF} = x_F * PM_{Etanol} + (1 - x_F) * PM_{Agua}$$

$$PM_{JF} = 0.0367 * 46.07 \frac{kg}{mol} + (1 - 0.0367) * 18.02 \frac{kg}{mol}$$

$$PM_{JF} = 19.05 \frac{kg}{mol}$$

Flujo molar del jugo fermentado por hora

$$JF = \frac{2431,92 \frac{L}{lote} * 0,901 \frac{kg}{L}}{5,5h}$$

$$JF = 400 \frac{kg}{h} * \frac{1 \, mol}{19,05 \, kg}$$

$$JF = 20,998 \frac{mol}{h}$$

Flujo molar del destilado por hora

$$ED = \frac{JF * (x_F - x_R)}{(x_D - x_R)}$$

$$ED = \frac{20,998 \frac{mol}{h} * (0,0367 - 0,0295)}{(0,2358 - 0,0295)}$$

$$ED = 0,7323 \frac{mol}{h}$$

$$JF = ED + JFS$$

$$JFS = 20,998 \frac{mol}{h} - 0,6609 \frac{mol}{h}$$

$$JFS = 20,2657 \frac{mol}{h}$$

Flujo molar del líquido de reflujo por hora

$$R = \frac{LR}{ED}$$

$$LR = 3,45 * 0,6609 \frac{mol}{h}$$

$$LR = 2,5263 \frac{mol}{h}$$

Flujo molar del vapor por hora

$$V = LR + ED$$

$$V = 2,2802 \frac{mol}{h} + 0,6609 \frac{mol}{h}$$

$$V = 3,2586 \frac{mol}{h}$$

3.7.7.3. Condiciones de operación de la destilación

El etanol que se consiguió en la destilación fue de 50%, considerando bibliografía es un buen rendimiento para la primera destilación, entonces se proyecta llegar a estos grados de alcohol al jugo de caña de azúcar.

Tabla 43-3: Condiciones de operación para la destilación

x_F	x_D	x_W	Q	R_{min}	R
0,0367	0,2358	0,0295	0,5	2,30	3,45

Realizado por: Gaibor, Samantha, 2021.

Donde:

 x_F = Fracción molar de etanol presente en el jugo de caña fermentado

 x_D = Fracción molar de etanol en etanol obtenido

 x_W = Fracción molar de etanol presente en los fondos de la columna

q = Alimentación líquido-vapor

 R_{min} = Reflujo mínimo

R = Reflujo total

3.7.7.4. Equilibrio etanol agua

Tabla 44-3: Datos de equilibrio etanol-agua

X	y
0	0
0,05263200	0,33230700
0,10526300	0,45332600
0,15789500	0,51410900
0,21052600	0,55074500
0,26315800	0,57626900
0,31578900	0,59649900
0,36842100	0,61449400
0,42105300	0,63204000
0,47368400	0,65027900
0,52631600	0,67001100
0,57894700	0,69184100
0,63157900	0,71627400
0,68421100	0,74376400
0,73684200	0,77475200
0,78947400	0,80969200
0,84210500	0,84908100
0,89473700	0,89347600
0,94736800	0,94352600
1	1

Fuente: Hernández Aguirre y Hernández Rodríguez, 2020.

Donde:

x = Fracción molar de etanol líquido

y = Fracción molar de etanol vapor

Curva equilibrio etanol-agua

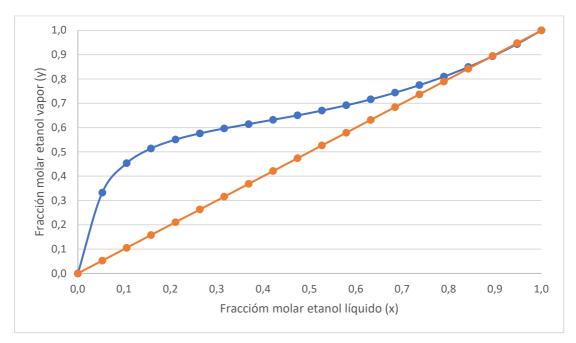


Gráfico 2-3: Curva de equilibrio etanol-agua

Realizado por: Gaibor, Samantha, 2021.

3.7.7.5. Cálculo de los puntos de intersección

$$y_{int} = \frac{R}{R+1} x_{int} + \frac{x_D}{R+1}$$

$$y_{int} = \frac{q}{q-1} x_{int} - \frac{x_F}{q-1}$$

Igualando dichas ecuaciones,

$$x_{int} = \frac{x_F * (R+1) + x_D * (q-1)}{q * (R+1) - R * (q-1)}$$

Reemplazando datos,

$$x_{int} = \frac{0,0367 * (3,45 + 1) + 0,2358 * (0,5 - 1)}{0,5 * (3,45 + 1) - 3,45 * (0,5 - 1)}$$

$$x_{int} = 0,0115$$

Calculando la y de la intersección,

$$y_{int} = \frac{R}{R+1} x_{int} + \frac{x_D}{R+1}$$
$$y_{int} = \frac{3,45}{3,45+1} * 0,0115 + \frac{0,2358}{3,45+1}$$
$$y_{int} = 0,0619$$

3.7.7.6. Cálculo para la recta operativa de enriquecimiento

La primera x a considerar es la x_D debido a que a ella es a la que se debe llegar. La otra x es la de la intersección antes calculada.

$$y_{enr} = \frac{R}{R+1} x_{enr} + \frac{x_D}{R+1}$$

$$y_{enr} = \frac{3,45}{3,45+1} * 0,2358 + \frac{0,2358}{3,45+1}$$

$$y_{enr} = 0,2358$$

Tabla 45-3: Datos para la recta operativa de enriquecimiento

x_{enr}	y_{enr}
0,2358	0,2358
0,0619	0,0115

Realizado por: Gaibor, Samantha, 2021.

3.7.7.7. Cálculo para la recta de alimentación

La primera x a considerar es la x_F debido a que ella es la fracción molar de la alimentación. La otra x es la de la intersección antes calculada.

Tabla 46-3: Datos para la recta de alimentación

x_{alim}	y_{alim}
0,0367	0,0367
0,0115	0,0619

Realizado por: Gaibor, Samantha, 2021.

3.7.7.8. Cálculo para la recta operativa de agotamiento

La primera x a considerar es la de la intersección antes calculada. La otra x es la es la x_W , el cual es la fracción molar de los fondos al final, es decir cuando el etanol se va agotando.

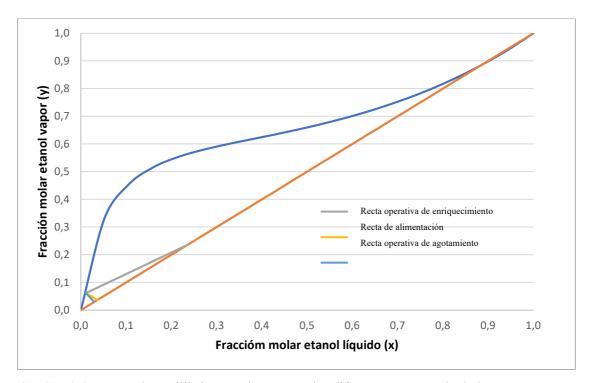
$$y_{int} = \frac{B}{B-1} x_{int} - \frac{x_W}{B-1}$$

$$B = \frac{y_{int} - x_W}{y_{int} - x_{int}}$$

$$B = \frac{0,0619 - 0,0295}{0,0619 - 0,0115}$$

$$B = 0,6427$$

$$y_{ago} = \frac{B}{B-1} x_{ago} - \frac{x_W}{B-1}$$


$$y_{ago} = \frac{0,6427}{0,6427 - 1} * 0,0295 - \frac{0,0295}{0,6427 - 1}$$

$$y_{ago} = 0,0295$$

Tabla 47-3: Datos para la recta operativa de agotamiento

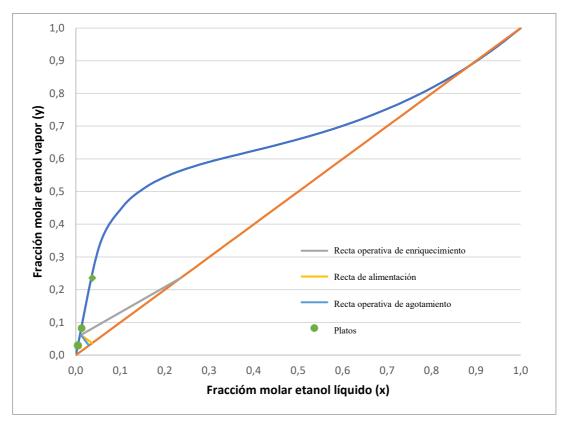
x_{ago}	${oldsymbol{y}_{ago}}$
0,0115	0,0619
0,0295	0,0295

Realizado por: Gaibor, Samantha, 2021.

Gráfico 3-3: Curva de equilibrio etanol-agua con las diferentes rectas calculadas **Realizado por:** Gaibor, Samantha, 2021.

3.7.7.9. Número de platos

El número de platos se calcula encontrando los valores máximos y mínimos en la tabla de datos de equilibrio etanol agua de la proporción de vapor que se desea, siendo la primera el 0,5 y después sigue encontrándose la y mediante la interpolación, siendo esta la nueva y deseada.


$$\begin{split} x_{interpolación} &= \frac{(y-y_{min})*x_{max} + (y_{max}-y)x_{min}}{y_{max} - y_{min}} \\ x_{interpolación} &= \frac{(0,2358-0)*0,0526 + (0,3323-0,2358)*0}{0,3323-0} \\ x_{interpolación} &= 0,0374 \end{split}$$

$$y_{interpolación} = \frac{R}{R+1} x_{interpolación} + \frac{x_D}{R+1}$$
$$y_{interpolación} = \frac{3,45}{3,45+1} * 0,0374 + \frac{0,2358}{3,45+1}$$
$$y_{interpolación} = 0,0820$$

Tabla 48-3: Datos de la interpolación

Ydeseada	x_{min}	y_{min}	x_{max}	y_{max}	x _{interpolación}	y _{interpolación}
0,0000	0,2358	0,3323	0,0000	0,0374	0,0526	0,0820
0,0000	0,0820	0,3323	0,0000	0,0130	0,0526	0,0295
0,0000	0,0295	0,3323	0,0000	0,0047	0,0526	0,0295
0,0000	0,0295	0,3323	0,0000	0,0047	0,0526	0,0295
0,0000	0,0295	0,3323	0,0000	0,0047	0,0526	0,0295
0,0000	0,0295	0,3323	0,0000	0,0047	0,0526	0,0295
0,0000	0,0295	0,3323	0,0000	0,0047	0,0526	0,0295
0,0000	0,0295	0,3323	0,0000	0,0047	0,0526	0,0295
0,0000	0,0295	0,3323	0,0000	0,0047	0,0526	0,0295
0,0000	0,0295	0,3323	0,0000	0,0047	0,0526	0,0295

Realizado por: Gaibor, Samantha, 2021.

Gráfico 4-3: Gráfica $x_{interpolación}$ vs $y_{deseada}$

Realizado por: Gaibor, Samantha, 2021.

Entonces los platos necesarios para la columna son 2, según gráfica se observa 3 platos, pero con ayuda del Excel el número de platos mínimo con la función de coincidir es 2.

3.7.7.10. Eficiencia global del proceso

Tabla 49-3: Datos para la eficiencia global del proceso

$P^{\circ} C_2 H_5 OH (mmHg)$	$P^{\circ} H_2 O (mmHg)$	$\mu_{C_2H_5OH}\left(cP\right)$	$\mu_{H_2O}(cP)$
677,8	289,1	0,49	0,4

Fuente: Perry, 1992; citado en Bonilla Bermeo y & Alvarez Macias, 2011.

Donde:

$$P^{\circ}$$
 C_2H_5OH = Presiones de vapor del etanol a 78°C ($mmHg$)
 P° C_2H_5OH = Presiones de vapor del agua a 78°C ($mmHg$)
 $\mu_{C_2H_5OH}$ = Viscosidad del etanol (cP)
 μ_{H_2O} = Viscosidad del agua (cP)

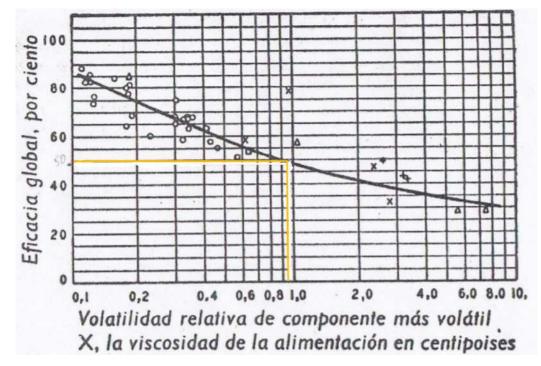
Volatilidad relativa del alcohol

$$\alpha = \frac{P^{\circ} C_2 H_5 OH}{P^{\circ} H_2 O}$$

$$\alpha = \frac{677.8 \ mmHg}{289.1 \ mmHg}$$

$$\alpha = 2.34$$

Viscosidad media del jugo de caña de azúcar fermentado


$$\mu_F = \mu_{C_2H_5OH} * x_F + \mu_{H_2O} * (1 - x_F)$$

$$\mu_F = 0.49 * 0.0367 + 0.4 * (1 - 0.0367)$$

$$\mu_F = 0.4033$$

$$\alpha * \mu_F = 2.34 * 0.4033$$

$$\alpha * \mu_F = 0.9456$$

Figura 15-3: Eficiencia global a partir de la volatilidad relativa y la viscosidad en destilación **Fuente:** Bonilla Bermeo y & Alvarez Macias, 2011.

La eficiencia en el laboratorio fue de 17,38% pero debido a que el diseño es una columna diferente a la del laboratorio de procesos industriales de la ESPOCH por su capacidad se toma en cuenta el gráfico mostrado de manera que la eficiencia esperada es de 50%.

