

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

FACULTAD DE MECÁNICA

CARRERA INGENIERÍA AUTOMOTRÍZ

"ANALISIS DE EMISIONES DE ESCAPE DEL MOTOR DE ENCENDIDO PROVOCADO DE VEHÍCULO DEL SEGMENTO A, EN CONDICIONES DE SIMULACIÓN DE CICLO ESTANDAR DE CONDUCCIÓN EN CIUDADES DE ALTURA"

Trabajo de Integración Curricular

Tipo: Proyecto de Investigación

Presentado para optar al grado académico de:

INGENIERO AUTOMOTRIZ

AUTOR:

JORGE OSWALDO MOLINA LÓPEZ

Riobamba – Ecuador

2021

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

FACULTAD DE MECÁNICA

CARRERA INGENIERÍA AUTOMOTRÍZ

"ANALISIS DE EMISIONES DE ESCAPE DEL MOTOR DE ENCENDIDO PROVOCADO DE VEHÍCULO DEL SEGMENTO A, EN CONDICIONES DE SIMULACIÓN DE CICLO ESTANDAR DE CONDUCCIÓN EN CIUDADES DE ALTURA"

Trabajo de Integración Curricular

Tipo: Proyecto de Investigación

Presentado para optar al grado académico de:

INGENIERO AUTOMOTRIZ

AUTOR: JORGE OSWALDO MOLINA LÓPEZ

DIRECTOR: Ing. JUAN CARLOS ROCHA HOYOS

Riobamba – Ecuador

2021

©2021, Jorge Oswaldo Molina López

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier medio o procedimiento, incluyendo la cita bibliográfica del documento, siempre y cuando se reconozca el Derecho de Autor.

Yo, Jorge Oswaldo Molina López, declaro que el presente trabajo de titulación es de mi autoría y los resultados del mismo son auténticos. Los textos en el documento que provienen de otras fuentes están debidamente citados y referenciados.

Como autor asumo la responsabilidad legal y académica de los contenidos de este trabajo de titulación; el patrimonio intelectual pertenece a la Escuela Superior Politécnica de Chimborazo.

Riobamba, 24 de noviembre de 2021

Jorge Oswaldo Molina López

060345113-9

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE MECANICA

CARRERA INGENIERÍA AUTOMOTRIZ

El Tribunal del trabajo de titulación certifica que: El trabajo de titulación: Tipo: Proyecto de Investigación, "ANALISIS DE EMISIONES DE ESCAPE DEL MOTOR DE ENCENDIDO PROVOCADO DE VEHÍCULO DEL SEGMENTO A, EN CONDICIONES DE SIMULACIÓN DE CICLO ESTANDAR DE CONDUCCIÓN EN CIUDADES DE ALTURA", realizado por el señor: JORGE OSWALDO MOLNIA LÓPEZ, ha sido minuciosamente revisado por los Miembros del Tribunal del trabajo de titulación, el mismo que cumple con los requisitos científicos, técnicos, legales, en tal virtud el Tribunal Autoriza su presentación.

	FIRMA	FECHA
Ing. Elvis Enrique Arguello PRESIDENTE DEL TRIBUNAL		2021-11-24
Ing. Juan Carlos Rocha Hoyos DIRECTOR DEL TRABAJO	JUAN Firmado digilalmente pod/UAN OR CARLOS OR CHALOS COCIA OR CHALOS	2021-11-24
DE TITULACION		
Ing. Johnny Marcelo Pancha Ramos MIEMBRO DE TRIBUNAL	JOHNNY MARCELO PANCHA RAMOS Firmado digitalmente por JOHNNY MARCELO PANCHA RAMOS	2021-11-24

DEDICATORIA

Nunca es tarde para empezar, es por ello que hoy puedo afirmar con orgullo que estoy a un paso de lograr una gran meta, por eso quiero dedicar esta tesis a mi hija Rafaela, uno de mis mayores logros, que gracias a ella he tenido la motivación para alcanzar esta etapa de formación de la vida profesional. Estoy seguro que un día comprenderás que te debo lo que soy ahora y que este logro sirva de herramienta para guiar cada uno de tus pasos.

Jorge

AGRADECIMINETO

En primer lugar, agradezco a mis padres, quiénes con el ejemplo diario de valentía y trabajo han demostrado que toda meta se puede lograr con honradez y cariño. Sencillo no ha sido este proceso académico, pero gracias a mi esposa, quien cada día impulsa mi vida y comparte la visión de desarrollo ético profesional justificado a la realidad, he logrado importantes objetivos como culminar el desarrollo de mi tesis con éxito y obtener una afable titulación profesional.

Jorge Molina

TABLA DE CONTENIDO

ÍNDICE	DE TABLAS	ix
ÍNDICE	DE FIGURAS	x
ÍNDICE	DE GRAFICOS	xi
ÍNDICE	DE ANEXOS	xii
RESUM	EN	xiii
SUMMA	RY	xiv
INTROL	DUCCIÓN	1
CAPITU	LOI	
1.	MARCO REFERENCIAL	5
1.1.	Hipótesis	5
1.2.	Objetivos	5
1.2.1.	Objetivo general	5
1.2.2.	Objetivos específicos:	5
1.3.	Problema	6
1.4.	Antecedentes	7
1.5.	Estado de Arte	9
1.5.1.	Factores de Emisión	9
1.5.2.	Contaminación atmosférica	10
1.5.2.1.	Contaminantes primarios	10
1.5.2.2.	Contaminantes Secundarios	10
1.5.3.	Emisiones Vehiculares	11

1.5.4.	Emisiones de vehículos livianos:	12
1.5.4.1.	Estimación de factores de emisión (Modelo IVE)	15
1.5.4.2.	Modelo IVE	16
1.5.5.	Emisiones de CO2 en el Transporte Público:	17
1.5.6.	Protocolo IM240:	20
1.5.6.1.	Pruebas Dinámicas IM 240	22
1.5.7.	Motor a Combustión Interna (MCI)	25
1.5.8.	Ciclo Otto	25
1.5.9.	La Combustión	26
1.5.10.	Norma NTE INEN 2204	26
2.	MARCO METODOLÓGICO	29
2.1.	Metodología	
2.2.	Caracterización de Emisiones Contaminantes:	30
2.3.	Características de los Combustibles:	31
2.4.	Condiciones Atmosféricas:	33
2.5.	Características del Vehículo de Prueba:	34
2.6.	Protocolo de Pruebas Dinámicas de Inspección y Mantenimiento ciclo IM240:	35
2.7.	Equipos utilizados en la evaluación de gases:	37
2.8.	Estimación de Factores de Emisión de Gases:	43
2.9.	Referencia del PID del Motor:	44
2.10.	Análisis de Variables:	46

CAPITULO III

3.	RESULTADOS Y DISCUSIÓN	47
3.1.	Relación de los Datos Primarios de las Pruebas:	47
3.2.	Medidas del Consumo de Combustible:	52
3.3.	Análisis del comportamiento de los principales PID's del Vehículo:	53
3.4.	Análisis de la variabilidad en los factores de emisión:	59
3.5.	Análisis de la variabilidad en el consumo de Combustible:	62
CONC	LUSIONES	60
RECO	MENDACIONES	6
BIBLI	OGRAFÍA	
ANEX	\mathbf{os}	

ÍNDICE DE TABLAS

Tabla 1:	Número de vehículos livianos en ecuador en el año 2020	1
Tabla 2:	Parque automotor ecuatoriano 2019	2
Tabla 3:	Nomenclatura de componentes de gases vehiculares	3
Tabla 1-1:	Características de manejo de la prueba IM-240	22
Tabla 2-1:	Programa de cambios de la prueba IM-240	22
Tabla 3-1:	Características de contaminantes IM-240	23
Tabla 4-1:	Resultados de los datos promedios ciclo im-240	24
Tabla 5-1:	Límites de emisiones para fuentes móviles con motor de gasolina	27
Tabla 6-1:	Normas de regulación de emisiones en EU para vehículos	27
Tabla 1-2:	Límites numéricos de cada categoría de iqca (ug/m3)	30
Tabla 2-2:	Propiedades de los combustibles	32
Tabla 3-2:	Densidad de los combustibles	32
Tabla 4-2 :	Datos de control de los combustibles	33
Tabla 5-2:	Condiciones atmosféricas de la cuidad de quito	33
Tabla 6-2:	Condiciones atmosféricas de la cuidad de Riobamba	34
Tabla 7-2:	Datos técnicos a1	34
Tabla 8-2:	Equipos utilizados para el análisis de gases	37
Tabla 9-2:	Ficha técnica analizador met 6.3	39
Tabla 10-2:	Dimensiones y características, 5000fx	40
Tabla 11-2:	Número de pines por protocolo de conexión dlc	4
Tabla 12-2:	Características de pid´s primarios y secundarios	45
Tabla 13-2:	Designación de Nomenclatura para combinaciones	46
Tabla 14-2:	Tratamientos para el análisis de diferencias significativas	46
Tabla 1-3:	Valores promedios de consumo y rendimiento a1e y a1s	52
Tabla 2-3:	Anova para concentraciones(g/km) por f emisiones	60
Tabla 3-3:	Pruebas de múltiple rangos para concentraciones (g/km)	61
Tabla 4-3:	Anova para consumo por ciclo im 240	63
Tabla 5-3:	Pruebas de múltiple rangos para consumo por ciclo im 240	64

ÍNDICE DE FIGURAS

Figura 1:	Emisiones vehiculares, composiciones de gases	3
Figura 2:	Kia Picanto 1.0 dpi gt-line 5 puertas (año 2020)	∠
Figura 1-1:	Esmog transporte urbano, 2018	8
Figura 2-1:	Contaminantes atmosféricos	10
Figura 3-1:	Diagrama de fuerzas en el movimiento de un vehículo	15
Figura 4-1:	: Diagrama del protocolo im240	21
Figura 5-1:	Estructura de un motor otto	25
Figura 1-2:	Esquema general para el desarrollo de la prueba	29
Figura 2-2:	Esquema de toma de muestras, dinamómetro	35
Figura 3-2:	Analizador met 6.3	38
Figura 4-2:	Sistema interno, met 6.3	38
Figura 5-2	: Dinamómetro 5000-fx	40
Figura 6-2	: Cinturones, 5000-fx	41
Figura 7-2	: Plataforma, 5000-fx	41
Figura 8-2	: Freno, 5000-fx	41
Figura 9-2	: Kit de elevación, 5000-fx	42
Figura 10-2	2: Eje cónico, 5000-fx	42
Figura 11-2	Recipiente externo presurizado	42