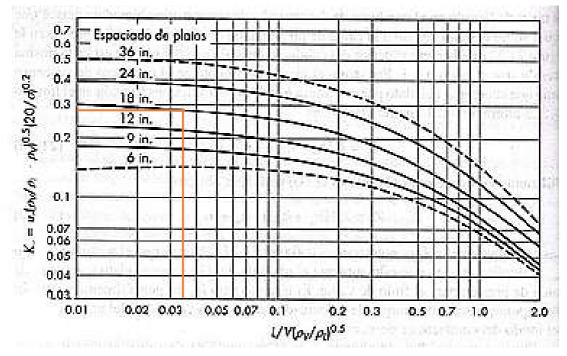
3.7.7.11. Número real de platos

$$\#Platos_{real} = \frac{\#Platos_{te\'oricos}}{Eficiencia}$$
 $\#Platos_{real} = \frac{2}{0.5} = 4$

3.7.7.12. Densidad de vapor

$$\rho_V = \frac{PM_{etanol} * 273}{22,4 * (273 + T_{ebullición de etanol})}$$

$$\rho_V = \frac{46,07 * 273}{22,4 * (273 + 78,4)}$$


$$\rho_V = 1,5978 \frac{kg}{m^3}$$

3.7.7.13. Cálculo del coeficiente k

$$\frac{LR}{V} * \left(\frac{\rho_V}{\rho_L}\right)^{\frac{1}{2}}$$

$$\frac{LR}{V} * \left(\frac{\rho_V}{\rho_L}\right)^{\frac{1}{2}} = \frac{2,5263}{3,2586} * \left(\frac{1,5978}{789}\right)^{\frac{1}{2}}$$

$$\frac{LR}{V} * \left(\frac{\rho_V}{\rho_L}\right)^{\frac{1}{2}} = 0,0349$$

Figura 16-3: Determinación del coeficiente k por McCabe para columna de destilación **Fuente:** Bonilla Bermeo y & Alvarez Macias, 2011.

Se elige la distancia de 18in entre platos debido a que de esta manera los 4 platos que salieron como cálculo tendrán mejor desempeño con lo que a la empresa le conviene. Por lo tanto, el coeficiente k es igual a 0,28.

3.7.7.14. Velocidad de los vapores

$$\mu = k * \sqrt{\frac{\rho_L - \rho_V}{\rho_V} * \frac{\sigma}{20}}$$

Donde,

$$\mu$$
 = velocidad de los vapores $\left(\frac{m}{s}\right)$

$$\rho_L$$
 = densidad del líquido $\left(\frac{kg}{m^3}\right)$

$$\rho_V = \text{densidad del vapor}\left(\frac{kg}{m^3}\right)$$

k = coeficiente

 σ = tensión superficial del etanol a 20°C

$$\mu = 0.28 * \sqrt{\frac{789 - 1.5978}{1.5978} * \frac{20.6}{20}}$$

$$\mu = 6.3083 \frac{m}{s}$$

3.7.7.15. Diámetro de la columna de destilación

$$D_{col1} = \sqrt{\frac{4 * V * (273 + T_{mV}) * 760}{\pi * \mu * 3600 * P}}$$

Donde,

D = Diámetro de la columna

t = temperatura media de los vapores

P = presión absoluta media (mmHg)

 μ = velocidad de los vapores $\left(\frac{m}{s}\right)$

 $V = caudal del vapor \left(\frac{kmol}{h}\right)$

$$D_{col1} = \sqrt{\frac{4 * 3,2586 * (273 + 95) * 760}{\pi * 3,3794 * 3600 * 760}}$$

$$D_{col1} = 1,6788m$$

3.7.7.16. Altura de la columna

$$h_{col1}=\#Platos_{real}*distancia\ entre\ platos$$

$$h_{col1}=4*18in*rac{0.0254m}{1\ in}$$

$$h_{col1}=4*0.4572m$$

$$h_{col1}=1.8288\ m$$

3.7.7.17. Altura total de la columna

 $h_{Tcol1} = h_{col1} + distancia entre el último plato y el final de la columna$

 $h_{Tcol1} = 1,8288 m + 0,4572m$

 $h_{Tcol1}=2,\!286\,m$

3.7.7.18. Diseño de los intercambiadores de calor

En el proceso actúa tanto el reboiler quien es quien calienta el líquido hasta la temperatura de evaporación y el condensador, quien al vapor lo enfría hasta su estado líquido.

Diámetro del serpentín

Se planea que tanto el condensador como el reboiler tengan un diseño de un intercambiador de calor con serpentín por lo tanto el diámetro recomendado para esta parte del equipo según Bonilla Bermeo y & Alvarez Macias (2011) es de 3/8in

$$Ds = \frac{3}{8}in * \frac{0,0254 \, m}{1in} = 0,009525 \, m$$

Longitud de la circunferencia que forma el serpentín

$$Lcs = \pi * D$$

 $Lcs = \pi * 0,009525 m$
 $Lcs = 0,02992m$

- Condensador

Tabla 50-3: Datos adicionales para el diseño del condensador

$Cp_{Agua}\left(\frac{kJ}{kg^{\circ}C}\right)$	$Cp_v\left(\frac{kJ}{kg^\circ C}\right)$
4,186	2,0857

Realizado por: Gaibor, Samantha, 2021.

Calor requerido para la condensación en la destilación

$$q_c = m_v * Cp_v * (T_{VE} - T_{VS}) + m_v * h_v$$

Donde,

 m_{ν} = Flujo másico de etanol vapor (kg/h)

 Cp_v = Calor específico del vapor (kJ/kg°C)

 T_{VE} = Temperatura de entrada del etanol vapor al condensador (°C)

 T_{VS} = Temperatura de salida del etanol vapor al condensador (°C)

 h_v = Entalpía de vapor (kJ/kg)

$$q_c = 150 \frac{kg}{h} * 2,0857 \frac{kJ}{kg^{\circ}C} * (78,4 - 22)^{\circ}C + 150 \frac{kg}{h} * 1950 \frac{kJ}{kg}$$

$$q_c = 310145,022 \frac{kJ}{h}$$

Flujo másico de agua requerido

$$m_W = \frac{q_c}{Cp_{Agua} * \Delta T}$$

$$m_W = \frac{310145,022 \frac{kJ}{h}}{4,186 \frac{kJ}{kg^{\circ}C} * (22 - 18)^{\circ}C}$$

$$m_W = 18522,7557 \frac{kg}{h}$$

Cálculo de la distancia media logarítmica de temperatura (LMTD) para condensación

$$LMTD_{C} = \frac{\Delta TA - \Delta TB}{\ln\left(\frac{\Delta TA}{\Delta TB}\right)}$$

$$LMTD_{C} = \frac{(78.4 - 22)^{\circ}C - (78.4 - 18)^{\circ}C}{\ln\left(\frac{78.4 - 22}{78.4 - 18}\right)}$$

$$LMTD_{C} = 58.3772^{\circ}C$$

Cálculo de la distancia media logarítmica de temperatura (LMTD) para enfriamiento

$$LMTD_{C} = \frac{\Delta TB - \Delta TC}{\ln\left(\frac{\Delta TB}{\Delta TC}\right)}$$

$$LMTD_{C} = \frac{(78,4 - 18)^{\circ}C - (22 - 18)^{\circ}C}{\ln\left(\frac{78,4 - 18}{22 - 18}\right)}$$

$$LMTD_C = 20,7758$$
° C

Longitud a ocupar del serpentín

Se espera que el condensador sea de 0,75m de alto y 0,60m de ancho. El serpentín va a estar separado del fondo considerando la relación del $\frac{E}{D_T} = \frac{1}{4}$.

$$E = \frac{D_T}{4}$$

$$E = \frac{0,60m}{4}$$

$$E = 0,15m$$

$$Ls = Lc - E$$

$$Ls = 0,60 - 0,15$$

$$Ls = 0,45m$$

Por lo tanto, la longitud que va a ocupar el serpentín 0,45m.

Número de vueltas

$$#vueltas = \frac{Ls}{Ds}$$

$$#vueltas = \frac{0,45m}{0,009525 m}$$

$$#vueltas = 47,24$$

Longitud total del serpentín

$$Lcs_T = Lcs * #vueltas$$

 $Lcs_T = 0.02992 m * 47.24$
 $Lcs_T = 1.4134 m$

- Reboiler, calentador del alimento o cámara de ebullición

Calor requerido para la evaporación en la destilación

$$Q = m_F * C\dot{p}_{IF} * \Delta T$$

Donde,

 m_{IF} = Flujo másico del jugo de caña de azúcar fermentado (kg/h)

 Cp_{IF} = Calor específico del jugo de caña de azúcar fermentado (kJ/kg°C)

 T_{JFE} = Temperatura de entrada del jugo de caña de azúcar fermentado al reboiler (°C)

 T_{IFS} = Temperatura de salida del jugo de caña de azúcar fermentado al reboiler (°C)

$$Q = 400 \frac{kg}{h} * 3,6851 \frac{kJ}{kg^{\circ}C} * (78,4 - 14,72)^{\circ}C$$

$$Q = 93866,8672 \frac{kJ}{h}$$

Longitud a ocupar del serpentín

Se espera que el condensador sea de 0,75m de alto y 0,60m de ancho. El serpentín va a estar separado del fondo considerando la relación $\frac{E}{D_T} = \frac{1}{4}$.

$$E_R = \frac{D_T}{4}$$

$$E_R = \frac{0.60m}{4}$$

$$E_R = 0.15m$$

$$Ls_R = Lc - E$$

$$Ls_R = 0.60 - 0.15$$

$$Ls_R = 0.45m$$

Por lo tanto, la longitud que va a ocupar el serpentín 0,45m.

Número de vueltas

$$#vueltas = \frac{Ls}{Ds}$$

$$#vueltas = \frac{0,45m}{0,009525m}$$

$$#vueltas = 47,24$$

Longitud total del serpentín

$$Lcs_T = Lcs * #vueltas$$

 $Lcs_T = 0.02992 m * 47,24$
 $Lcs_T = 1.4134 m$

3.7.7.19. Cantidad estimada de etanol al 50% a obtener después del proceso de destilación

$$ED_{prop} = rac{\% Rendimiento * JF_{prop}}{100}$$
 $ED_{prop} = rac{17,38 * 2431,92 rac{L}{lote}}{100}$
 $ED_{prop} = 422,67 rac{L}{lote}$

Aun a nivel teórico se espera un rendimiento de 50%, se va a tomar en cuenta el rendimiento de 17,38% obtenido del proceso de destilación realizado en la experimentación la cantidad de etanol a rectificar es 422,67 *L/lote*.

3.7.8. Diseño de la columna de rectificación

La columna de rectificación es una segunda columna de destilación fraccionada por lo cual el proceso de diseño será parecido a la columna antes desarrollada, utilizando el método McCabe-Thiele, diferenciándose por las condiciones de operación.

En la columna de destilación se va a procesar 422,67 $\frac{L}{lote}$ de etanol al 50% anteriormente obtenido. Además, el tiempo estimado de la destilación es de 2h.

3.7.8.1. Cálculos y datos necesarios para el diseño de la columna de destilación

Fracción molar de la alimentación

Los grados alcohólicos estimados en el etanol de entrada son de 50°GL (50ml/100ml).

$$m_{eta50} = \frac{0.50ml \; C_2H_5OH}{1ml \; mezcla} * \frac{0.789g \; C_2H_5OH}{1ml \; C_2H_5OH} * \frac{1ml \; mezcla}{0.8112g \; mezcla} = 0.4863 \; \frac{g \; C_2H_5OH}{g \; mezcla} = 0.4863 \;$$

$$m_{agua50} = \frac{0,50ml\ H_2O}{1ml\ mezcla} * \frac{1gH_2O}{1ml\ H_2O} * \frac{1ml\ mezcla}{0,8112g\ mezcla} = 0,6164\ \frac{g\ H_2O}{g\ mezcla}$$

$$x_F = \frac{\frac{m_{eta50}}{PM_{Etanol}}}{\frac{m_{eta50}}{PM_{Etanol}} + \frac{m_{agua50}}{PM_{Agua}}}$$

$$x_F = \frac{\frac{0,4863}{46,07}}{\frac{0,4863}{46,07} + \frac{0,6164}{18,02}}$$

$$x_F = 0,2358$$

Fracción molar del rectificado

Los grados alcohólicos estimados en el etanol rectificado es de 90°GL (90ml/100ml).

$$m_{eta90} = \frac{0.9ml \; C_2H_5OH}{1ml \; mezcla} * \frac{0.789g \; C_2H_5OH}{1ml \; C_2H_5OH} * \frac{1ml \; mezcla}{0.8112g \; mezcla} = 0.8754 \; \frac{g \; C_2H_5OH}{g \; mezcla}$$

$$m_{agua90} = \frac{0,9ml\ H_2O}{1ml\ mezcla} * \frac{1gH_2O}{1ml\ H_2O} * \frac{1ml\ mezcla}{0,8112g\ mezcla} = 0,1233 \frac{g\ H_2O}{g\ mezcla}$$

$$x_W = \frac{\frac{m_{eta90}}{PM_{Etanol}}}{\frac{m_{eta90}}{PM_{Etanol}} + \frac{m_{agua90}}{PM_{Agua}}}$$

$$x_W = \frac{\frac{0,8754}{46,07}}{\frac{0,8754}{46,07} + \frac{0,1233}{18,02}}$$

$$x_W = 0,7353$$

Fracción molar de los fondos

Los grados alcohólicos estimados en el jugo fermentado es de 4,6°GL (4,6ml/100ml).

$$m_{eta4} = \frac{0,046ml \; C_2H_5OH}{1ml \; mezcla} * \frac{0,789g \; C_2H_5OH}{1ml \; C_2H_5OH} * \frac{1ml \; mezcla}{0,8112g \; mezcla} = 0,0447 \; \frac{g \; C_2H_5OH}{g \; mezcla}$$

$$m_{agua4} = \frac{0.954ml\ H_2O}{1ml\ mezcla} * \frac{1gH_2O}{1ml\ H_2O} * \frac{1ml\ mezcla}{0.8112g\ mezcla} = 1.1760\ \frac{g\ H_2O}{g\ mezcla}$$

$$x_W = \frac{\frac{m_{eta4}}{PM_{Etanol}}}{\frac{m_{eta4}}{PM_{Etanol}} + \frac{m_{agua4}}{PM_{Agua}}}$$

$$x_W = \frac{\frac{0,0447}{46,07}}{\frac{0,0447}{46,07} + \frac{1,1760}{18,02}}$$

$$x_W = 0,0147$$

Peso molecular del etanol al 50%

$$PM_{E50} = x_F * PM_{Etanol} + (1 - x_F) * PM_{Agua}$$

$$PM_{E50} = 0,4863 * 46,07 \frac{kg}{mol} + (1 - 0,4863) * 18,02 \frac{kg}{mol}$$

$$PM_{E50} = 31,6612 \frac{kg}{mol}$$

Flujo molar del etanol por hora

$$ED = \frac{422,67 \frac{L}{lote} * 0,8112 \frac{kg}{L}}{2h}$$

$$ED = 171,4338 \frac{kg}{h} * \frac{1 \, mol}{31,6612 \, kg}$$

$$ED = 5,4146 \frac{mol}{h}$$

Flujo molar del destilado por hora

$$ER = \frac{ED * (x_F - x_R)}{(x_D - x_R)}$$

$$ER = \frac{5,4146 \frac{mol}{h} * (0,2358 - 0,0147)}{(0,7353 - 0,0147)}$$

$$ER = 1,6619 \frac{mol}{h}$$

$$ED = ER + JS$$

$$JS = 5,4146 \frac{mol}{h} - 1,6619 \frac{mol}{h}$$

$$JS = 3,7528 \frac{mol}{h}$$

Flujo molar del líquido de reflujo por hora

$$R = \frac{LR}{ER}$$

$$LR = 2.3 * 1.6619 \frac{mol}{h}$$

$$LR = 3.8223 \frac{mol}{h}$$

Flujo molar del vapor por hora

$$V = LR + ER$$

$$V = 3,8223 \frac{mol}{h} + 1,6619 \frac{mol}{h}$$

$$V = 5,4841 \frac{mol}{h}$$

3.7.8.2. Condiciones de operación de la destilación

El etanol que se consiguió en la rectificación fue de 90%, considerando bibliografía es un buen rendimiento para la segunda rectificación, entonces se proyecta llegar a estos grados de alcohol etanol antes destilado.

Tabla 51-3: Condiciones de operación de la columna de rectificación

x_F	x_D	x_W	Q	R_{min}	R
0,2358	0,7353	0,0147	0,5	1,53	2,3

Realizado por: Gaibor, Samantha, 2021.

Donde:

 x_F = Fracción molar del etanol a rectificar

 x_D = Fracción molar del obtenido

 x_W = Fracción molar de etanol presente en los fondos de la columna

q = Alimentación líquido-vapor

 R_{min} = Reflujo mínimo

R = Reflujo total

3.7.8.3. Cálculo de los puntos de intersección

$$y_{int} = \frac{R}{R+1}x_{int} + \frac{x_D}{R+1}$$

$$y_{int} = \frac{q}{q-1}x_{int} - \frac{x_F}{q-1}$$

Igualando dichas ecuaciones,

$$x_{int} = \frac{x_F * (R+1) + x_D * (q-1)}{q * (R+1) - R * (q-1)}$$

Reemplazando datos,

$$x_{int} = \frac{0,2358 * (2,3+1) + 0,7353 * (0,5-1)}{0,5 * (2,3+1) - 2,3 * (0,5-1)}$$

$$x_{int} = 0,1465$$

Calculando la y de la intersección,

$$y_{int} = \frac{R}{R+1} x_{int} + \frac{x_D}{R+1}$$
$$y_{int} = \frac{2,3}{2,3+1} * 0,1465 + \frac{0,2358}{2,3+1}$$
$$y_{int} = 0,3252$$

3.7.8.4. Cálculo para la recta operativa de enriquecimiento

La primera x a considerar es la x_D debido a que a ella es a la que se debe llegar. La otra x es la de la intersección antes calculada.

$$y_{enr} = \frac{R}{R+1} x_{enr} + \frac{x_D}{R+1}$$
$$y_{enr} = \frac{2,3}{2,3+1} * 0,7353 + \frac{0,7353}{2,3+1}$$
$$y_{enr} = 0,7353$$

Tabla 52-3: Datos para la recta operativa de enriquecimiento

x_{enr}	y_{enr}
0,7353	0,7353
0,1465	0,3252

Realizado por: Gaibor, Samantha, 2021.

3.7.8.5. Cálculo para la recta de alimentación

La primera x a considerar es la x_F debido a que ella es la fracción molar de la alimentación. La otra x es la de la intersección antes calculada.

Tabla 53-3: Datos para la recta de alimentación

x_{alim}	Yalim
0,2358	0,2358
0,1465	0,3252

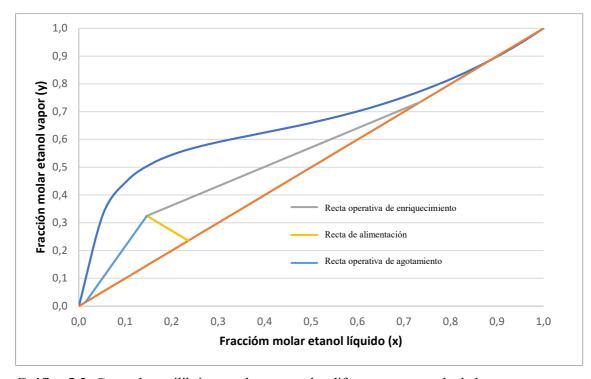
Realizado por: Gaibor, Samantha, 2021.

3.7.8.6. Cálculo para la recta operativa de agotamiento

La primera x a considerar es la de la intersección antes calculada. La otra x es la es la x_W , el cual es la fracción molar de los fondos al final, es decir cuando el etanol se va agotando.

$$y_{int} = \frac{B}{B-1} x_{int} - \frac{x_W}{B-1}$$
$$B = \frac{y_{int} - x_W}{y_{int} - x_{int}}$$

$$B = \frac{0,3252 - 0,0147}{0,3252 - 0,1465}$$
$$B = 1,7377$$


$$y_{ago} = \frac{B}{B-1} x_{ago} - \frac{x_W}{B-1}$$

$$y_{ago} = \frac{1,7377}{1,7377 - 1} * 0,0147 - \frac{0,0147}{1,7377 - 1}$$

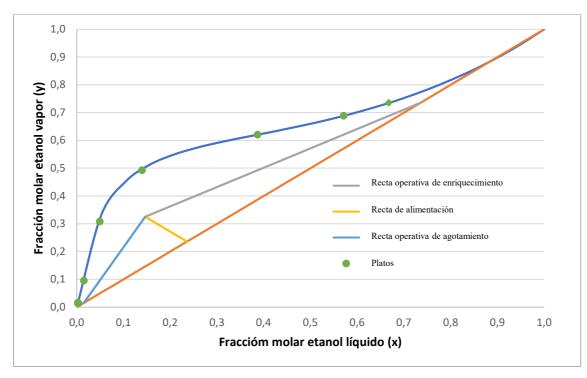
$$y_{ago} = 0,0295$$

Tabla 54-3: Datos para la recta operativa de agotamiento

x_{ago}	y_{ago}
0,1465	0,3252
0,0147	0,0147

Gráfico 5-3: Curva de equilibrio etanol-agua con las diferentes rectas calculadas **Realizado por:** Gaibor, Samantha, 2021.

3.7.8.7. Número de platos


El número de platos se calcula encontrando los valores máximos y mínimos en la tabla de datos de equilibrio etanol agua de la proporción de vapor que se desea, siendo la primera el 0,9 y después sigue encontrándose la y mediante la interpolación, siendo esta la nueva $y_{deseada}$.

$$\begin{split} x_{interpolación} &= \frac{(y - y_{min}) * x_{max} + (y_{max} - y) x_{min}}{y_{max} - y_{min}} \\ x_{interpolación} &= \frac{(0,2358 - 0) * 0,0526 + (0,3323 - 0,2358) * 0}{0,3323 - 0} \\ x_{interpolación} &= 0,0374 \end{split}$$

$$y_{interpolación} = \frac{R}{R+1} x_{interpolación} + \frac{x_D}{R+1}$$
$$y_{interpolación} = \frac{3,45}{3,45+1} * 0,0374 + \frac{0,2358}{3,45+1}$$
$$y_{interpolación} = 0,0820$$

Tabla 55-3: Datos de la interpolación

Y _{deseada}	x_{min}	y_{min}	x_{max}	y_{max}	<i>x</i> _{interpolación}	Yinterpolación
0,7163	0,7353	0,7438	0,6316	0,6680	0,6842	0,6884
0,6700	0,6884	0,6918	0,5263	0,5706	0,5789	0,6206
0,6145	0,6206	0,6320	0,3684	0,3867	0,4211	0,4925
0,4533	0,4925	0,5141	0,1053	0,1392	0,1579	0,3080
0,0000	0,3080	0,3323	0,0000	0,0488	0,0526	0,0950
0,0000	0,0950	0,3323	0,0000	0,0151	0,0526	0,0156
0,0000	0,0156	0,3323	0,0000	0,0025	0,0526	0,0147
0,0000	0,0147	0,3323	0,0000	0,0023	0,0526	0,0147
0,0000	0,0147	0,3323	0,0000	0,0023	0,0526	0,0147
0,0000	0,0147	0,3323	0,0000	0,0023	0,0526	0,0147

Gráfico 6-3: Gráfica $x_{interpolación}$ vs $y_{deseada}$

Entonces los platos necesarios para la columna son 2, según gráfica se observa 7 platos, y con ayuda del Excel el número de platos mínimo con la función de coincidir es el mismo número antes descrito.

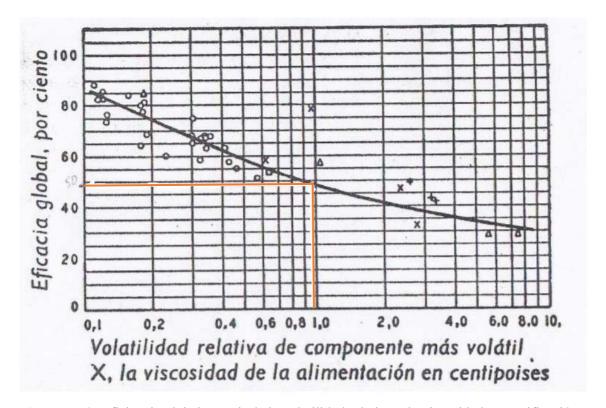
3.7.8.9. Eficiencia global del proceso

Volatilidad relativa del alcohol

$$\alpha = \frac{P^{\circ} C_2 H_5 OH}{P^{\circ} H_2 O}$$

$$\alpha = \frac{677.8 \ mmHg}{289.1 \ mmHg}$$

$$\alpha = 2.34$$


Viscosidad media del jugo de caña de azúcar fermentado

$$\mu_F = \mu_{C_2H_5OH} * x_F + \mu_{H_2O} * (1 - x_F)$$

$$\mu_F = 0.49 * 0.2358 + 0.4 * (1 - 0.2358)$$

$$\mu_F = 0.42122$$

$$\alpha * \mu_F = 2.34 * 0.4212$$

 $\alpha * \mu_F = 0.9876$

Figura 17-3: Eficiencia global a partir de la volatilidad relativa y la viscosidad en rectificación **Fuente:** Bonilla Bermeo y & Alvarez Macias, 2011.

La eficiencia en el laboratorio fue de 49,46% y con ayuda del gráfico la columna a diseñar tiene una eficiencia similar al laboratorio.

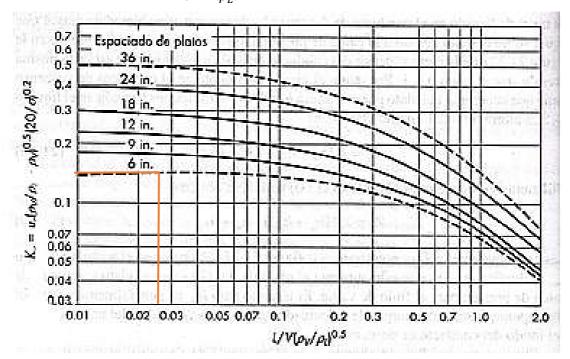
3.7.8.10. Número real de platos

$$\#Platos_{real} = \frac{\#Platos_{teóricos}}{Eficiencia}$$
 $\#Platos_{real} = \frac{7}{0,4946} = 14,15$

3.7.8.11. Densidad de vapor

$$\rho_V = \frac{PM_{etanol} * 273}{22,4 * (273 + T_{ebullición de etanol})}$$

$$\rho_V = \frac{31,6612 * 273}{22,4 * (273 + 78,4)}$$


$$\rho_V = 1,0981 \frac{kg}{m^3}$$

3.7.8.12. Cálculo del coeficiente k

$$\frac{LR}{V} * \left(\frac{\rho_V}{\rho_L}\right)^{\frac{1}{2}}$$

$$\frac{LR}{V} * \left(\frac{\rho_V}{\rho_L}\right)^{\frac{1}{2}} = \frac{3,8223}{5,4841} * \left(\frac{1,0981}{811,2}\right)^{\frac{1}{2}}$$

$$\frac{LR}{V} * \left(\frac{\rho_V}{\rho_L}\right)^{\frac{1}{2}} = 0,0256$$

Figura 18-3: Determinación del coeficiente k por McCabe para columna de rectificación **Fuente**: Bonilla Bermeo y & Alvarez Macias, 2011.

Se elige la distancia de 6in entre platos debido a que de esta manera los 14 platos que salieron como cálculo tendrán mejor desempeño con lo que a la empresa le conviene. Por lo tanto, el coeficiente k es igual a 0,15.