ÍNDICE DE GRAFICOS

Gráfico 1-1:	Emisiones de escape en vehículos	12
Gráfico 2-1:	Ejemplo de gráfico de ciclo de conducción para vehículos livianos	13
Gráfico 3-1:	Ejemplo de gráfico de aceleración v/s tiempo para vehículos livianos	14
Gráfico 4-1:	Frecuencia de aceleraciones y velocidades	14
Gráfico 5-1:	Factores de emisión promedio, máximo y mínimo de co2 de vehículos	17
Gráfico 6-1:	Combustibles usados por los taxistas	18
Gráfico 7-1:	Aumento del consumo	19
Gráfico 8-1:	Emisión de co2	20
Gráfico 9-1:	Ciclo de prueba im240	21
Gráfico 10-1	: Diagrama del ciclo otto	25
Gráfico 1-2:	Porcentajes de ventas por marca	34
Gráfico 2-2:	Plano general del ciclo im240	36
Gráfico 1-3:	Cambio de la velocidad de A1	47
Gráfico 2-3:	Comportamiento de emisiones CO	48
Gráfico 3-3:	Comportamiento de emisiones HC	49
Gráfico 4-3:	Comportamiento de emisiones NOx	50
Gráfico 5-3:	Comportamiento de emisiones CO2	51
Gráfico 6-3:	Comportamiento de lambda para los dos combustibles	52
Gráfico 7-3:	Pid's en relación a las concentraciones de HC, CO	54
Gráfico 8-3:	Pid´s en relación a las concentraciones de NOx	55
Gráfico 9-3:	Pid's en relación a las concentraciones de HC, CO	56
Gráfico 10-3:	Pid's en relación a las concentraciones de NOx	57
Gráfico 11-3:	Pid's en relación a las concentraciones de HC, CO	58
Gráfico 12-3:	Pid's en relación a las concentraciones de NOx	59
Gráfico 13-3	: Análisis Anova para concentraciones (g/km)	60
Gráfico 14-3	: Factores de emisión del ciclo IM-240	61
Gráfico 15-3	Grafico para comparación del consumo (1)	62
Gráfico 16-3:	Consumo en litros (240s - 480s - 720s)	65

ÍNDICE DE ANEXOS

- Anexo A: Norma NTE INEN 935 Novena Edición 2016-03

 Anexo B: Resolución No 15 386 Modificatoria 1 (2015-11-23)
- Anexo C: Correcto Anclaje en un Dinamómetro
- **Anexo D:** Informe de servicio técnico
- **Anexo E:** Certificado de Calibración 2020
- Anexo F: NT INEN 2204, pág. 4.
- Anexo G: "MECANICA "MUNDO TUERCA"
- Anexo H: Tabla de Velocidad Tiempo de la Prueba IM-240
- **Anexo I:** Tablas del Consumo total Densidad para cada prueba de Super (S)
- **Anexo J:** Tablas del Consumo total Densidad para cada prueba de Extra (E)
- **Anexo K:** Tabla del Sistema de Ecuaciones %V a g/km
- Anexo L: Graficas Comparativas de los Factores de Emisión A1E Y A1S
- Anexo M: Interfaz Software DYNOCO (dinamómetro)-Ciclo IM-240
- **Anexo N:** Registro Fotográfico
- **Anexo O:** Resultados Tabulados de cada toma IM-240. (Prueba #1: A1E)
- Anexo P: Resultados Tabulados de cada toma IM-240. (Prueba #2: A1E)
- Anexo Q: Resultados Tabulados de cada toma IM-240. (Prueba #3: A1E)
- Anexo R: Resultados Tabulados de cada toma IM-240. (Prueba #1: A1S)
- **Anexo S:** Resultados Tabulados de cada toma IM-240. (Prueba #2: A1S)
- **Anexo T:** Resultados Tabulados de cada toma IM-240. (Prueba #3: A1S)

RESUMEN

En base a estudios previos de emisiones de gases en el mundo, partió el objetivo de análisis de los factores de emisión originados por los combustibles Super y Extra en un vehículo Kia Picanto 2019, ejemplar más vendido en la región Sierra, al cual se le sometió a pruebas en un dinamómetro (DYNOCOM), bajo las características de simulación de conducción IM240, también se utilizó el analizador de gases MAHA y un recipiente presurizado LIQUI MOLY, para evaluar el rendimiento y margen de contaminación a razón de evaluar cuál es el combustible con mayor porcentaje de contaminación y cuál posee mayor rendimiento bajo la condición de altura de 2754 msnm de la ciudad de Riobamba. Una vez estimados los factores de emisión de CO, HC y NOx para cada combustible (g/km) se realizó el análisis estadístico mediante el software STATGRAPHICS, donde con el análisis de varianza (ANOVA) y el procedimiento de diferencia mínima significativa (LSD) de Fisher se determinó que existe una diferencia representativa en la generación de CO para ambos combustibles, pero con un comportamiento similar para HC Y NOx con un nivel de confianza del 95%. Se concluye que el uso de gasolina Super reduce el valor de emisión CO en un 30% frente a Extra, cuyas cantidades promedios de los factores de emisión son: FCO 3.32 g/km, FHC 0,08 g/km y FNOx 2.25 g/km. En el caso de Extra los valores son: FCO 4,80 g/km, FHC 0,10 g/km y FNOx 2.24 g/km. Además, el rendimiento del líquido operante es más eficiente con el combustible Super, con un 11% adicional en su autonomía, al ser de mejor calidad. Debido a la falta de base de datos para este análisis, se recomienda realizar un inventario de emisiones bajo las normas de control que ejercen en el Ecuador. **Palabras** <DINAMÓMETRO> <CICLO DE INSPECCIÓN clave: MANTENIMIENTO (CICLO IM240)> < MOTOR DE ENCENDIDO PROVOCADO> <FACTOR DE EMISIÓN> <ANÁLISIS DE VARIANZAS (ANOVA)> <RIOBAMBA (CANTÓN)>.

ABSTRACT

Based on previous studies of gas emissions worldwide, this project aimed to analyze the emission factors originated by Super and Extra fuels in the best-selling brand in the Sierra region 2019 Kia Picanto vehicle. It was tested in a dynamometer (DYNOCOM) under the IM240 driving simulation characteristics. The MAHA gas analyzer and a LIQUI MOLY pressurized container were also used to evaluate the performance and contamination margin to evaluate which fuel has the highest percentage of contamination and which has the best performance under the altitude condition 2754 meters above sea level in the city of Riobamba. Once the CO, HC, and NOx emission factors for each fuel (g/km) were estimated. The STATGRAPHICS software performed the statistical analysis, and with the analysis of variance (ANOVA) and the least significant difference procedure (LSD), Fisher's determined a representative difference in CO generation for both fuels. But with similar behavior for HC and NOx at a 95% confidence level. It concluded that the usage of Super fuel reduces the CO emission value by 30% compared to Extra, whose average amounts of emission factors are FCO 3.32 g/km, FHC 0.08 g/km, and FNOx 2.25 g/km. In the case of Extra fuel, the values are FCO 4.80 g/km, FHC 0.10 g/km, and FNOx 2.24 g/km. In addition, the performance of the operating liquid is more efficient with the Super fuel, with an additional 11% in its autonomy, as it is of better quality. It is recommended the creation of an inventory of emissions carried out under Ecuador's control standards because of the lack of a database for this analysis.

Keywords: <DYNAMOMETER> <INSPECTION AND MAINTENANCE CYCLE (IM240 CYCLE)> <IGNITION ENGINE> <EMISSION FACTOR> <ANALYSIS OF VARIANCES (ANOVA)> <RIOBAMBA (CANTON)>.

INTRODUCCIÓN

Una de las más importantes fuentes de emisiones de sustancias nocivas que se encuentran presentes en el aire es el medio de transporte, cuyo daño, efectos y desventajas no solo afectan a la salud de los ciudadanos, sino que incluyen mucho más sobre la calidad del clima. Donde los vehículos de zonas urbanas ocupan el mayor porcentaje de producción de gases contaminantes, incrementándose notoriamente cada año al igual que los peatones.

Fueron \$2.300 gastados para repotenciación de la Refinería de Esmeraldas y ese dinero se perdió, así aseguró este martes el exministro de Energía, Fernando Santos, al afirmar que la calidad de los combustibles es pésima, es un "veneno". Explicó que la norma Euro5 permite 10 partes por millón de contaminante y en Ecuador hay hasta 500 partes. A su juicio, ya no se le puede seguir dando dinero al Estado para "que lo bote", por lo que propone que las refinerías sean privadas -como sucede en el mundo- y el Gobierno se encargue tanto de la regulación como de la supervisión del control de calidad del producto. Está seguro de que existen empresas que desearían manejar la Refinería de Esmeraldas y a estas se les podría pagar con cuotas de producción, todo con la intención de que limpien y mejoren los procesos (Santos, 2019).

En los últimos años los vehículos comerciales pequeños han crecido de forma exponencial y masiva en todas las ciudades del Ecuador, de este modo contribuyen al aumento de problemas de contaminación atmosférica como consecuencia de sus emisiones de gases contaminantes los cuales se pueden presentar de manera sólida, líquida o gaseosa. La tabla 1 muestra los valores de manera actual (agosto 2020) del número de vehículos presentes en Ecuador, de esta manera el valor perteneciente a automóviles livianos enfocados al objetivo de este proyecto es el número de 1.106.957 vehículos.

Tabla 1: Numero de vehículos livianos en Ecuador en el año 2020.

Número de Vehículos		
Automóvil	1.106.957	
SUV	539.584	
Camioneta	612.564	
TOTAL	2.259.105	

Fuente: (AEADE, 2019).

Realizado por: Molina Jorge, 2021.

Este proyecto comienza su desarrollo basándose en el número de vehículos con datos actuales en las provincias de todo el Ecuador, la cual se ve reflejado en la tabla 2.