3.7.8.12. Velocidad de los vapores

$$\mu = k * \sqrt{\frac{\rho_L - \rho_V}{\rho_V} * \frac{\sigma}{20}}$$

$$\mu = 0.15 * \sqrt{\frac{811.2 - 1.0981}{1.0981} * \frac{20.6}{20}}$$

$$\mu = 4.1348 \frac{m}{s}$$

3.7.8.12. Diámetro de la columna de rectificación

$$D_{col2} = \sqrt{\frac{4 * V * (273 + T_{mV}) * 760}{\pi * \mu * 3600 * P}}$$

Donde,

D = Diámetro de la columna

t = temperatura media de los vapores

P = presión absoluta media (mmHg)

 μ = velocidad de los vapores $\left(\frac{m}{s}\right)$

 $V = \text{caudal del vapor}\left(\frac{kmol}{h}\right)$

$$D_{col2} = \sqrt{\frac{4 * 5,4841 * (273 + 95) * 760}{\pi * 4,1348 * 3600 * 760}}$$

$$D_{col2} = 1,9689 m$$

3.7.8.13. Altura de la columna

$$h_{col2}=\#Platos_{real}*distancia\ entre\ platos$$

$$h_{col2}=14*6in*rac{0.0254m}{1\ in}$$

$$h_{col2}=14*0.1524m$$

$$h_{col2}=2.1569\ m$$

3.7.8.14. Altura total de la columna

 $h_{Tcol2} = h_{col1} + distancia entre el último plato y el final de la columna$

 $h_{Tcol2} = 0,6096m + 2,1569m$

 $h_{Tcol2}=2,\!3093m$

3.7.8.15. Diseño de los intercambiadores de calor

Diámetro del serpentín

Al igual que la primera columna diseñada se planea que tanto el condensador como el reboiler tengan un diseño de un intercambiador de calor con serpentín por lo tanto el diámetro recomendado para esta parte del equipo según Bonilla Bermeo y & Alvarez Macias (2011) es de 3/8in.

$$Ds = \frac{3}{8}in * \frac{0,0254 \, m}{1in} = 0,009525 \, m$$

Longitud de la circunferencia que forma el serpentín

$$Lcs = \pi * D$$

 $Lcs = \pi * 0,009525 m$
 $Lcs = 0,02992m$

Condensador

Calor requerido para la condensación en la rectificación

$$q_c = m_v * Cp_v * (T_{VF} - T_{VS}) + m_v * h_v$$

Donde,

 m_v = Flujo másico de etanol vapor (kg/h)

 Cp_v = Calor específico del vapor (kJ/kg°C)

 T_{VE} = Temperatura de entrada del etanol vapor al condensador (°C)

 T_{VS} = Temperatura de salida del etanol vapor al condensador (°C)

 h_v = Entalpía de vapor (kJ/kg)

$$q_c = 252,2686 \frac{kg}{h} * 2,0857 \frac{kJ}{kg°C} * (78,4-22)°C + 252,2686 \frac{kg}{h} * 1950 \frac{kJ}{kg}$$

$$q_c = 521599,0033 \frac{kJ}{h}$$

Flujo másico de agua requerido

$$m_W = \frac{q_c}{Cp_{Agua} * \Delta T}$$

$$m_W = \frac{521599,0033 \frac{kJ}{h}}{4,186 \frac{kJ}{kg^{\circ}C} * (22 - 18)^{\circ}C}$$

$$m_W = 31151,398 \frac{kg}{h}$$

Cálculo de la distancia media logarítmica de temperatura (LMTD) para condensación

$$LMTD_{C} = \frac{\Delta TA - \Delta TB}{\ln\left(\frac{\Delta TA}{\Delta TB}\right)}$$

$$LMTD_{C} = \frac{(78,4 - 22)^{\circ}C - (78,4 - 18)^{\circ}C}{\ln\left(\frac{78,4 - 22}{78,4 - 18}\right)}$$

$$LMTD_{C} = 58,3772^{\circ}C$$

Cálculo de la distancia media logarítmica de temperatura (LMTD) para enfriamiento

$$LMTD_{C} = \frac{\Delta TB - \Delta TC}{\ln\left(\frac{\Delta TB}{\Delta TC}\right)}$$

$$LMTD_{C} = \frac{(78.4 - 18)^{\circ}C - (22 - 18)^{\circ}C}{\ln\left(\frac{78.4 - 18}{22 - 18}\right)}$$

$$LMTD_{C} = 20.7758^{\circ}C$$

Longitud a ocupar del serpentín

Se espera que el condensador sea de 0,75m de alto y 0,60m de ancho. El serpentín va a estar separado del fondo considerando la relación del $\frac{E}{D_T} = \frac{1}{4}$.

$$E = \frac{D_T}{4}$$

$$E = \frac{0.60m}{4}$$

$$E = 0.15m$$

$$Ls = Lc - E$$

 $Ls = 0.60 - 0.15$
 $Ls = 0.45m$

Por lo tanto, la longitud que va a ocupar el serpentín 0,45m.

Número de vueltas

$$#vueltas = \frac{Ls}{Ds}$$

$$#vueltas = \frac{0,45m}{0,009525m}$$

$$#vueltas = 47,24$$

Longitud total del serpentín

$$Lcs_T = Lcs * #vueltas$$

 $Lcs_T = 0.02992 m * 47,24$
 $Lcs_T = 1.4134 m$

- Reboiler, calentador del alimento o cámara de ebullición

Calor requerido para la evaporación en la rectificación

$$Q=m_{ED}*\dot{Cp}_{ED}*\Delta T$$

Donde,

 m_{ED} = Flujo másico del etanol a rectificar (kg/h)

 Cp_{ED} = Calor específico del etanol (kJ/kg°C)

 T_{ED} = Temperatura de entrada del etanol al reboiler (°C)

 T_{ED} = Temperatura de salida del etanol al reboiler (°C)

$$Q = 171,4338 \frac{kg}{h} * 2,44 \frac{kJ}{kg^{\circ}C} * (78,4 - 14,72)^{\circ}C$$

$$Q = 26469,93 \frac{kJ}{h}$$

Longitud a ocupar del serpentín

Se espera que el condensador sea de 0,75m de alto y 0,60m de ancho. El serpentín va a estar separado del fondo considerando la relación $\frac{E}{D_T} = \frac{1}{4}$.

$$E_R = \frac{D_T}{4}$$

$$E_R = \frac{0.60m}{4}$$

$$E_R = 0.15m$$

$$Ls_R = Lc - E$$

$$Ls_R = 0.60 - 0.15$$

$$Ls_R = 0.45m$$

Por lo tanto, la longitud que va a ocupar el serpentín 0,45m.

Número de vueltas

$$#vueltas = \frac{Ls}{Ds}$$

$$#vueltas = \frac{0,45m}{0,009525 m}$$

$$#vueltas = 47,24$$

Longitud total del serpentín

$$Lcs_T = Lcs * #vueltas$$

 $Lcs_T = 0.02992 m * 47.24$
 $Lcs_T = 1.4134 m$

3.7.8.16. Cantidad estimada de etanol al 90% a obtener después del proceso de destilación

$$ER_{prop} = rac{\% Rendimiento * ED_{prop}}{100}$$

$$ER_{prop} = rac{49,46 * 422,67 rac{L}{lote}}{100}$$

$$ER_{prop} = 209,05 \frac{L}{lote}$$

Tomando en cuenta el rendimiento de 49,46% obtenido del proceso de destilación realizado en la experimentación la cantidad de etanol a rectificar es 209,05 $\frac{L}{lote}$.

3.7.9. Deshidratador

$$\rho_{mezcla} = \rho_{OH} * X_{OH} + \rho_{H_2O} * X_{H_2O}$$

$$\rho_{mezcla} = 0.789 \frac{kg}{L} * 0.9 + 1 \frac{kg}{L} * 0.1$$

$$\rho_{mezcla} = 0.8101 \frac{kg}{L}$$

3.7.9.1. Cantidad mínima ideal de zeolita

Los grados deseados del etanol es de 96,3%, es decir, que los grados que se obtienen necesitan aumentar 6,3%.

$$m_{zmin} = \frac{m_{mezcla} * W_{6,3\%}}{f_s}$$

$$m_{zmin} = \frac{\left(0.8101 \frac{kg}{L} * 209,05L\right) * 0,063}{0,15}$$

$$m_{zmin} = \frac{169,35 kg * 0,063}{0,15}$$

$$m_{zmin} = 71,127 kg$$

3.7.9.2. Cantidad máxima ideal de zeolita

Los grados máximos de un etanol es de 100%, es decir, que los grados que se necesitaría aumentar es del 10%.

$$m_{zmax} = \frac{m_{mezcla} * W_{10\%}}{f_s}$$
 $m_{zmax} = \frac{169,35 \ kg * 0,10}{0,15}$
 $m_{zmax} = 112,9 \ kg$

3.7.9.3. Volumen que ocupa la zeolita a emplear

$$V_{z} = \frac{m_{z}}{\rho_{z}}$$

$$V_{z} = \frac{71,127 \ kg}{1,14 \frac{kg}{L}}$$

$$V_{z} = 62,3921 \ L$$

$$V_{z} = 0,0623921 \ m^{3}$$

3.7.9.3. Volumen total del deshidratador

$$V_{TA} = ER_{prop} + V_z$$

 $V_{TA} = 0.20905 m^3 + 0.0623921 m^3$
 $V_{TA} = 0.2714421m^3$

3.7.9.4. Altura del deshidratador

$$V_{TA} = A_{sup} * h_{profundidad}$$

$$A_{sup} = \frac{V_{TA}}{h_{profundidad}}$$

$$A_{sup} = \frac{0.2714421 \, m^3}{h}$$

El deshidratador va a tener una forma cilíndrica por su fácil manejo y diseño común en este tipo de equipos.

$$\pi r^2 = \frac{0,2714421}{h}$$

$$h = \frac{0,2714421}{\pi r^2}$$

La utilización tanto del área a ocupar como del material a utilizar debe ser mínima, entonces su perímetro debe ser mínimo, por lo tanto, se recurre a optimizar.

$$P_{sup} = 2 * (2\pi r) + 2h$$

$$P_{sup} = 2 * (2\pi r) + 2 * \frac{0,2714421}{\pi r^2}$$

$$P_{sup} = 4\pi r + \frac{0,5428842}{\pi r^2}$$

$$P_{sup}' = 4\pi - 2 * \frac{0.5428842}{\pi r^3}$$

$$P_{sup}' = 4\pi - 2 * \frac{1.0857684}{\pi r^3}$$

$$0 = 4\pi - \frac{1.0857684}{\pi r^3}$$

$$4\pi^2 r^3 - 1.08 = 0$$

$$r = 0.3019m$$

$$h = \frac{0.2714421m^3}{\pi (0.3019m)^2}$$

$$h = 0.9483m$$

3.7.9.5. Altura total del deshidratador

$$h = 0.9483m * 1.15$$

 $h_{TD} = 1.0905m$

3.7.9.6. Área transversal del deshidratador

$$A_{sup} = \pi (0.3019m)^2$$
$$A_{sup} = 0.2862 m^2$$

3.7.9.7. Diseño de los intercambiadores de calor

Aunque de manera experimental no se utilizó el etanol en forma de vapor, los deshidratadores industriales suelen funcionar de esa manera, por lo cual a la empresa se le recomienda el mismo reboiler y condensador que funcionan en la columna de destilación y rectificación, es decir con las mismas longitudes y serpentín controlando el calor necesario para los procesos de evaporación y condensación, al igual que el flujo másico del agua que debe recorrer para que se produzca dicho proceso.

Calor requerido para la condensación en la deshidratación

$$\begin{aligned} q_c &= m_v * Cp_v * (T_{VE} - T_{VS}) + m_v * h_v \\ q_c &= \left(209,05 \frac{L}{h} * 0,8101 \frac{kg}{L}\right) * 2,0857 \frac{kJ}{kg^{\circ}C} * (78,4 - 22)^{\circ}C + 150 \frac{kg}{h} * 1950 \frac{kJ}{kg} \\ q_c &= 169,35 \frac{kg}{h} * 2,0857 \frac{kJ}{kg^{\circ}C} * (78,4 - 22)^{\circ}C + 150 \frac{kg}{h} * 1950 \frac{kJ}{kg} \end{aligned}$$

$$q_c = 312421,3951 \frac{kJ}{h}$$

Flujo másico de agua requerido

$$m_W = \frac{q_c}{Cp_{Agua} * \Delta T}$$

$$m_W = \frac{312421,3951 \frac{kJ}{h}}{4,186 \frac{kJ}{kg^{\circ}C} * (22 - 18)^{\circ}C}$$

$$m_W = 18659,7073 \frac{kg}{h}$$

Cálculo de la distancia media logarítmica de temperatura (LMTD) para condensación

$$LMTD_{C} = \frac{\Delta TA - \Delta TB}{\ln\left(\frac{\Delta TA}{\Delta TB}\right)}$$

$$LMTD_{C} = \frac{(78.4 - 22)^{\circ}C - (78.4 - 18)^{\circ}C}{\ln\left(\frac{78.4 - 22}{78.4 - 18}\right)}$$

$$LMTD_{C} = 58.3772^{\circ}C$$

Cálculo de la distancia media logarítmica de temperatura (LMTD) para enfriamiento

$$LMTD_{C} = \frac{\Delta TB - \Delta TC}{\ln\left(\frac{\Delta TB}{\Delta TC}\right)}$$

$$LMTD_{C} = \frac{(78.4 - 18)^{\circ}C - (22 - 18)^{\circ}C}{\ln\left(\frac{78.4 - 18}{22 - 18}\right)}$$

$$LMTD_{C} = 20.7758^{\circ}C$$

Calor requerido para la evaporación en la deshidratación

$$Q = m_{ED} * Cp_{ED} * \Delta T$$

$$Q = 169,35 \frac{kg}{h} * 2,44 \frac{kJ}{kg^{\circ}C} * (78,4 - 14,72)^{\circ}C$$

$$Q = 26313,47 \frac{kJ}{h}$$

3.7.9.8. Cantidad estimada de etanol al 96% a obtener después del proceso de deshidratación

$$EF_{prop} = rac{\% Rendimiento * ER_{prop}}{100}$$
 $EF_{prop} = rac{93,62 * 209,05 rac{L}{lote}}{100}$
 $EF_{prop} = 195,71 rac{L}{lote}$

Tomando en cuenta el rendimiento de 93,62% obtenido del proceso de deshidratación realizado en la experimentación la cantidad de etanol a rectificar es $195,71\frac{L}{lote}$.

3.8. Equipos adicionales

3.8.1. Báscula de suelo

Tabla 56-3: Características de báscula de suelo recomendado

Detalles	Equipo
Marca	INTEL WEIGHING
Modelo	FS-M1515
Precio (\$)	300
Dimensiones (mm)	1500 x 1500
Capacidad (kg)	300-5000
Material	Acero inoxidable

Fuente: Alibaba.com, 2021a.

3.8.2. Refractómetro

Tabla 57-3: Características del refractómetro recomendado

Detalles	Equipo
Fabricante	PCE
Modelo	PCE-DRC 2
Precio (\$)	336.21
Compensación de temperatura	10-40 °C
Valor de medición	Aprox. 1 s
Tamaño de la muestra (gotas)	4 - 5

Porta muestra	Anillo de acero inoxidable con prisma de cristal			
Carcasa	ABS, IP 65			
Batería	1 x 1,5 V AAA			
Dimensiones (mm)	121 x 58 x 25			
Precisión				
Contenido de azúcar	± 0,2 %			
Índice de refracción (nD)	0,0003			
Temperatura (°C)	0,1			

Fuente: Alibaba.com, 2021a.

3.8.3. *pHmetro*

Tabla 58-3: Características del pHmetro recomendado

Detalles	Equipo
Modelo	EZ9902
Marca	HEDAO
Precio (\$)	23
Peso (g)	90
Dimensiones (mm)	183*37*37
Precisión	±0,1 pH
Batería (V)	3*1,5

Fuente: Alibaba.com, 2021c.

3.9. Análisis costo-beneficio

3.9.1. Costos variables

Tabla 59-3: Costo de materia prima, aditivos e insumos para producir 200L de etanol al 96%

Descripción	Cantidad	Unidad	Costo Unitario	Costo total
Caña de azúcar	3,18182	ton	27,75	88,30
Cal	0,318182	kg	0,26	0,08
Ácido sulfúrico	0,0012	L	1,25	0,0015
Agua potable	33,18184	m^3	1	33,18
Levaduras	2,4746	kg	7,99	19,77
Etiquetas	20	Unidad	0,02	0,40
Envases	20	Unidad	0,45	9,00

Total	150,73

Tabla 60-3: Costos variables de producción al mes

Descripción	Diario	Días trabajados	Producción mensual esperada	Costo por litro (\$)	Costo total (\$)
Litros a producir	200	20	4000	0,75	3014,64

Realizado por: Gaibor, Samantha, 2021.

Tabla 61-3: Otros costos variables a tener en cuenta al mes

Descripción	Cantidad	Costo Unitario (\$)	Costo total (\$)	
Operario	perario 2 400		800	
Total	800			

Realizado por: Gaibor, Samantha, 2021

3.9.2. Costos fijos

Tabla 62-3: Costos fijos del proceso de producción al mes

Descripción	Costo
Análisis fisicoquímicos del etanol	180
Transporte (Combustible)	400
Servicios básicos (agua, luz, teléfono)	300
Total	880

Realizado por: Gaibor, Samantha, 2021.

3.9.3. Precio de producción de etanol

$$P_p = \frac{C_{fijos\ proceso\ de\ producción\ al\ mes} + C_{variables\ producción\ al\ mes} + C_{otros\ variables}}{Litros\ de\ producción\ mensual}$$

$$P_p = \frac{(880 + 3014,64 + 800)\$}{4000\ L}$$

$$P_p = 1,17\frac{\$}{L}$$

3.9.4. Precio de venta del etanol

El etanol al 96% se vende a 3\$ por litro, por lo tanto, el precio de venta propuesto para la empresa es el precio competitivo del mismo, generándole una muy buena utilidad con lo que ella decida vender.

3.9.5. Punto de equilibrio mensual y anual

A partir de estos puntos de equilibrios la empresa empezará a ganar

Tabla 63-3: Punto de equilibrio mensual y anual

Detalle	Mensual	Anual
Costos fijos	880	10560
Precio de venta	3	3
Costo variable Unitario	1,17	1,17
Punto de equilibrio	481,84	5782,05

Realizado por: Gaibor, Samantha, 2021.

3.9.6. Maquinarias y equipos

Tabla 64-3: Costos, depreciación, mantenimiento y seguro de maquinarias y equipos

Maquinaria y		Vida	Inver	Inversiones		Seguro
equipos	Valor	útil (años)	Deprecia- ción (%)	Valor (\$)	miento (5%)	(3%)
Báscula de suelo	300,00	5	20,00	60,00	15,00	9,00
Refractómetro	336,21	5	20,00	67,24	16,81	10,09
pHmetro	23,00	5	20,00	4,60	1,15	0,69
Mesa de recepción y lavado	600,00	5	20,00	120,00	30,00	18,00
Picadora de caña de azúcar	2000,00	5	20,00	400,00	100,00	60,00
Molino de caña de azúcar	2156,00	5	20,00	431,20	107,80	64,68
Equipo filtrador	1500,00	5	20,00	300,00	75,00	45,00
Equipo de clarificación	3000,00	5	20,00	600,00	150,00	90,00

Equipo	de	5000,00	5	20,00	1000,00	250,00	150,00
fermentación							
Columna	de	65000,00	5	20,00	13000,00	3250,00	1950,00
destilación							
Columna	de	45000,00	5	20,00	9000,00	2250,00	1350,00
rectificación							
Deshidratador		30000,00	5	20,00	6000,00	1500,00	900,00
Total		154915,21		1	24983,04	7745,76	4647,46

3.9.7. Proyección de ventas y su presupuesto

Tabla 65-3: Proyección de ventas y su presupuesto

Producto	11 etanol al 96%					
Precio de venta	3					
Tasa de crecimiento poblacional	1,80%					
Producción diaria	Producción mensual Producción anual					
200	4000	48000				
Años	Proyección de demanda	Presupuesto de ventas				
Año 1	48000,00	144000,00				
Año 2	48864,00	146592,00				
Año 3	49743,55	149230,66				
Año 4	50638,94	151916,81				
Año 5	51550,44	154651,31				

Realizado por: Gaibor, Samantha, 2021.

3.9.8. Proyección de costo y su presupuesto

Tabla 66-3: Proyección de costo y su presupuesto

Flujo de inflación	0,0017%						
Detalle	Año 0	Año 1	Año 2	Año 3	Año 4	Año 5	
Costos de producción							
Materia prima directa	36175,63	36176,24	36176,86	36177,47	36178,09	36178,70	
Mano de obra directa	9600,00	9600,16	9600,33	9600,49	9600,65	9600,82	
Mantenimiento y seguros	15491,52	15491,78	15492,05	15492,31	15492,57	15492,84	
Depreciación	24983,04	24983,47	24983,89	24984,32	24984,74	24985,17	
Subtotal	86250,19	86251,66	86253,12	86254,59	86256,06	86257,52	
Costos administrativos							
Servicios básicos	3600,00	3600,06	3600,12	3600,18	3600,24	3600,31	

Impuestos / permisos de funcionamiento	146,40	146,40	146,40	146,41	146,41	146,41	
Análisis de laboratorio	2160,00	2160,04	2160,07	2160,11	2160,15	2160,18	
Subtotal	5906,40	5906,50	5906,60	5906,70	5906,80	5906,90	
	Co	osto de venta	ıs				
Transporte	4800,00	4800,08	4800,16	4800,24	4800,33	4800,41	
Subtotal	4800,00	4800,08	4800,16	4800,24	4800,33	4800,41	
Costos financieros							
Intereses bancarios	100,00	100,00	100,00	100,01	100,01	100,01	
Subtotal	100,00	100,00	100,00	100,01	100,01	100,01	
Total	97056,59	97058,24	97059,89	97061,54	97063,19	97064,84	

3.9.9. Flujo de caja

Tabla 67-3: Flujo de caja

	Detailes		Años					
	Detailes	0	1	2	3	4	5	
+	Ventas netas		144000	146592	149230,656	151916,808	154651,31	
-	Costos de producción		97056,59172	97058,2417	97059,8917	97061,5417	97063,1917	
=	Utilidad antes de reparto		46943,41	49533,76	52170,76	54855,27	57588,12	
-	Reparto de utilidades (15%)		7041,51	7430,06	7825,61	8228,29	8638,22	
=	Utilidades antes de impuestos		39901,90	42103,69	44345,15	46626,98	48949,90	
-	Impuestos a la renta		0,00	0,00	32,36	113,62	593,71	
=	Utilidad neta		39901,90	42103,69	44312,79	46513,36	48356,19	
-	Inversión de máquinas y equipos	-154915,21						
=	Flujo de caja	-154915,21	39901,90	42103,6946	44312,7897	46513,3562	48356,1908	
=	Flujo de caja actualizada al 11,50%	-154915,21	45086,88931	53756,8318	63929,2014	75823,6339	89070,8772	
=	Flujo de caja acumulada	-154915,21	-109828,321	-56071,489	7857,71253	83681,3465	172752,224	

Tasa de rendimiento del mercado	11,50%
VAN (Valor actual neto)	4858,19
TIR (Tasa interna de retorno)	13%
PR (Plazo de recuperación)	2,88

Realizado por: Gaibor, Samantha, 2021.

El VAN es positivo, 4858,19 > 0, por lo tanto, el proyecto es totalmente viable, con una recuperación aproximada de 2 años con 10 meses y 16 días y un TIR de 13%.

CAPÍTULO IV

4. RESULTADOS

4.1. Resultados

4.1.1. Caracterización de la materia prima

Tabla 1-4: Resultados de la caracterización de la materia prima (Jugo clarificado)

Parámetro	Resultado	Rango de bibliografía
Sólidos totales (g/100ml)	5,2438	4,32 - 5,82
Cenizas totales (%)	0,0609	0,61 - 0,75
Acidez (gH ₂ SO ₄ /L)	0,6014	0,10 - 0,68
Densidad (g/mL)	0,901	
рН	4,5	4,95 - 5,65
Índice de refracción	1,46381	
Brix (°Bx)	19,98	13 - 22,40
Temperatura (°C)	20	

Realizado por: Gaibor, Samantha, 2021.

4.1.2. Caracterización del etanol

Tabla 2-4: Resultados de la caracterización del etanol

		Resu	ltado	NTE INEN 2 478:2009	
Parámetro	UNIDAD	Lab. LASA	Lab. ESPOCH	Mínimo	Máximo
φ Contenido de etanol	%	94,7	96	96,3	
Acidez total	mgCH ₃ COOH/100ml	NSH	2,492		3,0
Conductividad eléctrica	μS/m	94,3	NSH		500
Densidad a 20°C (kg/m³)	kg/m3	811,2	NSH		791,5
Contenido de cloruros	mg/l	0,1	NSH		32
φ Contenido de agua	%	5,29	NSH		0,3
Contenido de cobre	mg/kg	0,68	NSH		0,1
Residuo por evaporación	mg/100ml	1,8	NSH		5,0
рНе		NSH	6,73	6,5	9,0
φ Contenido de desnaturalizantes	%	0	NSH	2	3

Realizado por: Gaibor, Samantha, 2021.

4.1.3. Rendimientos de los procesos en laboratorio

Tabla 3-4: Resultados de los procesos en laboratorio

Proceso	Rendimiento
Lavado	98,67%
Molienda	71,75%
Filtración	98,98%
Clarificado	99,62%

Proceso	Rendimiento
Fermentación	98,65%
Destilación	17,38%
Rectificación	49,46%
Deshidratación	93,62%

Rend	imiento	global
------	---------	--------

6,29%

Realizado por: Gaibor, Samantha, 2021.

4.1.4. Dimensionamiento de los equipos

Tabla 4-4: Resultados del dimensionamiento de los equipos

Dázaula da a	uala		
Báscula de suelo			
Capacidad máxima (kg)	5000		
Dimensiones (mm)	1500 x 1500		
Material	Acero inoxidable		
Refractómetro			
Compensación de temperatura	10-40 °C		
Valor de medición	Aprox. 1 s		
Tamaño de la muestra (gotas)	4 - 5		
Precisión en contenido de azúcar	± 0,2 %		
Precisión en índice de refracción (nD)	0,0003		
Precisión en temperatura (°C)	0,1		
pHmetro			
Peso (g)	90		
Dimensiones (mm)	183*37*37		
Precisión	±0,1 pH		
Batería (V)	3*1,5		
Recipiente de recepción y lavado			
Capacidad a procesar (kg/lote)	3181,82 kg		
Volumen total del recipiente (m^3)	50,044056		
Altura total de la mesa (m)	0,9		

Profundidad (m)	0,4		
Dimensiones de la base (m)	11,19*11,19		
Material	Acero Inoxidable (AISI 304)		
Picadora de caña de azúcar			
Capacidad a procesar (kg/lote)	3139,5		
Potencia (HP)	320		
Velocidad (rpm)	580		
Cuchillas	48		
Peso (kg)	2178		
Ancho (m)	1,2		
Diámetro (m)	1,55		
Material	Acero Inoxidable		
Molino de caña de azúcar			
Capacidad a procesar (kg/lote)	3139,5		
Productividad (kg/h)	1000		
Voltaje (V)	8V		
Revoluciones por minuto	25		
Frecuencia (Hz)	50 Hz		
Material	Acero Inoxidable		
Equipo filtra	ndor		
Capacidad a procesar (L/lote)	2500,10		
Poder (kv)	0.25-3		
Diámetro de la pantalla (mm)	400-2000		
Cubiertas	1-5		
Material	Acero al carbono		
Equipo de clarificación			
Capacidad a procesar (L/lote)	2474,60		
Volumen total (m³)	2,8458		
Diámetro total del clarificador (m)	1,532		
Altura total del clarificador (m)	1,776		
Tipo de agitador	Turbina Pitched Blade		
Potencia real para la agitación (HP)	0,0137		
Tiempo de agitación (s)	80,6		
Equipo de fermentación			
Cantidad a procesar (L/Lote)	2465,2		

2,8350			
1,5298			
1,7737			
Tipo turbina Vertical Blade			
0,5184			
20,47			
1,9888			
3,6752			
116882,4855			
tilación			
2431,92			
0,0367			
0,2358			
0,0295			
4			
1,6788			
2,286			
0,009525			
310145,022			
18522,7557			
1,4134			
47,24			
93866,8672			
1,4134			
47,24			
Columna de rectificación			
422,67			
0,2358			
0,7353			
0,0147			
14			
1,9689			
2,3093			
0,009525			
521599,0033			

Flujo másico de agua requerido (kJ/h)	31151,398	
Longitud total del serpentín (m)	1,4134	
Número de vueltas	47,24	
Calor requerido para la evaporación (kJ/h)	26469,93	
Longitud total del serpentín (m)	1,4134	
Número de vueltas	47,24	
Deshidratador		
Capacidad a procesar (L/lote)	209,05	
Cantidad de zeolita mínima (kg)	71,127	
Cantidad de zeolita máxima (kg)	112,9	
Volumen total del deshidratador (m³)	0,2714421	
Altura del deshidratador (m)	1,0905	
Cantidad estimada de etanol final (L/lote)	195,71	
Material	Acero Inoxidable	
Diámetro del serpentín (m)	0,009525	
Calor requerido para la condensación (kJ/h)	312421,3951	
Flujo másico de agua requerido (kJ/h)	18659,7073	
Longitud total del serpentín (m)	1,4134	
Número de vueltas	47,24	
Calor requerido para la evaporación (kJ/h)	26313,47	
Longitud total del serpentín (m)	1,4134	
Número de vueltas	47,24	

4.1.5. Análisis costo-beneficio

Tabla 5-4: Resultados del análisis costo-beneficio

Detalle	Resultado
Precio de producción del litro de etanol	1,17\$
VAN (Valor actual neto)	4858,19
TIR (Tasa interna de retorno)	13%
PR (Plazo de recuperación)	2,88

Realizado por: Gaibor, Samantha, 2021.