Tabla 2: Parque Automotor Ecuatoriano 2019.

PICHINCHA	881.375
GUAYAS	670.523
AZUAY	183.301
TUNGURAHUA	151.952
MANABÍ	120.165
IMBABURA	78.292
EL ORO	69.365
CHIMBORAZO	68.194
LOJA	60.443
LOS RÍOS	56.960
COTOPAXI	56.522
SANTO DOMINGO	49.528
CAÑAR	36.214
ESMERALDAS	26.336
CARCHI	22.085
BOLIVAR	14.167
ORELLANA	9.613
SUCUMBÍOS	8.954
PASTAZA	9.008
MORONA SANTIAGO	5.099
NAPO	4.869
SANTA ELENA	4.925
ZAMORA CHINCHIPE	3.892
GALÁPAGOS	652

Fuente: (AEADE, 2019).
Realizado por: Molina Jorge, 2021.

Debido al crecimiento del parque vehicular y las altas tasas de movilidad los problemas serios de contaminación del aire han crecido como un fenómeno común de la vida moderna. Al finalizar el siglo XX la población vehículo ahora en el mundo superó los 700 millones y muchos vehículos se concentraron inicialmente en las naciones altamente industrializadas, pero con el crecimiento de las áreas urbanas en los países en desarrollo como el nuestro también están encontrado rápidamente con gestiones para el parque automotor (OECD y UNEP, 1999).

De acuerdo al inventario de emisiones en el distrito metropolitano de quito en el año 2003 se determinó que el 97% de las emisiones de CO es aportado por las fuentes móviles. Por otro lado, el 56% de las emisiones de SO2 tuvieron su origen en fuentes móviles y un 25.7% de las otras fuentes

fijas corresponden a los centrales de generación termoeléctrica. Con un 80% de las divisiones de NOx procediendo de fuentes móviles, principalmente de buses y transporte pesado (42%) y particularmente liviano como taxi camionetas (35%) y otra fuente significativos son los centrales de generación termoeléctrica con un (17%) (Flacso-Sede Ecuador, MAE y PNUMA, 2008).

Por consiguiente las emisiones de gases vehiculares contribuyen sustancialmente a los inventarios nacionales y locales del país en función a las emisiones de hidrocarburos (HC), óxido de nitrógeno (NOx) y monóxido de carbono (CO), teniendo como resultado un gran impacto en la salud pública, siendo esta ultima una de las razones fundamentales de nuestro proyecto, ya que la concentración de estos gases contaminantes en la atmósfera perjudican exponencialmente la salud de todo ser vivo en la tierra (figura 1).

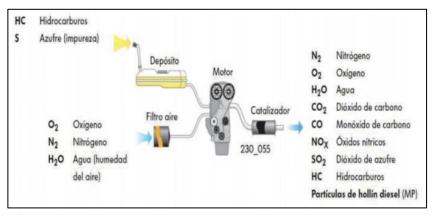


Figura 1: Emisiones Vehiculares, composiciones de gases.

Fuente: (Flacso-Sede Ecuador, MAE y PNUMA, 2008).

El protocolo ideal para los vehículos a nivel mundial tanto comerciales como de servicio de transporte, debe tener una combustión completa e homogénea, a la razón que son afectadas por diferentes factores, por el mantenimiento o tipo de conducción, aclarando que una combustión completa se produce cuando se realice una oxidación total de todos los elementos que contribuyen a la combustión; presentados en la tabla 3, para el caso de hidrocarburos con los diferentes tipos de octanaje que vamos a utilizar tenemos:

Tabla 3: Nomenclatura de componentes de gases vehiculares.

Carbono	CO2
Hidrogeno	H2O
Azufre	SO2
Nitrógeno	N2
Oxigeno	Componente oxidante

Realizado por: Molina Jorge,2021.

En esta investigación se toma en consideración dos tipos de combustible, los cuales son los más utilizados en la región Sierra, combustible Extra 87 octanos y el combustible Súper 93 octanos. Se utilizará un vehículo en base a (AEADE, 2021), Asociación de Empresas Automotrices del Ecuador, reflejando que la marca más vendida en el 2019 es Kia Motors y el vehículo que tuvo más acogida y con el porcentaje de ventas más alto en la ciudad de Riobamba es el modelo Kia Picanto (figura 2).

A simples rasgos se caracteriza los principales manifiestos técnicos que este compacto cuyo tamaño es relativamente pequeño a comparación a otros ejemplares con similares características del mercado ecuatoriano. Posee un motor a gasolina con una configuración de caja manual de 5 marchas en todas sus prestaciones, teniendo así una potencia de 67 CV y con un valor aproximado de composición de partículas de CO2 de 100 g/km.

Figura 2: KIA Picanto 1.0.

Fuente: www.kia.com.

CAPITULO I

1. MARCO REFERENCIAL

1.1. Hipótesis

Los diferentes tipos de combustible presentes en ciudades en condición de altura permite una mayor composición de contaminación y cantidad de emisiones de escape generadas por Vehículos Livianos de Segmento Tipo A. Todo esto se fundamenta en el principio teórico de todos los componentes, sensores y actuadores que conforman la inyección electrónica. El análisis de emisiones de gases considera una mezcla homogénea estequiométrica; 14,7 partículas de oxígeno y 1 partícula de combustible, con el propósito de demostrar y caracterizar cuáles son las condiciones ideales y las razones por la presencia de un mayor consumo de combustible, ocasionando una producción de gases contaminantes excesivas, al poseer una mezcla aire-combustible muy rica o pobre.

1.2. Objetivos

1.2.1. Objetivo general

Analizar las emisiones de escape del vehículo Kia Picanto 2019, con respecto a un ciclo de conducción mediante un dinamómetro ciclo IM240, para evaluarse su rendimiento y margen de contaminación, en la cuidad de Riobamba.

1.2.2. Objetivos específicos:

- Interpretar los porcentajes de componentes dañinos correspondientes a cada tipo de combustible con parámetros de un ciclo de conducción IM240 en condiciones de altura, mayor a 2500msnm.
- Adquirir los valores de los principales sensores (PID) que interfieren en la inyección electrónica para contrastar con las emisiones en el instante que se realicen las pruebas.
- Obtener con el mismo protocolo la generación de gases de escape independientemente de cada muestra en un vehículo Kia Picanto 2019, mediante la simulación de conducción en un dinamómetro, prueba estacionaria.
- Realizar una base de datos estadística efectiva con cada valor porcentual de muestreo, en función al vehículo y sus dos variables de combustible fósil.

1.3. Problema

Se tiene conocimiento que a nivel mundial el gran problema que impacta en los gases de combustibles fósiles incrementa de manera abrupta diariamente, en nuestro país tenemos en cuenta que algunas autoridades que tienen conocimientos técnicos o ingenieros pertenecientes a asociaciones de empresas en el parque automotor han mencionado las normativas que deben tener los combustibles y los vehículos que ingresan al Ecuador.

La incógnita que se busca resolver directamente es qué tan dañino es el combustible para la salud y para la eficiencia del vehículo, sea cual sea su motor o su característica, por tal motivo la información se obtendrá más directa aplicando el conocimiento de vehículo más comercial, para de esta manera hacer una relación en vehículos comerciales en la ciudad de Riobamba.

Como guía de la investigación, considera el dato técnico las emisiones de gases evaluadas en función de condiciones de altura, es así que existen fuentes estadísticas de los inventarios de emisiones de gases en el distrito metropolitano de Quito, siendo este de 2800 msnm y en la ciudad de Riobamba poseemos 2754 msnm, es de ahí que mencionamos condiciones de altura porque se encuentra por encima de los 2500 msnm, enfocándonos que la diferencia y la relación es mínima, (margen de error) y podemos trabajar de la misma manera.

Efectivamente todo esto va de la mano de la modernización diaria en el parque automotor y de la vida cotidiana del ser humano, cada día existen nuevas tecnologías de transporte autónomo, sin embargo las grandes empresas y monopolios de diferentes países, incluido Ecuador manejan la producción de combustibles fósiles, dando como resultado su economía y generación de fuentes de trabajo que producen las mismas, es por eso que se necesita saber los datos reales cuales son los márgenes de contaminación y qué combustible es el más óptimo para el vehículo, obviamente va de la mano del medio ambiente y su cuidado, por eso es importante saber y mencionar para que esta investigación sea inspiración y de bases de otras investigaciones para que los grandes empresas y productoras de este combustible realicen investigaciones técnicas para qué filtren más su desarrollo y diseño de producción y tener un combustible más óptimo para que no siga incrementando el porcentaje de contaminación a nivel mundial.

1.4. Antecedentes

A medida que las actividades económicas se desarrollan, concomitantemente se genera cada vez más gases tóxicos que contaminan el medio ambiente. Los sectores de transporte vehicular, aéreo y marítimo, industrial, agrícola, ganadero; así como la ampliación de la frontera agrícola, deforestación, incendios son los mayores causantes de la contaminación ambiental. Las actividades humanas provocan el llamado "efecto invernadero", que es un fenómeno en el cual la luz solar es absorbida por la superficie terrestre, vuelve a la atmósfera en forma de calor, ahí los gases de efecto invernadero (GEI) retienen parte de ese calor. Cuando más GEI hay, más calor es retenido. El dióxido de carbono (CO2) es responsable del 53% del calentamiento global que es resultado del empleo de combustibles fósiles, deforestación, producción de cemento y otros bienes. El ozono es el causante de aproximadamente el 11% en el calentamiento global, es consecuencia de la reacción entre los gases monóxido de carbono (CO), dióxido de nitrógeno (NO2) y compuestos orgánicos volátiles, emitidos en la quema de combustibles. Su permanencia en la atmosfera es muy corta, de meses (Campaña, 2019).

China, Estados Unidos, Rusia, India y Japón encabezan el ranking en la generación de CO2 a la atmósfera, y representan más del 57% de las 36 gigatoneladas generadas en el mundo en 2016 (Ambientum, 2020).

Las Directrices de la OMS sobre la Calidad del Aire publicadas en 2005 ofrecen orientación general relativa a umbrales y límites para contaminantes atmosféricos clave que entrañan riesgos sanitarios. Las Directrices señalan que mediante la reducción de la contaminación con partículas (PM10) de 70 a 20 microgramos por metro cúbico (µg/m) es posible reducir en un 15% el número de defunciones relacionadas con la contaminación del aire.

Las Directrices se aplican en todo el mundo y se basan en la evaluación, realizada por expertos, de las pruebas científicas actuales concernientes a:

- partículas (PM)
- ozono (O3)
- dióxido de nitrógeno (NO2) y
- dióxido de azufre (SO2), en todas las regiones de la OMS.

Las Directrices de la OMS sobre calidad del aire se encuentran actualmente en proceso de revisión y su publicación está prevista para 2020, figura 1-1 (OMS, 2018).

Figura 1-1: Esmog Transporte Urbano, 2018.

Fuente: El Telégrafo.

Este trabajo de titulación considera al siguiente articulo médico, denominado; "Efectos de Contaminación Atmosférica en la Salud y su importancia en la ciudad de México" bajo la relación del impacto de contaminación atmosférica sobre la salud, siendo este un problema complejo. El estudio de este artículo refleja las disposiciones de ozono, monóxido de carbono, óxido de azufre, dióxido de nitrógeno, plomo y partículas suspendidas, afectando a la salud. Este estudio se enfoca en la ciudad de México y sus efectos sobre la población (Vallejo et al., 2003).

Directamente el compuesto de importancia en el análisis original es el monóxido de carbón y en este artículo menciona que es un gas incoloro, inodoro, ligeramente con mayor densidad que el aire. Compuesto por un átomo de carbono y uno de oxígeno resultado de la combustión incompleta de materiales de origen orgánico o fosilizado. También menciona que los vehículos automotores tienen la responsabilidad del 90% de las emisiones de monóxido de carbono a la atmósfera, casi su totalidad, pero estos compuestos también pueden ser de origen de fragua o maquinas industriales (Vallejo et al., 2003). Como antecedente se considera que hace algunos años este gas era imperceptible para el humano, tanto para investigadores, durante la exposición de este compuesto no se realiza una acumulación y su excreción dependerá del aire donde se encontrara, este compuesto tiene gran relación al oxígeno en los sitios que se encuentren cerrados, de tal manera que se puede desplazar por el oxígeno, siendo este la mayor preocupación e impacto sobre el efecto invernadero.

Con lo anterior mencionado, este artículo de carácter médico hace relación que el monóxido de carbono en el aire y las concentraciones de carboxihemoglobina en la sangre depende fundamentalmente del tiempo de duración que se realiza la exposición y la función cardiorrespiratoria del individuo. Todo esto tiene concordancia a la normativa de la calidad del aire de los Estados Unidos de Norteamérica, donde se recalca que la concentración de carboxihemoglobina permisible en una persona tiene una concentración máxima de 10 mg por m^3 (9ppm) de monóxido de carbono durante mínimo 8 horas o de 40 mg por m^3 durante aproximadamente 1.2 a 15%, aclarando como

ejemplo que los fumadores de 20 a más cigarrillos por día pueden alcanzar un valor de 4 a 7% (Vallejo et al., 2003).

Las unidades móviles, productoras de los gases contaminantes en 2008, tuvieron un valor de matriculados de 918.908 vehículos, diez años después, a fines de 2017, subieron a 2'237.264, registrando una tasa de crecimiento de 143,5% en el periodo. En Pichincha estaban matriculados 511.782 vehículos, Guayas 480.977, Manabí 189.512 y Azuay 141.848. Del total del parque automotor, el 91,1% corresponde a vehículos particulares, 7,5% a vehículos de alquiler, 1,5% al Estado. Según su clase, el 31,7% a automóviles, 23,7% motocicletas, 18,9% camionetas, 16,1% jeeps, 4,7% camiones, entre otros (INEC, 2017).

1.5. Estado de Arte

Este capítulo considera los conceptos idóneos, propios para la ejecución de una investigación, estructura bajo el camino de pruebas y referencias técnicas reflejadas en los resultados de artículos científicos, tesis de maestrías y efectiva información, realizadas en el parque automotor (fuentes móviles) relacionadas a las condiciones de trabajo de la investigación inicial. Todo este respaldo de conocimiento del análisis de gases contaminantes posee enfoques internacionales y nacionales, clasificados por temas específicos como: Factores de Emisión, Contaminación atmosférica, Emisiones Vehiculares, CO2 en el Transporte Público y Protocolo IM240.

1.5.1. Factores de Emisión

Profundizando en el conocimiento y resultados reales de trabajo de investigación, llamado "Estimación de Factores de Emisión para vehículos automotores de Gasolina", realizado en México, ejemplar para esta investigación a la razón que es muy importante estimar los factores de los gases de los vehículos, para poder determinar cuál es el impacto hacemos referencia a esta asignación realizada en México a pesar que los metros sobre el nivel del mar son diferentes. El parque automotor a una gran escala es muy semejante al comportamiento de conducción en el Ecuador en condiciones de altura, en esta investigación se realiza una metodología alternativa para estimar los niveles de escape de los vehículos tanto en el valle de México, dando como resultado primario estimado en 133,5 ± 13 g/l para monóxido de carbono, 13,1 ± 1,9 g/l para hidrocarburos y 9,84 ± 2m3 g/l para óxido nítrico, efectuado en una muestra de 42,800 vehículos en circulación. Con esta metodología alternativa aplicada efectuada en el año 2000 en vehículos de segmento A, como en nuestra investigación dieron como resultado en el inventario de emisiones de ese país 2.065 ± 236 ton/día de CO, 238 ± 35 ton/día de hidrocarburos y 179 ± 42 ton/día de NO. En el cual los investigadores

determinaron que el inventario de emisiones base-combustible fue inferior en 49% para el CO y 26% para el NO, en contraste a la base de datos en el año de 1998. Pero se resalta que para las emisiones de hidrocarburos fueron menores en un 30% (Leobardo, 2002).

1.5.2. Contaminación atmosférica

Las emisiones a la atmósfera relacionadas con el cambio climático pueden agravar los efectos de la contaminación del aire sobre la salud de los ciudadanos, no solo indirectamente por el impacto en los fenómenos meteorológicos, sino, de manera inmediata, por los efectos directos de los contaminantes para la salud. Sin embargo, durante demasiados años los esfuerzos en la mayor parte del mundo se han dirigido a tratar estos dos problemas separadamente (Ballester, 2005).

Hacen referencia al aire presente en varias sustancias de manera sólida, líquida o gaseosa, en una cantidad significativa la cual causa molestias, desventajas, riesgos en la salud pública y el medio ambiente, para el estudio de este proyecto la contaminación atmosférica se clasifica en atmosféricos primarios y secundarios:

1.5.2.1. *Contaminantes primarios*

Dentro de esta clasificación se introducen las sustancias que se encuentran en la atmósfera como son las emitidas por las fuentes, están pueden ser industriales o naturales, entre estos contaminantes primarios se encuentran las partículas suspendidas (PS), bióxido de azufre (SO2), bióxido de carbono (CO2), monóxido de carbono (CO3), monóxido de nitrógeno (NO3), monóxido de nitrógeno (NO3), hidrocarburos (HC), como se puede apreciar en la figura 2-1.

Figura 2-1: Contaminantes Atmosféricos **Fuente**: (Rojas y Argoti, 2015)

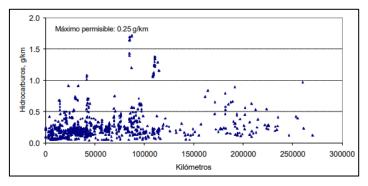
1.5.2.2. Contaminantes Secundarios

Estos contaminantes son el fruto de la unión de varios contaminantes primarios y otras sustancias del medio ambiente, entre los más utilizados tenemos del ácido nítrico, ácido sulfúrico, compuestos

oxidantes los cuales contribuyen a la formación del "smog" que se encuentra presente en medio de transporte y es el gran causante del efecto invernadero.

El aire que respiramos los ecuatorianos está contaminado. Lo dicen las mediciones y estudios realizados por el Ministerio del Ambiente del Ecuador, la Organización Mundial de la Salud (OMS), la Organización Panamericana de la Salud (PAHO), algunos municipios y universidades. Ciudades como Ambato, Cuenca, Ibarra, Latacunga, Manta, Milagro, Portoviejo, Quito, Esmeraldas, Santo Domingo y Loja sobrepasan los límites de contaminación permitidos por la OMS y la Norma de Calidad del Aire Ecuatoriana. Otras ciudades no tienen estudios recientes. El último hecho en Guayaquil es de 2008, y concluye que su aire es "aceptable" (Loaiza, 2019).

1.5.3. Emisiones Vehiculares


Se refiere a la cantidad de sustancias contaminantes provenientes del tubo de escape originadas por el trabajo de un motor a combustión interna alimentado con hidrocarburos, combustibles de origen fósil. "Las fuentes móviles representan a todas las fuentes de contaminación que no poseen una posición geográfica determinada. En esta categoría caben los vehículos propulsados por un motor de combustión interna, que, por su naturaleza, emiten diversos contaminantes tales como CO2, CO, NOx y Material Particulado (MP)" (Caballero, 2011).

Muchos de los vehículos con altas emisiones presentes frecuentemente daños en sus sistemas, pero pueden retornar nuevamente a sus emisiones normales, en vez que sean reparados. Bajo es circunstancias se sabe que las emisiones de escape y evaporativas entre los vehículos en circulación presenta un alto sesgo y dispersión de tal forma que un porcentaje reducido de vehículos podría contribuir con más de la mitad del total de las emisiones (Leobardo, 2002).

De la otra manera cuando son nuevos los motores las misiones en la unidad de grados por kilómetro son menores o neutras a las requeridas por normas vigentes y a que todos los componentes son totalmente nuevos y sin ningún desperfecto sin embargo cuando se acumulan los daños y los kilómetros de los vehículos los sistemas de inyección y de control pasivo de las emisiones pueden ser más amplios y deteriorarse ampliando su margen de emisiones de gases contaminantes.