4.2. Análisis y discusión de resultados

- Caracterización de la materia prima

La caracterización de la materia prima se llevó a cabo en el jugo clarificado debido a que de este depende el rendimiento de la fermentación. No existe una norma determinada para caracterizar el zumo de la caña de azúcar, por la tanto se siguió los procedimientos del Laboratorio de Investigación para la caracterización de este tipo de materia prima. Además, al no existir una norma que rija los parámetros de las características, existen diversas investigaciones (Martini et al., 2011: p.3) y (Cobeña y Loor, 2016: p.49) que han caracterizado una parte de la gran variedad de la caña de azúcar permitiendo establecer un rango entre los parámetros que se han encontrado, siendo sólidos y cenizas totales, acidez, densidad, pH, índice de refracción, grados Brix y temperatura. Así los resultados de la caracterización de la materia prima a una temperatura de 20°C fueron 5,2438g/100ml de sólidos totales; 0,0609% de cenizas totales; 0,6014gH₂SO₄/L de acidez; 0,901g/ml de densidad; un pH de 4,5; un índice de refracción de 1,46381 y 19,98°Bx. Dichos valores se encontraron dentro del rango bibliográfico antes mencionado exceptuando la cantidad de cenizas totales, que es mucho más bajo que 0,61% de cenizas encontradas bibliográficamente. El bajo contenido de cenizas totales de la materia prima utilizada significa que hay muy poca cantidad de materia inorgánica, lo cual es bueno cuando se trata de cobre, pues este reduce el rendimiento de la fermentación y es malo cuando se trata de magnesio ya que este incrementa el rendimiento de la obtención de etanol (Gómez y Pérez, 2018). Este se puede deber al lugar de procedencia de la materia prima y a los diferentes procesos de tratamiento, como la filtración y clarificación.

- Proceso de obtención de etanol en el laboratorio

El proceso de laboratorio tuvo un rendimiento global de 6,29%, de tal manera que de 70kg se obtuvo 4,4L de etanol al 96%. En otra investigación como Naranjo, 1993; citado en Montoya R. et al. (2005: p.4) se logró producir 75L de alcohol a partir de 1ton de caña de azúcar, con jugos cuyos grados brix eran superiores a 19°Bx, es decir que tuvo un rendimiento de 7,5%. La diferencia es del 1,21%, lo cual es muy significativa, esto puede ser por los equipos utilizados y los diversos movimientos que sufrió el jugo fermentado para la destilación, pues se lo movilizó de Echeandía a Riobamba, de manera que pudo afectar el rendimiento de la destilación, el cual fue 17,38%, siendo este el más mínimo de los rendimientos en subir el etanol. Otro de los factores que pudo afectar es que el equipo del laboratorio de Procesos Industriales ya que es antiguo, por lo tanto, el rendimiento no es el mejor. Sin embargo, con el diseño planteado para la empresa GelFresh Lab se espera que el rendimiento iguale y de paso supere el de dicha investigación.

Caracterización del etanol obtenido

La caracterización del etanol obtenido según la norma NTE INEN 2 478:2009 incluía métodos que debían ser cumplidos a detalle, por lo cual se recurrió al Laboratorio Lasa para realizarlos, sin descartar los otros métodos que si se podían realizar en el laboratorio de Investigación de la ESPOCH. Los parámetros que no se cumplen según la normativa son el grado alcohólico, cuyo valor obtenido fue 94,7, la densidad a 20°C con 811,2 kg/m³, y el contenido de desnaturalizantes, que fue de 0%. Su variación no es significativa, por lo cual para la producción de gel antiséptico está en las condiciones adecuadas para cumplir con un nivel de desinfección alta.

El grado alcohólico a nivel de laboratorio, antes de enviar los 3 litros pedidos por el laboratorio Lasa, fue evaluado con un alcoholímetro, quedando este más arriba de la sexta línea del 90 del alcoholímetro utilizado. Por tal motivo, se le recomienda a la empresa observar que el alcoholímetro mida 98°GL, pudiéndose obtener estos grados por el proceso propuesto en este proyecto, para que mediante el análisis en un cromatógrafo de gases se logre el grado alcohólico deseado. En cuanto a los otros parámetros obtenidos se puede deber a que la materia prima para producir el etanol es la caña de azúcar y esta norma INEN es para un etanol a partir de hidrocarburos como etileno y con agregados de sustancias desnaturalizantes como el benceno para subir el grado alcohólico, y la técnica propuesta no utiliza la destilación azeotrópica sino una deshidratación, liberándose de la utilización de dichos compuestos.

CONCLUSIONES

- Se diseñó un proceso industrial para la obtención del etanol a partir de la caña de azúcar (Saccharum officinarum) para la empresa GelFresh Lab. Así los procesos para llevar a cabo esta transformación son la recepción, el lavado, la disminución de tamaño de la caña de azúcar mediante corte, la molienda, la filtración, la clarificación, la fermentación, destilación, rectificación y deshidratación con tamices moleculares. De este proceso se espera un rendimiento igual o superior al 7,5%.
- Se obtuvo un etanol de 96% a partir de la caña de azúcar a través del proceso desarrollado en los laboratorios tanto de Procesos Industriales como en el de Química Orgánica. Con ayuda del alcoholímetro se notó los 96°GL del alcohol obtenido, sin embargo, el cromatógrafo de gases muestra 94,7°GL, por lo cual se recomienda que en el alcoholímetro muestre 98°GL para que en el análisis mediante el cromatógrafo de gases salga los 96°GL, que son los grados alcohólicos deseados.
- Se estableció las variables del proceso para fabricar etanol a nivel industrial a partir de los datos conseguidos a nivel de laboratorio. Las cantidades en los diferentes procesos son consideradas las variables independientes, en cambio el grado de maduración, el tiempo, la temperatura y el pH son considerados variables dependientes. Así, la más importante de estas variables es el grado de maduración de la caña de azúcar a utilizar en el proceso debido a que si la caña de azúcar no está en un tiempo de maduración adecuada, los litros de etanol obtenido serán mínimos, en cambio sí está en la maduración correcta, los litros de etanol obtenidos serán máximos.
- Se validó el proceso de producción de etanol a través de la caracterización del producto final según normativa. A pesar de que en los resultados tres parámetros no fueron los que se cumplieron, grados alcohólicos, densidad y desnaturalizantes por las razones antes nombradas, se considera un etanol apto para la producción de gel antiséptico.
- Se realizó un análisis costo beneficio del proyecto, por el cual se dice que el proyecto presentado es viable, con una recuperación de 2 años y 10 meses para empezar a generar beneficios recuperando la inversión planteada para el mismo. Por lo tanto, la empresa será capaz de incrementar su línea de producción y de disminuir sus gastos de 1,30 \$/L a 1,17 \$/L.

RECOMENDACIONES

- Una vez que la caña de azúcar llegue a la empresa GelFresh Lab, debe ser procesada inmediatamente, caso contrario la sacarosa va a empezar a disminuir, de forma que el rendimiento del proceso será mucho menor.
- Los procesos antes de la fermentación como el lavado, el corte, la filtración y la clarificación, son sumamente necesarios para el rendimiento del proceso, por lo cual la empresa tiene que eliminar la mayor cantidad de impurezas del jugo en los procesos antes mencionados, para que de esta forma se obtenga mayor cantidad de etanol deseado.
- La activación de las levaduras debe llevarse a cabo según las indicaciones del paquete en el que vengan contenidas, y tomar muy en cuenta la temperatura pues de ella depende de que las levaduras lleven a cabo el proceso de fermentación de una manera exitosa.
- Se sugiere que GelFresh Lab, en caso de utilizar un alcoholímetro para medir los grados de alcohol, espere que los grados midan 98°GL, para que en la prueba de cromatógrafo de gases se pueda mostrar un valor de 96°GL.
- Se recomienda a la empresa investigar los procesos para tratar los desechos del proyecto llevado a cabo, de tal forma que encuentre un beneficio económico a partir de dicho procesamiento y de manera que logre estar dentro de una economía circular y por ende ser más amigable con el medio ambiente.

GLOSARIO

Zafra: Tiempo de cosecha de la caña de azúcar para la transformación en sus diversos productos como puede ser etanol, azúcar o zumos (Aguilar, 2009, p.6).

Etanol anhidro: Tipo de etanol que se acerca a la pureza máxima, va desde los 96% de contenido de alcohol hasta el 100% (Instituto Ecuatoriano de Normalización, 2009, p.3).

Fermentación: Reacción química que transforma los carbohidratos en alcohol con ayuda de las levaduras. Las levaduras más utilizadas a nivel industrial son la *Saccharomyces cerevisiae* (Vázquez y Dacosta, 2007:p.5).

Punto azeotrópico: Temperatura a la cual una mezcla de líquidos empieza a ebullir como si fueran uno solo. Por ejemplo, el etanol tiene su punto de ebullición a 78,4°C y el agua, a 100°C, pero en una mezcla su punto de ebullición es de 78,2°C (Rousseau y Fair, 1987: p.261).

Destilación fraccionada: Operación que separa líquidos con puntos de ebullición muy cercanos por medio de una columna de fraccionamiento compuesta por platos que hacen que exista un mayor contacto entre los vapores y los líquidos que se condensan, permitiendo de esta manera obtener con mayor pureza al líquido más volátil (Adriano y Valle, 2014; p.25).

Deshidratación: Proceso en el que se separa el agua del fluido que lo contiene, de manera que aumenta su pureza, como es el caso de la deshidratación de la mezcla etanol agua, para obtener un etanol más puro (Riofrío López y Arellano Pérez, 2014; p.7).

BIBLIOGRAFÍA

- **ABC**, 2014. *Las bebidas con más alcohol del mundo*. *ABC Redes* [en línea]. [Consulta: 15 enero 2021]. Disponible en: https://www.abc.es/tecnologia/redes/20141113/abci-bebidas-alcohol-201411131044.html.
- ADRIANO, S. y VALLE, V., "DISEÑO Y CONSTRUCCIÓN DE UNA TORRE DE DESTILACIÓN CON RECTIFICACIÓN PARA LA PURIFICACIÓN DEL THINNER USADO PROCEDENTE DE LAS MECÁNICAS AUTOMOTRICES. Escuela Superior Politécnica de Chimborazo [en línea], 2014. Disponible en: http://dspace.espoch.edu.ec/bitstream/123456789/2510/1/96T00192.pdf%0Ahttp://dspace.espoch.edu.ec/bitstream/123456789/3503/1/96T00256 UDCTFC.pdf.
- AGUILAR, N., Ficha Técnica del cultivo de Caña de Azúcar. Sivicaña [en línea], 2009. . vol. I, pp. 16. Disponible en: http://www.sipove.gob.mx/Doc_SIPOVE/SVegetal/Publica/cana/Fichas/FT_Cana_de_Azu car.pdf.
- AGUILERA, M. y RAMÍREZ, D., Diseño de un biorreactor a escala de laboratorio y su sistema de control. [en línea], 2017. . pp. 156. Disponible en: http://www.dspace.espol.edu.ec/xmlui/bitstream/handle/123456789/38970/D-CD88514.pdf?sequence=-1&isAllowed=y.
- ALIBABA.COM, 2021a. *Báscula de suelo*. [en línea]. Disponible en: https://spanish.alibaba.com/product-detail/1-2-1-2m-2-ton-floor-weighing-scale-62050387482.html?spm=a2700.md es ES.deiletai6.1.65fd32bb32BFYp.
- ALIBABA.COM, Exprimidor de zumo. [en línea], 2021b. Disponible en: https://spanish.alibaba.com/product-detail/large-industrial-sugar-cane-juicer-sugar-cane-juice-extractor-food-and-beverage-machinery-62185546116.html?spm=a2700.7735675.normal offer.d image.57ca154finOXpu.
- ALIBABA.COM, 2021c. *Medidor de ph ec digital de calidad alemana*. [en línea]. Disponible en: https://spanish.alibaba.com/product-detail/germany-quality-digital-ph-ec-meter-1600119837862.html?spm=a2700.7735675.normal_offer.d_image.2e5344f0uLdKVz&s=p

.