En la gráfico 1-1, (Leobardo, 2002) resaltada demuestran que durante los primeros kilómetros de utilización de conducción un número importante de vehículos tienen emisiones por bajo de los límites de la norma, pero con el incremento de los kilómetros estas emisiones crecen sin ningún patrón definido, a la cuál será la razón los desperfectos en la inyección electrónica, también la variabilidad depende del mantenimiento del motor, así también se define como un factor que esta investigación

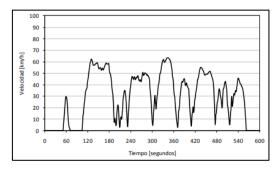
determina para que existan menos emisiones y un alto recorrido al mantenimiento efectivo según el kilometraje.

Gráfico 1-1: Emisiones en pruebas de laboratorio (1993-1998). **Fuente:** (Leobardo, 2002)

Con una conjetura en el análisis global de emisiones se toma como ejemplo que al analizar el comportamiento de las emisiones de un conjunto de automotores se puede inferir sobre la representatividad de la muestra de un sinnúmero de datos con esto se lleva la parte estadística descriptiva trabajada en esta investigación para resultados en términos de concentración a la parte de cálculos técnicos pero en función a las medidas de misiones individuales que se le puede denominar una distribución gamma, determinada al igual por esta investigación sería inapropiado a ser una desviación estándar o un error estándar para trabajar los promedios de la instrucción normal en estadística, sin embargo las muestras y datos obtenidos como un grupos aleatorios de un tamaño similar a la distribución se aproximarán más a una distribución normal al tenerla gran cantidad de ejemplares y subgrupos la cual podrán utilizarse para cálculos e intervalos de una distribución original.

Como último alcance final ante esta investigación resaltada, los resultados obtenidos por los investigadores resaltan que la emisión recae en la influencia de factores para los gases contaminantes como es el mantenimiento preventivo, un patrón de manejo adecuado según la geografía donde se utilice el vehículo, tanto como los metros sobre el nivel del mar y una conducción apropiada en un patrón de velocidad.

1.5.4. Emisiones de vehículos livianos:

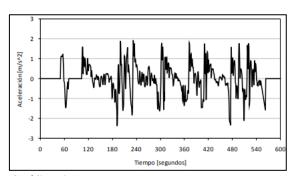

Se resalta el estudio denominado "Análisis de Emisiones de vehículos livianos según ciclos de conducción específicos para la Región Metropolitana" del autor (Caballero, 2011), realizado en Chile, como base primordial a la razón de su ubicación en la zona metropolitana, geográficamente se

encuentra rodeada de cerros y montañas a unos metros sobre el nivel del mar muy similares a Ecuador, de tal manera las composiciones y generación de gases contaminantes son muy similares al parque automotor en análisis. Como respaldo para el análisis los investigadores de este proyecto enmarcado mencionan que primero se debe recopilar antecedentes de fuentes móviles, pero esta metodología es muy complicada de efectuar, es de esta manera que determinan que los ciclos de conducción se lo puede realizar con pruebas de emisiones en dinamómetros, simulando los ciclos mencionados para tomar los datos de emisiones de contaminación directamente de la fuente, también los investigadores mencionan que los datos obtenidos en esta herramienta de medición, no son del todo reales se asemejan a una simulación de campo los cuales sirven en gran efectividad de estudio y análisis del mismo.

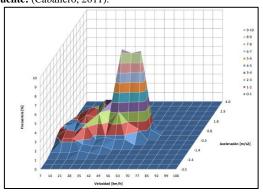
Lo más representativo de esta investigación son los patrones de conducción, que sirve como guía tanto para los ciclos de conducción, que a pesar que el análisis de emisión de gases con el ciclo IM240, realizado en un dinamómetro, sirven como determinación de característica para la misma simulación. Los investigadores mencionan en este proyecto que los patrones de conducción tienen varios factores que influyen de manera directa, tal como es el tipo de vía; tanto sea autopista, zonas periféricas o calidad del asfalto, también mencionan el tipo de vehículo que se utiliza tanto sea como buses, carros livianos o con desperfectos, otro factor es el horario, el cual influirá en el consumo de combustible y su producción de gases contaminantes respecto al tráfico y duración en paradas y arranques.

Con lo mencionado anteriormente el patrón de conducción tiene una duración muy extensa y posee muchos datos a lo largo de todo su recorrido, de tal manera al sintetizar esta información se convierte en un método manejable para utilizar en procesos de estimaciones y cálculos estadísticos, a esto último se le denomina un ciclo de conducción.

Un ciclo de conducción se define como una secuencia tiempo-velocidad (gráfico 2-1) obtenida a partir de información estadísticamente representativa de un área determinada (País, Región, Provincia, Cuidad, etc.) (Caballero, 2011).


Gráfico 2-1: Ciclo de Conducción para vehículos livianos. **Fuente:** (Caballero, 2011).

Con esto los investigadores dan inicio a la metodología para el análisis de las emisiones de gases, ya que al tener una secuencia temporal de la velocidad expresada en la siguiente ecuación:


$$ai = \frac{vi - vi_{-1}}{ti - ti_{-1}}$$

Donde; ai = aceleración para el instante i; vi= velocidad en el instante i, ti= tiempo en el instante i, i= segundos (Caballero, 2011).

Se puede obtener el gráfico 3-1 de la velocidad en función del tiempo de la aceleración versus el tiempo para vehículos livianos y una vez así con esta información recopilada sirve como generación de una matriz de frecuencias con dos entradas tanto la velocidad y aceleración. A este los investigadores la llaman "matriz representativa" la cual se puede ver en el gráfico 4-1 de esta manera se puede clasificar y de esos tipos de vehículos según el ciclo de duración y muchas más variables dinámicas tales como: aceleración, velocidad media y máxima, porcentaje del tiempo, frenado, etc. Para así estimar las emisiones producidas de los vehículos en el área de estudio todo esto hace hincapié para introducir a un siglo del modelo denominado IVE (Caballero, 2011).

Gráfico 3-1: Aceleración v/s tiempo para vehículos livianos **Fuente:** (Caballero, 2011).

Gráfico 4 -1: Frecuencia de aceleraciones y velocidades. (En el eje X: velocidad. En el eje Y: aceleración. En el eje Z(frecuencia).

Fuente: (Caballero, 2011).

1.5.4.1. Estimación de factores de emisión (Modelo IVE)

Para esta última fase para estimar los dichos factores, con la información obtenida en los ciclos de conducción obtenidos para aplicarlos en el modelo IVE, ya mencionado, pero conjuntamente los investigadores hacen hincapié a la potencia específica vehicular (VSP), la cual es la energía requerida por el vehículo por su unidad de peso en unidades de [kW/ton], el cual incluye diferentes resistencias como es a la rodadura, al aire, la energía cinética para acelerar y el efecto de pendiente (figura 3-1). Lo importante es que la potencia por unidad de masa permite aplicar a un modelo de método único a vehículos con distinto peso, la cual nos sirve para segmento A, de esta manera este método se reduce a una ecuación que a continuación se presenta (Caballero, 2011):

Figura 3-1: Diagrama de fuerzas en el movimiento de un vehículo. **Fuente:**(Caballero, 2011).

$$VSP = \frac{Pot\ enci\ a}{Mas\ a} = \frac{\frac{d}{dt}(E_{Ci\ net} + F_{dPot\ en})_{i+a}F_{Rod\ a\ du} \cdot Y_a + F_{Ae\ rod\ ionai\ mi} + F_{Roc\ eM\ e\ o\ a}Y_n}{m}$$

Al simplificar y desarrollar la ecuación anterior se obtiene la ecuación siguiente:

$$\approx v \cdot a \cdot (1 + \varepsilon_i) + g \cdot pendene \cdot v + g \cdot C_R \cdot v + \frac{1}{2} \cdot \rho_a \cdot C_D \frac{A}{m} (v + v_w)^2 \cdot v + C_{RM} \cdot v$$

Dónde:

v: Velocidad [m/s].

a: Aceleración [m/s2].

εi: "Factor de Masa", es la masa traslacional equivalente de los componentes rotatorios (ruedas, engranajes, ejes, etc.) de la transmisión, el sufijo i indica que si depende de la marcha.

g: Gravedad [m/s2] pendiente: incremento vertical/por el largo de la cuesta

CR: Coeficiente de Rodadura [adimensional].

ρa: Densidad del aire [Kg/m3].

A: Área Frontal del Vehículo [m2].

m: Masa Vehículo [Kg].

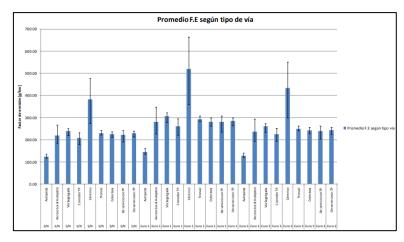
CD: Coeficiente Aerodinámico [adimensional].

vw: Velocidad del viento [m/s] CRM: Coeficiente de Roce Mecánico [m/s2].

1.5.4.2. *Modelo IVE*

Por consiguiente el modelo IVE o Modelo Internacional de Emisiones Vehiculares, ha establecido los contaminantes bajo un criterio de toxicidad y efectos invernadero pero producidas por la circulación de vehículos, hay que aclarar que esto nos ayuda a calcular las emisiones y sus factores estimados, los cual es de gran importancia para el análisis en el dinamómetro a pesar qué es una prueba fuera del campo, de tal manera el modelo IVE divide al VSP en 20 niveles llamados "bins", los cuales vienen simplificados y corresponde a la siguiente ecuación (Caballero, 2011):

$$VSP = v[1.1a + 9.81 tan^{-1} (sin(pendiente)) + 0.132] + 0.000302v^{3}$$


Donde:

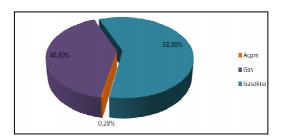
```
pendiente = (ht=0 - ht=-1) / v (t=-1 a 0 segundos).
v = velocidad [m/s].
a = aceleración [m/s2].
h = Altitud [m].
```

El siguiente procedimiento que los investigadores ejercieron en este proyecto enunciado, fue la categorización de los vehículos, es decir no tiene una muestra en general de todos los vehículos del medio de transporte, si no les dividen en automóviles camiones o motores pequeños. Todo esto también de la mano de la clasificación según la ruta donde se desarrolla la prueba tanto como longitud y duración, asimismo como el tipo de ruta qué puede ser según su calidad, para esto realizar un sistema de recopilación de datos muy similar al objetivo del proyecto inicial. Los medios utilizados en esta investigación remarcada son un GPS, el cual los investigadores utilizaron para tener las medidas de fecha, altura, velocidad instantánea en el momento de cada prueba para así realizar la generación de ciclos de conducción dependiendo el vehículo y su motor.

Una vez procesados los datos experimentales que se obtuvo de los ciclos de conducción por lo anteriormente mencionado (clasificación y ecuaciones), los investigadores resaltan y dan importancia al resultado enfocándose al CO2, el cual sirve como guía para el análisis inicial, de tal manera como resultado en este proyecto mencionado se aprecia que existe un factor de emisiones por tipo de vía muy discontinuo cuando sucede en las "zonas céntricas", en este tipo de vías sin importar el vehículo o tipo de conducción existe una doble generación de emisiones de gases contaminantes, por otro lado obtuvieron como resultado que en cualquiera de los vehículos tanto diésel como gasolina en la autopista existe una reducción de gases contaminantes, esto infiere tanto en el tipo de conducción porque no existen paradas ni acelerones en el transcurso del recorrido.

En el gráfico 5-1 refleja todas las clasificaciones en base a la Normativa y vehículos de gasolina en función a los factores de emisión del CO2, claramente se ve que la zona céntrica existe una mayor generación de estos graciosos.

Gráfico 5-1: Factores de emisión promedio, máximo y mínimo de CO2. **Fuente:** (Caballero, 2011).

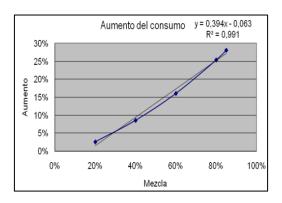

Para finalizar con el alcance útil para el proyecto inicial en base a esta investigación podemos decir que los factores de emisiones de gases contaminantes primordiales que afectan a los vehículos livianos a gasolina fundamentalmente en zonas de conducción céntricas, según el tipo de vía, va de la mano del tipo de conducción y manejo que tenga el piloto del vehículo, lo cual se verá reflejado con una excesiva producción de gases contaminantes.

1.5.5. Emisiones de CO2 en el Transporte Público:

Uno de los trabajos investigativos más representativos en el aérea de transporte público se ve reflejado en el "Análisis de Emisiones de CO2 para diferentes Combustibles en la Población de Taxis en Pereira y dos quebradas", realizado en Colombia, cuya idea principal es un estudio comparativo del dióxido de carbono ejercido en el sector de transporte de taxis en la ciudades de Pereira y Dosquebradas, qué como utilidad para la investigación inicial a pesar de que las zonas mencionadas se encuentra a 1450-2150 msnm y con una temperatura de 18°C a 30°C, muy diferente a las condiciones de altura cuya característica tiene el proyecto inicial, sirve como vía para obtener los porcentajes de emisiones del dióxido de carbono.

Los investigadores iniciaron el estudio en base a la utilización de dos tipos de combustible como es gasolina y gas natural. Como en todo estudio o proyecto de investigación que profundiza en términos de contaminación, este análisis es de carácter ecológico y mecánico.

Dentro de la metodología para encontrar estas cifras del CO2, los investigadores realizaron la metodología en base a encuestas realizadas a los taxistas, el número fue 348 encuestas, las cuales pudieron determinar cuál era el líquido operante utilizado por los conductores en sus unidades, están se ven reflejadas en porcentaje en la siguiente gráfico 6-1 (Artamonov, Henao y Mosquera, 2010).


Gráfico 6-1: Combustibles usados por los taxistas.

Fuente: (Artamonov, Henao y Mosquera, 2010).

Como recomendación para futuras investigaciones, se aclara que la muestra de la totalidad de taxis ubicados en estas zonas es de 2500 ejemplares y que le proporción de encuestas trabajadas sirven como base de datos, siendo esta efectiva para un análisis rápido. Se finaliza con el alcance de este proyecto, determinado como resultado teórico que el etanol utilizado como líquido operante de los motores aumenta su consumo de masa por la disminución del poder calorífico. Es decir, que este efecto mencionado repercute en un aumento del consumo volumétrico de la mezcla que se utilice. Por consiguiente, procesados los datos y cuantificados se pudo realizar una proporción de manera lineal del coeficiente de correlación dando superior al 95%, para este cálculo del consumo volumétrico de la mezcla en función al consumo volumétrico de gasolina pura se puede tener la siguiente ecuación (Artamonov, Henao y Mosquera, 2010):

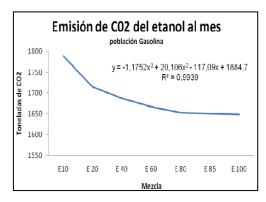
Consumo
$$\approx 0.394x - 0.063\%$$
 [1]

Donde el resultado está dado en porcentaje y, x – es la mezcla utilizada medida en porcentaje de Etanol (gráfico 7-1).

Gráfico 7-1: Aumento del consumo. **Fuente:** (Artamonov, Henao y Mosquera, 2010).

En definitiva, con la determinación del aumento del consumo y en base a los trabajos del señor Felipe Soto Pao (Ph.D Brasileño, especialista en biocombustibles), en la conferencia de Biocombustibles realizada en la Universidad Libre seccional Pereira a finales de marzo del 2009, en la ponencia "Motores anhidros e hidratados" hace referencia a los kilogramos emitidos a la atmosfera por la combustión de la Gasolina y el Etanol. Los investigadores resaltaron que la combustión de 1 litro de gasolina o su equivalencia en masa 0.74 kilogramos en un ciclo de combustión se verá reflejada en la siguiente la ecuación de balance (Concha, 2018):

Donde establecieron que en este ciclo de combustión de gasolina emite a la atmósfera 2.28 kilogramos. Nota: que en la ecuación de balance los valores que se encuentran paréntesis son los pesos moleculares correspondientes a cada compuesto.


Del mismo modo los investigadores profundizaron la combustión del Etanol como un combustible ecológico, obteniendo 1 litro de Etanol, pesan 0.80 kilogramos y con la ecuación de balances siguiente:

C2H5Oh (46) + 3O2 (96) = 2CO2 (88) +3H2O (54)
$$142 = 142$$

Emitiendo por esta combustión del etanol a la atmosfera 1,53kg de CO2 (Artamonov, Henao y Mosquera, 2010).

Para el reflejo de todos los datos procesados inicialmente, los investigadores calcularon el consumo de galones promedio de la población de taxistas que utilizaron gasolina (58.9%) y el consumo de

galones necesarios para consumo de la población (Artamonov, Henao y Mosquera, 2010). De esta manera conociendo el consumo mensual de galones de la población de combustible y la cantidad de CO2 revisadas en las dos ecuaciones anteriores y emitidas al medio ambiente, se puede determinar las toneladas de dióxido de carbono emitidas por la población la cual se ve reflejado en el gráfico 8-1.

Gráfico 8-1: Emisión de CO2. **Fuente:** (Artamonov, Henao y Mosquera, 2010).

El resultado fundamental propuesto por estos autores en la investigación realizada en Taxis (Colombia) sirve como ejemplo para la investigación inicial, a la manera de adquisición de valores de emisión, siendo este la utilización de Etanol mezclado con Gasolina, aumentara un consumo en la mezcla, es decir que la emisión del dióxido de carbono a la atmósfera decrece cúbicamente con el aumento de la proporción de etanol en la mezcla.

1.5.6. *Protocolo IM240*:

Dentro de los parámetros técnicos y respaldo de resultados fidedignos, en el "Análisis de Gases del Motor de un Vehículo a través de Pruebas Estáticas y Dinámicas", realizado en la cuidad de Quito, bajo la condición de altura de 2810 msnm, claramente refleja dentro de la estructura para la metodología del proyecto inicial, como pilar fundamentar el evaluar la emisión de gases de un vehículo de segmento A, mediante pruebas dinámicas, de tal forma como antecedente y respaldo para dicha ejecución de esta metodología y herramienta, se conceptualiza una rama del estudio presentado continuación.

En la cual realiza el análisis de los gases en condiciones de altura y con el protocolo de pruebas dinámicas IM240 (figura 4-1), haciendo correlación a los puntos característicos que abordan los objeticos de este trabajo de titulación.

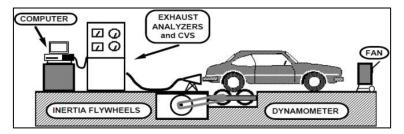
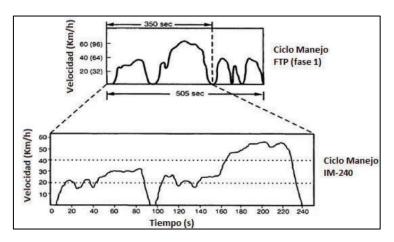



Figura 4-1: Diagrama del protocolo IM240.

Fuente: (Rojas y Argoti, 2015).

Como todo argumento, servicio o producto nace de una necesidad, del mismo modo el protocolo IM240 de origen americano nació ante la necesidad y el deterioro de componentes de vehículos nuevos, consecuencia del mismo uso y resultando un aumento de emisiones contaminantes, de esta manera se origina y se conceptualiza la prueba IM240, como un proceso que utiliza un dinamómetro con un ciclo de tipo transitorio para medir y registrar las emisiones de vehículos livianos en movimiento, pero ante las pruebas ejecutadas no en función de velocidades constante, más bien con un ciclo de recorrido de 3.1km, sometiéndoles a aceleraciones y desaceleraciones. Ante este análisis base realizado en la ciudad de Quito, sirve de guía por el procedimiento del ciclo de conducción de este protocolo referenciando, dividiéndole en dos fases, la primera con los primeros 505 segundos en una etapa denominado período transitorio de primer ciclo con arranque en frío y por consiguiente se efectúa una parada de 10 minutos para seguir con una nueva prueba, llamada fase 2 en un arranque en caliente (gráfico 9-1) (Rojas y Argoti, 2015).

Gráfico 9-1: Ciclo de prueba IM240.

Fuente: (TOYOTA Technical, 2015).