- **ÁLVAREZ SALGADO, M.E. y GARCÍA PADILLA, R.M.**, Estudio de la simulación de procesos de producción en ingenios azucareros. [en línea], 2013. . vol. capitulo 3. Disponible en: http://repositorio.utn.edu.ec/handle/123456789/1092.
- ASAGEKAR, S.D. y JOSHI, K., Characteristics of sugarcane fibres. Indian Journal of Fibre and Textile [en línea], 2014. Disponible en: https://www.researchgate.net/publication/289493220_Characteristics_of_sugarcane_fibres .
- BAJAÑA GUANO, P.D., Diseño de una columna de rectificación para el licor artesanal producido en la parroquia de Nanegal. Universidad Central Del Ecuador [en línea], 2019.
 . vol. 8, no. 2, pp. 113. ISSN 0187-893X. DOI 10.22201/fq.18708404e.2004.3.66178.
 Disponible en: http://www.dspace.uce.edu.ec/bitstream/25000/17694/1/T-UCE-0017-IQU-029.pdf.
- BERNAL, M., 2020. Ecuador espera en junio poder desarrollar normalmente su zafra de caña | Noticias Agropecuarias. El productor [en línea]. [Consulta: 14 enero 2021]. Disponible en: https://elproductor.com/2020/04/ecuador-espera-en-junio-poder-desarrollar-normalmente-su-zafra-de-cana/.
- **BONILLA BERMEO, S.M. y & ALVAREZ MACIAS, D.A.**, Diseño, construcción y puesta en marcha de una columna piloto de destilación de platos perforados con alimentación dual. Guayaquil. [en línea], 2011. vol. 53, no. 9, pp. 1689-1699. ISSN 1098-6596. Disponible en: http://repositorio.ug.edu.ec/bitstream/redug/2078/1/1065.pdf.
- **CENTRAL TUMACO S.A.**, 2021. *PICADORA CAÑA #1*. [en línea]. Disponible en: http://www.centumaco.com.co/producto/picadora-cana-1/.
- CHEESMAN, O.D., Environmental Impacts of Sugar Production: The Cultivation and Processing of Sugarcane and Sugar Beet. CABI Publishing, United Kingdom, 2005.
- **CHUQUÍN VASCO, D.A.**, Diseño y simulación de una columna de destilación binaria de etanol-agua para la Empresa Hetween., 2013. pp. 153.
- CINCAE, 2020. CINCAE | Centro de Investigación de la Caña de Azúcar del Ecuador. [en línea]. [Consulta: 14 enero 2021]. Disponible en: http://cincae.org/.

- COBEÑA, J. y LOOR, I., 2016. TEMA: CINCO VARIEDADES DE CAÑA DE AZÚCAR (
 Saccharum IVÁN FRANCISCO LOOR CHÁVEZ TUTOR: [en línea]. 2016. S.l.: s.n.
 Disponible en: http://repositorio.espam.edu.ec/bitstream/42000/264/1/TAI105.pdf.
- CONNECTAS, 2021. Los zares del etanol. [en línea]. Disponible en: https://www.connectas.org/project/et/es/art2.html.
- CRESSWELL, A., Hazardous Substance Fact Sheet (ethyl alcohol). Australian Doctor, 2007. . no. 29/JUNE, pp. 24. ISSN 10397116.
- DIAS, M.O.S., MODESTO, M., ENSINAS, A. V., NEBRA, S.A., FILHO, R.M. y ROSSELL, C.E.V., Improving bioethanol production from sugarcane: Evaluation of distillation, thermal integration and cogeneration systems. Energy [en línea], 2011. vol. 36, no. 6, pp. 3691-3703. ISSN 03605442. DOI 10.1016/j.energy.2010.09.024. Disponible en: http://dx.doi.org/10.1016/j.energy.2010.09.024.
- **DUNN, K.L.**, © 2015 Kori Lynn Dunn., 2015. .
- EL COMERCIO, 2018. La industria azucarera enfrenta bajas ventas en Ecuador | El Comercio. [en línea]. [Consulta: 14 enero 2021]. Disponible en: https://www.elcomercio.com/actualidad/industria-azucarera-ventas-comercializacion-produccion.html.
- **EL UNIVERSO**, 2020. La producción nacional de gel antibacterial creció y se exporta a siete países | Economía | Noticias | El Universo. [en línea]. [Consulta: 29 diciembre 2020]. Disponible en: https://www.eluniverso.com/noticias/2020/07/30/nota/7922901/producciongel-antibaterial-ecuador-coronavirus.
- **FAIR LABOR ASSOCIATION**, *TASK AND RISK MAPPING OF SUGARCANE PRODUCTION IN INDIA*. [en línea], 2012. . no. January. Disponible en: https://www.fairlabor.org/sites/default/files/documents/reports/task_and_risk_mapping_of_sugarcane_production_in_india.pdf.
- **FARLEX, I.**, 2021. *Saccharose* | *definition of saccharose*. *The free dictionary* [en línea]. Disponible en: https://medical-dictionary.thefreedictionary.com/saccharose.
- FOCUS TECHNOLOGY CO., L., 2021. Sugar Cane Juice Filter Vibrating Screen / Sieving

- Machine. [en línea]. Disponible en: https://xxsanyuantang.en.made-in-china.com/product/ZKdmJoFukgrO/China-Sugar-Cane-Juice-Filter-Vibrating-Screen-Sieving-Machine.html.
- GAIN (GLOBAL AGRICULTURAL INFORMATION NETWORK), Ethanol Industry Emerging in Ecuador. [en línea], 2018. Disponible en: https://gain.fas.usda.gov/Recent GAIN Publications/Ethanol Industry Emerging in Ecuador Quito Ecuador 1-29-2018.pdf.
- GARCÍA, V., DUARTE, V. y MAGAÑA, C., 1991. Crecimiento y finalización de cerdos con diferentes niveles de vinaza. [en línea]. [Consulta: 13 enero 2021]. Disponible en: http://www.fao.org/AG/aga/agap/FRG/FEEDback/Irrd/Irrd3/1/mexico.htm.
- **GELFRESH LAB**, 2020. *GelFresh Laboratorios*. [en línea]. [Consulta: 29 diciembre 2020]. Disponible en: http://www.gelfreshlabs.com/.
- GÓMEZ, A. y PÉREZ, A., *Materias Primas Usadas Para La Producción De Etanol De Cuatro Generaciones:*. *Agrociencia* [en línea], 2018. . vol. 52, pp. 967-990. ISSN 1405-3195. Disponible en: http://repositorio.unsa.edu.pe/bitstream/handle/UNSA/4188/IAmasibm024.pdf?sequence= 1&isAllowed=y.
- **GOOGLE EARTH**, 2021. *Ubicación de los lugares del proyecto*. [en línea]. Disponible en: https://earth.google.com/web.
- HERNÁNDEZ AGUIRRE, A. y HERNÁNDEZ RODRÍGUEZ, R., 2020. Método de McCabe-Thiele en Excel. Taller de Simulación [en línea]. [Consulta: 4 marzo 2021]. Disponible en: https://www.youtube.com/watch?v=wDx77MPDifk&ab_channel=ProfeMisa.
- HIDALGO, K., RODRÍGUEZ, B. y FEBLES, M.V.M., Utilización de la vinaza de destilería como aditivo para pollos en ceba. Revista Cubana de Ciencia Agrícola [en línea], 2009. . vol. 43, no. 3, pp. 281-284. ISSN 0034-7485. Disponible en: https://www.redalyc.org/pdf/1930/193015481011.pdf.
- **INEC- ESPAC**, *Principales Resultados ESPAC*. [en línea], 2019. pp. 43. Disponible en: shorturl.at/lry58.

- **INSTITUTO ECUATORIANO DE NORMALIZACIÓN**, *INSTITUTO ECUATORIANO DE NORMALIZACIÓN 2478 Quito-Ecuador*. , 2009.
- **KECERDASAN, I. y IKEP, P.**, 2013. *ETHANOL. ICIS* [en línea]. Disponible en: https://s3-euwest-1.amazonaws.com/cjp-rbi-icis-compliance/wp-content/uploads/2013/08/Ethanol-Methodology.pdf.
- **KNOEMA**, 2018. Sugar cane production quantity. WORLD DATA ATLAS [en línea]. Disponible en: https://knoema.com/atlas/topics/Agriculture/Crops-Production-Quantity-tonnes/Sugar-cane-production.
- LARRAHONDO AGUILAR, J.E., 2017. Composición química de la caña y factores que afectan la determinación de sacarosa y el proceso azucarero. [en línea]. 2017. S.l.: [Consulta: 14 enero 2021]. Disponible en: https://www.atagua.org/presentaciones/XIVCongresoNacional2017/fabrica/composicion_quimica_dr_larrahondo.pdf.
- LAUZURIQUE, Y., ACOSTA, L., PÉREZ, O. y ZUMALACÁRREGUI, L., Procesos de separación en la producción de etanol anhidro. Grupo Análisis de Procesos [en línea], 2013. . no. June 2017. DOI 10.13140/RG.2.2.33768.06409. Disponible en: https://www.researchgate.net/publication/317290602_Procesos_de_separacion_en_la_produccion de etanol anhidro.
- **LLUMIQUINGA, C.**, Diseño de una planta piloto para la producción de gel antibacterial Trabajo. Universidad Central Del Ecuador, 2018.
- MADRID, R., DELGADO, L. y ALDANA, D., Modelacion matematica de la transferencia de calor en un intercambiador de calor abierto para produccion de panela granulada., 2014. pp. 10-14.
- **MANNO, V.,** Visualisation of Flow Patterns in a Flat Plate Pulsating Heat Pipe (FP-PHP) for Automotive Applications: Influence of Hydraulic Behaviour on Thermal Performances. [en línea], 2014. Disponible en: https://etd.adm.unipi.it/t/etd-04272014-024120/.
- MARTINI, C., VERRUMA-BERNARDI, M.R., BORGES, M.T.M.R., MARGARIDO,

- L.A.C. y CECCATO-ANTONINI, S.R., Yeast composition of sugar cane juice in relation to plant varieties and seasonality. Bioscience Journal [en línea], 2011. . vol. 27, no. 5, pp. 710-717. ISSN 1981-3163. Disponible en: https://www.researchgate.net/publication/289400625_Yeast_composition_of_sugar_cane_juice_in_relation_to_plant_varieties_and_seasonality.
- MINOR, E., 2020. Reactor homogéneo Batch y semibatch Reactoresquímicos. Ingeniería Química [en línea]. [Consulta: 2 marzo 2021]. Disponible en: https://reactorquimico.wordpress.com/reactores-homogeneos-ideales-isotermicos/reactor-homogeneo-batch-y-semibatch/.
- MONTOYA R., M.I., QUINTERO S., J.A., SÁNCHEZ T., O.J. y CARDONA A., C.A., Evaluación económica del proceso de obtención de alcohol carburante a partir de caña de azúcar y maíz. Revista Universidad EAFIT, 2005. . vol. 41, no. 139, pp. 76-87. ISSN 2344-8172.
- MORDOR INTELLIGENCE, 2020. Bio-ethanol Market | Growth, Trends, and Forecast (2020 2025). [en línea]. [Consulta: 29 diciembre 2020]. Disponible en: https://www.mordorintelligence.com/industry-reports/bio-ethanol-market.
- **OECD**, Consensus Document on Compositional Considerations for New Varieties of Sugarcane (Saccharum ssp. hybrids): Key Food and Feed Nutrients, Anti-Nutrients and Toxicants. Series on the Safety of Novel Foods and Feeds. [en línea], 2011. no. 23, pp. 43. Disponible en: http://www.oecd.org/dataoecd/38/4/48962816.pdf.
- ONES, O.P., RODRÍGUEZ, J.D., ZUMALACÁRREGUI, L. y LEÓN, O.G., Evaluation of thermodynamics properties of ethanol-water mixtures (I). Revista Facultad de Ingeniería Universidad de Antioquia, 2010. . no. 52, pp. 47-61. ISSN 0120-6230.
- OTINIANO, M., CALCULOS EN DESTILACION CONTINUA PARA SISTEMAS BINARIOS

 UTILIZANDO HOJA DE CALCULO EXCEL. Universidad Nacional Mayor de San Marcos.

 [en línea], 2005. . Disponible en:

 http://www.ciiq.org/varios/peru 2005/Trabajos/posters/P20.pdf.
- **PEÑA, C. y ARANGO, R.**, Evaluation of ethanol production using recombinant strains of Saccharomyces cerevisiae from sugar cane molasses. Dyna, 2009. vol. 76, no. 159, pp. 153-161. ISSN 0012-7353.

- PÉREZ BERMÚDEZ, I. y GARRIDO CARRALERO, N., Aspectos a tener en cuenta en la operación de un sistema de deshidratación de alcohol por tamices moleculares. Instituto Cubano de Investigaciones de los Derivados de la Caña de Azúcar Cuba [en línea], 2011. . Disponible en: https://www.redalyc.org/pdf/2231/223122251007.pdf.
- RICAURTE, L.E., Diseño y simulación de un tanque mezclador de 10,000 gal para la elaboración de aceites lubricantes. Escuela Superior Politécnica Del Litoral Facultad de Ingeniería en Mecánica y Ciencias de la Producción [en línea], 2016. Disponible en: http://www.dspace.espol.edu.ec/xmlui/handle/123456789/36620.
- RIOFRÍO LÓPEZ, L.E. y ARELLANO PÉREZ, A.I., Diseño y construcción de un Deshidratador por Absorción con Tamices Moleculares para la obtención de Alcohol Anhidro. Escuela Superior Politécnica de Chimborazo [en línea], 2014. . vol. 2014, no. June, pp. 1-2. ISSN 1573045X. Disponible en: http://dspace.espoch.edu.ec/handle/123456789/3876.
- RODRÍGUEZ, E., ARQUÉS, J.L., RODRÍGUEZ, R., NUÑEZ, M., MEDINA, M., TALARICO, T.L., CASAS, I.A., CHUNG, T.C., DOBROGOSZ, W.J., AXELSSON, L., LINDGREN, S.E., DOBROGOSZ, W.J., KERKENI, L., RUANO, P., DELGADO, L.L., PICCO, S., VILLEGAS, L., TONELLI, F., MERLO, M., RIGAU, J., DIAZ, D. y MASUELLI, M., We are IntechOpen, the world's leading publisher of Open Access books Built by scientists, for scientists TOP 1 %. Intech [en línea], 1989. . vol. 32, no. tourism, pp. 137-144. ISSN 00664804. DOI 10.5772/intechopen.79861. Disponible en: https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics.
- **ROUSSEAU, R. y FAIR, J.**, Handbook of separation process technology. Wiley-IEEE, 1987. . pp. 261-262.
- SATALOFF, R.T., JOHNS, M.M. y KOST, K.M., Riesgos ergonómico. Guía del monitor. Instituto Nacional de Seguridad e Higiene del Trabajo. Gobierno de España [en línea], 1995. pp. 61. Disponible en: https://www.insst.es/documents/94886/96076/Riesgos+ergonómico.+Guía+del+monitor.p df/c515c331-68eb-419f-af35-7a1033e04238.
- STATISTA, 2021. Global sugar cane production, 2019 | Statista. Sugar cane production

worldwide 1965-2019 Published by M. Shahbandeh, Jan 8, 2021 This statistic shows the total global sugar cane production from 1965 to 2019. In 1965, about 531.3 million metric tons of sugar cane were produced worldwide. Nowadays, th... [en línea]. [Consulta: 14 enero 2021]. Disponible en: https://www.statista.com/statistics/249604/sugar-cane-production-worldwide/.