De acuerdo al diagrama base del ciclo de prueba (grafico 9-1) se obtiene los datos en la tabla 1-1, establiendo un recorrido de acuerdo a una velocidad en función del tiempo ejecutada en una fuente móvil, la cual simula un recorrido de aproximadamente 3.2 km, con una velocidad media de 30 km/h,

una velocidad máxima de 91 km/h, permaneciendo solamente un 4.58% (11 segundos) en ralentí (Rojas y Argoti, 2015).

Tabla 1-1: Características de manejo de la prueba IM-240

Tiempo	% en ralentí del	Velocidad	Velocidad	Velocidad
total, en	tiempo total de la	media	promedio en	máxima
ralentí	prueba	(km/h)	movimiento (km/h)	(km/h)
11	4,58	30	49	

Fuente: (Rojas y Argoti, 2015). Realizado por: Molina Jorge, 2021.

Otra consideración en este artículo muy importante es el tipo de manejo que se debe llevar en la prueba, claramente dependiente de los cambios de marcha, los cuales se ejercen en vehículos de transmisión manual, donde los cambios deben efectuarse en el punto exacto donde la velocidad especifica se obtuvo (tabla 2-1), para la toma de los datos se debe tomar en cuenta que todos los accionamientos extras como aire acondicionado, calefacción, radio control, deben estar apagados.

Tabla 2-1: Programa de Cambios de la prueba IM-240

Cambio secuencial de marchas	Velocidad (km/h)	Tiempo de Ciclo (s)
1 a 2	24,13	9,3
2 a 3	40,22	47
Desacelerar	24,13	87,9
1 a 2	24,13	101,6
2 a 3	40,22	105,5
3 a 2	27,35	119
2 a 3	40,22	145,8
3 a 4	64,36	163,6
4 a 5	72,4	167
5 a 6	80,45	180
Desacelerar	24,13	234,5

Fuente: (Rojas y Argoti, 2015). Realizado por: Molina Jorge, 2021.

1.5.6.1. Pruebas Dinámicas IM 240

Como detalles técnicos de este protocolo, el artículo menciona que se trata de una prueba rápida, cuyos resultados son correlativos al protocolo FTP 75 (Novaes Murta, 2008), a la razón del nombre, el ciclo de conducción tiene una duración de 240 segundos con un recorrido de 3.1 km (1.96 millas) y una velocidad media de 43.7 km/h (29.4 mph) y una velocidad máxima de 91.2 km/h (56.7 mph) (Rocha-Hoyos et al., 2018). La herramienta que efectúa este ciclo de conducción bajo este protocolo es un dinamómetro con la ayuda de un software, el cual le ayuda al operador de la herramienta a llevar y

mantener las condiciones de manejo estables a lo largo del ciclo para así mediante el software se auto guarde los datos obtenidos en el instante de la simulación.

El siguiente paso que menciona el artículo es la ejecución de las pruebas con el protocolo IM240, comenzando al instalar el vehículo en el dinamómetro, asegurándolo con anclajes al piso, como factor de seguridad por las altas velocidades, después se instala un ventilador el cual simula el flujo de aire para enfriar el motor, de mismo modo como condición de seguridad. Para dar inicio a la prueba se debe pre establecer una condición de manejo que el software admite para realizar el ciclo IM240, para esto se necesita de un analizador de gases conectado al final del tubo de escape para que el software procese los datos y los envíe a una plantilla de Excel, para posteriormente ser analizados bajo la norma (INEN, 2016a), para que sean permitidos los límites de emisiones por fuentes de tipo móvil a gasolina evaluando los porcentajes de gases de CO y HC.

Una vez ya procesados y determinados los valores de las pruebas dinámicas otorgados por el software el artículo presenta a manera gráfica los datos para una mejor y cómoda identificación de las concentraciones de cada gas contaminante, de tal manera en la siguiente tabla 3-1 tenemos que el porcentaje del CO tiene una valor máximo de 8.2% V en el tiempo de la prueba, para el CO2 un valor de 13.8% V, para los hidrocarburos en este periodo de pruebas tienen un valor máximo de 1628 ppm, el oxígeno tiene un valor máximo de 11.98% V y el NOx un máximo de 952.1 ppm (Rocha-Hoyos et al., 2018).

Tabla 3-1: Características de contaminantes IM 240

GASES	TIEMPO (s)	VALOR MINIMO	TIEMPO	VALOR MAXIMO
CO (%V)	300	0.20	132	8.232
CO2 (%V)	262	3.90	48	13.80
HC (ppm vol)	222	125	262	1628
O2 (%V)	28	0.32	264	11.98
NO (ppm vol)	28	31.0	176	952.1
Lambda	6	0.809	264	1.831

Fuente: (Rocha-Hoyos et al., 2018). **Realizado por:** Molina Jorge, 2021.

El artículo puntualiza como resultado que la calidad de combustible tiene impacto directo en las emisiones contaminantes, puesto que de tal manera en Ecuador la calidad del combustible es netamente mala, así también otros factores en dependencia a una generación de emisiones contaminantes mencionado por el artículo son: el estado de las vías, la edad del parque automotor y la tecnología del vehículo. Otro elemento y factor en relación a los gases producidos por la

combustión, es en el caso de tener una baja relación de compresión del motor, así también un menor número de octanos requeridos, concluyendo que la reducción de estas emisiones contaminantes se obtiene al combinar un contenido de azufre de 30 (ppm) y un elevado número de octanos teniendo así una combustión muy rica y una generación muy amplia de gases. El HC aumenta con la altitud en mayor medida que los CO y NOx, por lo tanto, una gasolina de mayor calidad y mejor tecnología de inyección de combustible, reducirían la tendencia de aumento.

Para terminar esta retroalimentación de estudio, muy similar al proyecto de investigación inicial, concluye el artículo recalcando que el análisis de los gases de escape tiene una variación debido a que el motor no utiliza las mismas prestaciones de trabajo en cada prueba, dependiendo extremadamente el tipo de conducción en el instante de la adquisición de los datos. Ante lo mencionado como definición y conocimiento de este protocolo se tiene otros resultados reales en base a diferentes vehículos, los cuales se presentan en la tabla 4-1.

Tabla 4-1: Resultados de los datos promedios Ciclo IM-240.

Vehículo	Cilindraje	año	CO (%V)	CO2 (%V)	HC (ppm)	O2 (%V)	NOx (ppm)	Lambda
Toyota	1,8	2006	0,139	14,305	16,155	0,357	116,887	1,015
Aveo	1,6	2011	0,015	14,435	7,444	0,615	24,619	1,046
Spark-2	1	2012	0,155	14,759	7,149	0,103	1,983	1,001
Sail	1,4	2013	0,065	13,962	6,082	1,106	21,299	1,089
Spark-1	1	2015	0,107	14,219	10,766	0,282	5,404	1,015

Fuente: (Rojas y Argoti, 2015). Realizado por: Molina Jorge, 2021.

En estos resultados obtenidos en este estudio (Rojas y Argoti, 2015), en base a pruebas dinámicas y estáticas se observa claramente en la tabla # que existe un decremento en función al año de fabricación del vehículo, mientras más nuevos el vehículo más bajo va a ser las emisiones, a la razón que no existe ningún deterioro por el uso del vehículo, con esto se puede inferir que a través de los años o el tipo de manejo va a emitir un porcentaje de emisiones contaminantes elevadas. En la parte numérica con las emisiones de NOx se observa que no existe ningún cambio representativo y a que posee una variabilidad muy amplia por más del 99%. Puntualizando así que en los valores de (HC) hidrocarburos y de (CO) monóxido de carbono poseemos un valor más alto al inicio de la prueba, es decir en bajas velocidades, mientras que el NOx posee un incrementó cuando el vehículo se encuentra en altas velocidades.

1.5.7. Motor a Combustión Interna (MCI)

De manera rápida este motor es una máquina que convierte un trabajo con movimiento mecánico por acción de una energía liberada durante un proceso de combustión a la cual será accionada por la mezcla de oxígeno y combustible para así realizar este movimiento y ser autónomo para una movilización de un punto a otro los motores que funcionan a gasolina se basan su funcionamiento en un ciclo termodinámico denominado Otto (figura 5-1).

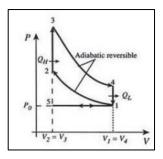


Figura 5-1: Estructura de un Motor Otto. *Fuente:* (*Peixoto, 2019*).

1.5.8. Ciclo Otto

En un ciclo termodinámico, el cual se le puede denominar ideal para máquinas de encendido por chispa, es decir mediante una bujía, que acciona el pistón ejerciendo cuatro tiempos completos dentro del cilindro para accionar su movimiento al cigüeñal (Mercedes, Morales y Hernández, 2014). Dentro del ciclo otto se compone varias etapas o procesos que debe cumplir de manera siguiente como se puede ver en el gráfico 10-1:

- 1-2 compresión isentrópica.
- 2-3 adición de calor a volumen constante.
- 3-4 expansión y se entrópica.
- 4-1 rechazo de calor a volumen constante.

Gráfico 10-1: Diagrama del Ciclo Otto. **Fuente:** (Mercedes, Morales y Hernández, 2014).

1.5.9. La Combustión

Es un proceso químico de oxidación rápida que va acompañado de un desprendimiento de energía en forma de luz o calor para que se origine este proceso se necesita la presencia de con combustible líquido operante conjuntamente con una compresión la que hace el calor está a su vez debe alcanzar una temperatura mínima para que se pueda arder es decir convulsionar en la primera etapa está temperatura también le conoce como punto de inicio o de inflamación.

Este artículo comienza enmarcando los principales conceptos de emisiones y cómo es el comportamiento y control de las emisiones de gases en el Ecuador. Dentro de la metodología determinaron los investigadores la elección de un vehículo para el análisis, bajo la fuente de Asociación de Empresas Automotrices del Ecuador (AEADE, 2019), bajo ese mismo camino que realiza el trabajo de titulación, siendo para este artículo referencial, un vehículo o Nissan Sentra 1.6 L. 4P. GLS (Rocha-Hoyos et al., 2018). Dentro de la parte técnica en el desarrollo de la adquisición de datos en las pruebas dinámicas se puede rescatar de este artículo como recomendación que se deben realizar las pruebas dinámicas bajo el protocolo IM240 como simulación del ciclo de conducción, aplicándole tres repeticiones para así garantizar los resultados del experimento. También se debe recordar que el vehículo a utilizar, en este caso KIA Picanto 1.0 DPi GT-Line 5 Puertas (Año 2020) debe estar en condiciones perfectas dentro de un mantenimiento efectivo y su catalizador o sistema de escape debe ser eficiente.