- **TWC PRODUCT AND TECHNOLOGY LLC**, 2021. *Pronóstico del tiempo y condiciones meteorológicas para los lugares del proyecto*. [en línea]. Disponible en: https://weather.com/.
- VALENCIA, E. y VILLACÍS, S., Escuela Politécnica Nacional Escuela De Ingeniería Diseño De Un Trapiche Accionado Mediante Energía Hidráulica Para Uso En Fincas Productoras De Caña Proyecto Previo a La Obtención Del Título De Ingeniero Mecánico Edisson Medardo Valencia Villafuerte. [en línea], 2008. Disponible en: http://bibdigital.epn.edu.ec/bitstream/15000/847/1/CD-1257.pdf.
- VARGAS, C., MORALES, N., MÚNERA, D., VELÁSQUEZ, M. y CASTAÑO, G., 2014.

 Utilización de lactosuero y melaza como aditivo en la elaboración de ensilaje de Clon 51.

 IV Encuentro Regional de Semilleros de Investigación [en línea]. 2014. . S.l.: s.n., pp. 2411.

 ISBN 9783540773405. Disponible en:

 https://www.researchgate.net/profile/Claudia_HerreraHerrera/publication/284534849_EL_PROYECTO_DE_AULA_COMO_HERRAMIENT

 A_EN_LA_FORMACION_DE_COMPETENCIAS_INVESTIGATIVAS_EN_ESTUDIA

 NTES_DE_INGENIERIA/links/56b0d15108ae8e372151f70b/EL-PROYECTO-DE
 AULA-COMO-HER.
- VÁZQUEZ, H.J. y DACOSTA, O., Fermentación alcohólica: Una opción para la producción de energía renovable a partir de desechos agrícolas Alcoholic fermentation: An option for renewable energy production. INGENIERÍA Investigación y Tecnología, 2007. . vol. 2007, no. 4, pp. 249-259.
- **VEGA, R.**, Limpieza de caña en seco como alternativa para la reducción de consumo de agua y pérdidas de azúcar en ingenios guatemaltecos. CENGICAÑA, 2004. . no. 1982.
- VIZUETA MÉNDEZ, J.A., Implementación de un nuevo sistema de tratamiento de agua con ceniza proveniente de los lavadores de gases de combustión de las calderas del ingenio San Carlos. [en línea], 2013. Disponible en:

https://www.dspace.espol.edu.ec/bitstream/123456789/21535/4/Capitulos 1 al 6.pdf.

ZULU, N.S., SIBANDA, M. y TLALI, B.S., Factors affecting sugarcane production by small-scale growers in ndwedwe local unicipality, South Africa. Agriculture (Switzerland), 2019. vol. 9, no. 8, pp. 1-14. ISSN 20770472. DOI 10.3390/agriculture9080170.

ANEXO A: RESULTADOS DE LA CARACTERIZACIÓN DE LA MATERIA PRIMA Y DEL ETANOL OBTENIDOS EN EL LABORATORIO DE INVESTIGACIÓN

ESCUELA SUPERIOR POLITECNICA DE CHIMBORAZO, FACULTAD DE CIENCIAS. ESCUELA INGENIERIA QUIMICA LABORATORIO DE INVESTIGACIÓN

ANÁLISIS DE LABORATORIO

REALIZADO EN EL TRABAJO DE INTEGRACUION CURRICULA DE: Escuela ingeniería química.

ESTUDIANTE: Samantha Daniela Gaibor Gaibor

FECUA: 05/03/21

N	IUESTRA: Juga de c	nña de azúcar	
Muestras	1	2	3
Sólidos Totales (%)	5,2528	5,2348	
Cenizas totales (%)	0,0551	0,0609	
Acidez (gH ₂ SO ₄ /L)	0,6276	0,6276	0,5491
Densidad (g/ml)	0,8983	0,9087	0,8960
pll		4,5	1
Índice de refracción	1,36381		
Brix (°Bx)	19,98		
Temperatura (°C)	20		

MUESTRA: Etanol			
Muestras	1	2	3
Grados alcohólicos (Alcoholímetro) (%)		96	
Acidez total (mg CH ₃ COOH/100ml)		2,492	
pli		6,73	
Temperatura (°C)	20		

Atentamente,

TECNICO DOCENTE

LABORATORIO DE INVESTIGACIÓN

ANEXO B: RESULTADOS DEL LABORATORIO LASA DE LA CARACTERIZACIÓN DEL ETANOL OBTENIDO

INFORME DE RESULTADOS

INF. LASA 26-02-21-RS00736 ORDEN DE TRABAJO No. 21-561

INFORMA	CION PROPORCI	ONADA PO	R EL CLIENTE	2	
SOLICITADO POR: GAIBOR GAIBOR SAMANTHA DANIELA	DIRECCION: PA - RIOBAMBA	NAMERICANA	SUR – ESPOCH	TELÉFON	0: 0978827968
TIPO DE MUESTRA: VARIOS	PROCEDENCIA:	PROCEDENCIA: PLANIA		F.ABRICANTE: GAIBOR GAIBOR SAMANTHA DANIELA	
ENVASE: PET	S!	FORMA DE	CONSERVACIO	V: AMBIENT	E FRESCO Y SECO
CONTENIDO DE PRESENTACIÓN: 1 L	FECHA DE ELAB.: 05-02-2021 FECHA DE		FECHA DE CA	ID.: -	Nº LOTE:1
NOMBRE DEL PRODUCTO: ETANOL ANHIDR	0		3/		*
IN	FORMACIÓN DE	L LABORA	TORIO		
MUESTREO POR: SOLICITANTE	FECHA MUESTI	REO: N.A.	INGRESO	AL LABOR	ATORIO: 11-02-2021
FECHA DE ANÁLISIS: 11-02-2021/ 25-02-2021	5	FE	CHA DE ENTRE	GA: 26-02-20	21
COD. MUESTRA: 21-1379		RI	ALIZACIÓN DE	ENSAYOS: 1	LABORATORIO

ANÁLISIS FÍSICO QUÍMICO

PARÁMETRO ANALIZADO	RESULTADO	UNIDAD	REQUISITOS NORMA NTE NIDAD INEN 2478:2009 (Tabla 2)		MÉTODO DE ANÁLISIS
		2	Min.	Máx.	
CONTENIDO DE ETANOL	94.7	% v/v	96.3		hacromatogra <mark>fia de gases</mark>
CONDUCTIVIDAD ELECTRICA	94.3	μS/m	(38)	500	**APHA ED. 23, 2017 2510 B
DENSIDAD (20°C)	811.2	kg/m³	323	791.5	b*DENSITOMETRIA ELECTRONICA
CONTENIDO DE CLORUROS	0.1	mg/l		32	*APHA, ED. 23, 2017 4500 CI-B
CONTENIDO DE AGUA	5.29	96	8.53	0.3	h+CALCULO
CONTENIDO DE COBRE	1.68	mg/kg	1000	0.1	basorcion atomica LLAMA
RESIDUO SECO POR EVAPORIZACIÓN	1.8	mg/100ml	182	5.0	**GRAVIMETRIA
METANOL	< 0.02	96 v/v	100	-	b*CROMATOGRAFIA DE GASES
ISOBUTANOL	< 0.001	% v/v	6.53		*CROMATOGRAFIA DE GASES
CONTENIDO DE DESNATURALIZANTES (Metanol + Isobutanol)	0	96	2	3	becromatografia de gases

- Los ensayos marcados con (°) NO están incluidos en el alcance de acreditación del SAE. Los ensayos marcados con (a) ESTÁN incluidos en el alcance de acreditación de A2LA. Los ensayos marcados con (b) NO están incluidos en el alcance de acreditación de A2LA.

Ing. Luis Granda JEFE DE DEPARTAMENTO

Prohibida la reproducción parcial o total por cualquier medio sin permiso por escrito del laboratorio.

LASA se responsabiliza exclusivamente del resultado correspondiente a los ensayos en la muestra recibida en el laboratorio

El laboratorio se compromete con la Imparcialidad y Confidencialidad de la información y los resultados (la aceptación de este informe implica la aceptación de la política relativa al tema y declarada en www.laboratoriolasa.com)

Los criterios de conformidad serán emitidos solamente si el cliente lo solicita por escrito.

ANEXO C: CERTIFICADO DE APROBACIÓN POR LA EMPRESA GELFRESH LAB DEL TRABAJO DE INTEGRACIÓN CURRICULAR

GELFRESHLAB Calle California y vía Tisaleo Barrio: San José Parroquia: Huachi Grande Ambato, Tungurahua Ecuador 032441053-0998105735

Ambato, 10 de marzo del 2020

CERTIFICO

GelFresh Laboratorios transmite un atento saludo a la Escuela Superior Politécnica de Chimborazo "ESPOCH" y tiene el aval de certificar la culminación del Trabajo de Titulación que corresponde al tema: "DISEÑO DE UN PROCESO INDUSTRIAL PARA LA OBTENCIÓN DE ETANOL A PARTIR DE CAÑA DE AZÚCAR (Saccharum officinarum) PARA GELFRESH LAB" desarrollado por la Srta. Samantha Daniela Gaibor Gaibor con cedula de identidad No.020208031-3 Cumpliendo así, con los estándares requeridos por nuestra entidad.

Atentamente

GERENTE GELFRESH LAB

Dir: Calle California y via Tisaleo, Ambato-Ecuador Correo: gelfresh.lab@gmail.com Telf: (03) 2441053 - 0998105735 Fax: (03) 2441053 ext 134

ANEXO D: CARACTERIZACIÓN DEL JUGO DE CAÑA

a. b. c. d.

NOTAS

- a. Cápsulas y crisoles finales en la determinación de Sólidos y cenizas totales
- b. Refractómetro con los grados brix, temperatura y índice de refracción
- c. Picnómetro en la balanza para densidad
- d. pHmetro con jugo de caña

CATEGORÍA DEL DIAGRAMA

	CERTIFICADO
X	APROBADO
	POR APROBAR
	POR CALIFICAR
	POR VERIFICAR

ESCUELA SUPERIOR POLITECNICA DEL CHIMBORAZO

FACULTAD DE CIENCIAS
ESCUELA DE INGENIERÍA QUÍMICA
LABORATORIO DE INVESTIGACIÓN
REALIZADO POR:

Samantha Gaibor

Lámina	Escala	Fecha
1	1:1	10/03/2021

ANEXO E: ELABORACIÓN DEL ETANOL

a. b. c. d.

NOTAS

- a. Recolección de la caña de azúcar
- b. Molino de la caña de azúcar
- c. Filtración del jugo de caña después de clarificación
- d. Jugo de caña fermentándose

CATEGORÍA DEL DIAGRAMA

	CERTIFICADO
X	APROBADO
	POR APROBAR
	POR CALIFICAR
	POR VERIFICAR

ESCUELA SUPERIOR POLITECNICA DEL CHIMBORAZO FACULTAD DE CIENCIAS ESCUELA DE INGENIERÍA QUÍMICA LABORATORIO DE INVESTIGACIÓN

REALIZADO POR:Samantha Gaibor

Lámina	Escala	Fecha
1	1:1	10/03/2021

a. b. c. d.

NOTAS

- a. Columna de destilación del jugo de caña
- b. Etanol obtenido de la destilación colocado en un recipiente
- c. Rectificación de etanol en destilación fraccionada
- d. Deshidratación de etanol con zeolita

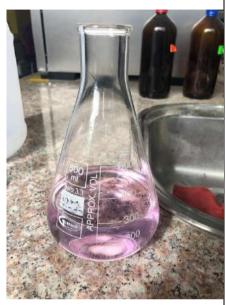
CATEGORÍA DEL DIAGRAMA

	CERTIFICADO
X	APROBADO
	POR APROBAR
	POR CALIFICAR
	POR VERIFICAR

ESCUELA SUPERIOR POLITECNICA DEL CHIMBORAZO FACULTAD DE CIENCIAS

ESCUELA DE INGENIERÍA QUÍMICA LABORATORIO DE INVESTIGACIÓN REALIZADO POR:

Samantha Gaibor


Lámina	Escala	Fecha
2	1:1	10/03/2021

ANEXO F: CARACTERIZACIÓN DEL ETANOL

a. b. c. d.

NOTAS

- a. Grados de alcohol obtenidos en la destilación
- b. Grados finales del proceso
- c. pH del etanol obtenido
- d. Etanol valorado para acidez

CATEGORÍA DEL DIAGRAMA

	CERTIFICADO
X	APROBADO
	POR APROBAR
	POR CALIFICAR
	POR VERIFICAR

ESCUELA SUPERIOR POLITECNICA DEL CHIMBORAZO FACULTAD DE CIENCIAS ESCUELA DE INGENIERÍA QUÍMICA

LABORATORIO DE INVESTIGACIÓN
REALIZADO POR:

Samantha Gaibor

Lámina	Escala	Fecha
1	1:1	10/03/2021