1.5.10. Norma NTE INEN 2204

Es una norma técnica de control de emisiones en el Ecuador que determina y establece los límites permitidos de dichas emisiones contaminantes producidas exclusivamente por fuentes móviles; vehículos a gasolina estrictamente, exclusivamente con más de tres ruedas o vehículos de prototipo. Dentro del documento la norma establece el significado de ciclo de prueba, como una secuencia de operaciones estándar a las que está sometido un vehículo automotor o un motor, para determinar el nivel de emisiones que produce, de igual manera existen diferentes ciclos tanto para la unión europea como para Estados Unidos, los cuales: son ciclo ECE + EUDC y el ciclo FTP-75 respectivamente. Otro concepto base para el estudio, es la emisión de escape, conceptualizándola como una descarga de aire de una o más sustancias en estado sólido, líquido, gaseoso o de una combinación entre ellos, provenientes del sistema de escape de una fuente móvil. Y como herramienta esencial del análisis de gases, la norma establece que un dinamómetro es un aparato utilizado para medir una potencia

producida por un vehículo de manera dinámica a través de diferentes softwares, aplicándole pruebas de torque y velocidad (INEN, 2016a).

Para concluir con el objetivo principal de esta normativa, para establecer los requisitos del reglamento realiza una clasificación por categorías de los diferentes vehículos fuentes móviles, de las cuales tenemos la categoría M; la cual debe poseer cuatro ruedas o más diseñados y construidos para vehículos de pasajeros, la categoría N que igual tiene cuatro ruedas o más para transporte de mercancías y la categoría N1, la cual enmarca a vehículos motorizados que no superen el peso de 3500 kilogramos.

Todo vehículo (fuente móvil) con motor a gasolina (diferentes tipos) no debe emitir los siguientes compuestos: hidrocarburos (HC), óxido de nitrógeno (NOx), monóxido de carbono (CO) y emisiones evaporativas, todos estos datos técnicos específicos de los límites se expresa en la siguiente tabla 5-1 (INEN, 2016a).

Tabla 5-1: Límites máximos de emisiones para fuentes móviles con motor de gasolina

Categoría	Clase	Peso de Referencia (PR) kg	CO g/km	HC g/km	HC + Nox g/km	Nox
M (1)	0	Todas	2,3	0,2	0	0,15
	I	PR ≤ 1 305	2,3	0,2	0	0,15
N1 (2)	II	1 305 < PR ≤ 1 760	4,17	0,25	0	0,18
	III	1 760 < PR	5,22	0,29	0	0,21

Fuente: (INEN, 2016a)

Realizado por: Molina Jorge,2021.

Nota: (1) Salvo los vehículos cuyo peso máximo sobrepase 2500 kg. (2) Y los vehículos de la categoría M que sobrepasen 2500 kg.

En el mismo aspecto de control en el Ecuador rige una norma internacional europea, la cual limita los niveles de emisiones, a la razón que los países subdesarrollados de la Unión Europea tienen mayor índice de vehículos y un gran impacto de contaminación atmosférica. Según sus actualizaciones la norma europea posee diversas versiones como Euro I – VI (tabla 6-1). Las cuales comparten el objetico principal de estandarizar los límites de emisiones de los compuestos producidos por una combustión de fuente móvil. En el Ecuador lamentablemente por la irresponsabilidad de los conductores y del Gobierno únicamente permanece en vigencia la Normativa Euro III del año 2000 (El Comercio, 2017).

Tabla 6-1: Normas de regulación de emisiones en EU para vehículos (<2.500 kg)

Norma	CO (g/km)	HC (g/km)	HC + NOx (g/km)	NOx (g/km)	PM (g/km)	PN (#/km)
Euro I (1992)	2,72	0	0,97	0	0	0
Euro II (1996)	2,2	0	0,5	0	0	0
Euro III (2000)	2,3	0,2	0	0,15	0	0

Euro IV (2005)	1	0,1	0	0,08	0	0
Euro V (2009)	1	0,1	0	0,06	0,005 (DI)	0
Euro VI (2014)	1	0,1	0	0,06	0,005 (DI)	6x10′11 (DI)

Fuente: (Rojas y Argoti, 2015) Realizado por: Molina Jorge,2021.

CAPITULO II:

2. MARCO METODOLÓGICO

2.1. Metodología

Esta investigación se enmarca en un carácter deductivo (Rojas, 2015), para la evaluación de manera cuantitativa del comportamiento y generación de las emisiones de gases en contraste a dos tipos de combustible, extra y super, en un vehículo de segmento A, bajo el ciclo de conducción IM240. Para el desarrollo experimental del proyecto fue necesario seleccionar el vehículo de prueba según la base de datos de la Asociación de Empresas Automotrices del Ecuador (AEADE) en el año 2019, en su anuario presenta que la marca más vendida es Kia Motors y en la ciudad de Riobamba el vehículo con más porcentaje de ventas es el modelo Picanto 1.0 DPi GT-Line 5 puertas (A1), por tal motivo se aborda el análisis de la emisión de gases en función a un solo vehículo como factor y sus niveles correspondientes en función a los dos tipos de combustible fósiles, descritos en tabla 13-2.

Una efectiva compresión del alcance y desarrollo de esta investigación, se caracteriza de manera sistemática y ordenara en el siguiente esquema, cuyos procesos componen todo el método de adquisición de datos de emisiones fundamentados en el marco teórico de esta investigación. Todo el método general se basa en tres etapas; la primera etapa es el montaje del vehículo en el dinamómetro, para lo cual debe cumplir con el anclaje al chasis bajo la norma de seguridad ya mencionada en el marco teórico (capítulo I), la segunda etapa es la instalación de la sonda del analizador de gases MAHA; MET 6.3 en el tubo de escape del vehículo y la última etapa es el proceso de encendido del vehículo bajo las condiciones de conducción del ciclo IM240, obteniendo las composiciones en porcentaje de volumen de los componentes de las emisiones de gases en función a cada segundo, dependientemente a la curva de conducción del motor en su ciclo de conducción, para por consiguiente tabular los estos datos reales en base a cada tipo de combustible (figura 1-2).

Figura 1-2: Esquema General para el Desarrollo de la Prueba. **Realizado:** Molina Jorge,2021.

2.2. Caracterización de Emisiones Contaminantes:

En la parte experimental se realiza la relación en función a dos tipos de combustibles (S-E), para así determinar y evaluar la composición en los distintos niveles de emisiones de gases contaminantes existentes en cada combustible. Donde la producción de los gases es mediante un motor de 999cc, cuyo trabajo se ejerció con combustibles de 87 y 95 octanos, correspondientes a extra y super. Para cada tipo de combustible se evalúan tres mediciones, bajo el ciclo de conducción IM240, para tener una mayor validación en condiciones de altura, cumpliendo de esta forma con la condición geográfica de la investigación. Dentro de esta condición se considera regiones, provincias y ciudades ubicadas geográficamente por encima de los 2500msnm. Se evalúan cuatro parámetros fundamentales que son hidrocarburos no combustionados: HC (ppm), monóxido de carbono CO (%V), dióxido de carbono CO (%V) y oxígeno O2 (%V) (Rocha-Hoyos, Tipanluisa y Zambrano, 2018b).

Con el propósito de calificar los niveles de contaminación del aire a los que se encuentran expuestas los habitantes se han establecido índices de la calidad del aire; por ejemplo, el índice metropolitano de la calidad del aire de México (IMECA) y el índice de calidad del aire de EEUU (AQI), el índice quiteño de la calidad del aire (ICA), entre otros. Este último es una escala numérica entre 0-500 con rasgos intermedios expresados también en diferentes colores mientras más alto es el valor de IQCA mayores del número de contaminación atmosférica y consecuentemente los peligros para la salud de las personas en la tabla 1-2 presentan las categorías de esta escala y sus valores límites y aceptados para cada contaminante en la atmósfera junto con los códigos de colores aceptados en nuestro país y como ejemplo para el desarrollo de nuestro proyecto (Rojas y Argoti, 2015).

Tabla 1-2: Límites numéricos de cada categoría de IQCA (ug/m3)21.

RANGO	CATEGORIA	CO	03	NO2	SO2	PM2,5	PM10
0-50	Nivel deseable	0-5000	0-50	0-100	0-62.5	0-25	0-50
51-100	Nivel aceptable	5001-10000	51-100	101-200	63.5-125	26-50	51-100
101-200	Nivel de precaución	10001-15000	101-200	201-1000	126-200	51-150	101-250
201-300	Nivel de alerta	15001-30000	201-400	1001-2000	201-1000	151-250	251-400
301-400	Nivel de alarma	30001-4000	401-600	2001-3000	1001-1800	251-350	401-500
	Nivel de						
401-500	emergencia	>40000	>600	>3000	>1800	>350	>500

Fuente: (Rojas y Argoti, 2015) **Realizado por:** Molina Jorge,2021.

Este proyecto se basa en normas internacionales de emisiones de gases las cuales se considera el valor de descarga permisible de sustancias contaminantes establecidos por la autoridad ambiental competente, la misma que contribuye al logro de los estándares establecidos en la norma de calidad es así que los gases provenientes de las motos la emoción interna son la principal fuente de contaminación sin embargo detener el crecimiento de automotores no es posible ni deseable dado

aspectos económicos y ventajas de movilidad, por lo tanto el desafío de maximizar el beneficio del uso de los vehículos y minimizar su impacto adverso sobre el ambiente y la sociedad, como es Estados Unidos, Europa y otros países tienen el propósito de disminuir el impacto de los gases de tiros por los motores de combustión interna y han fijado estándares a los mismos que se vienen aplicando paulatinamente para la homologación de los vehículos los estándares de emisiones de california más exigentes que los requerimientos de la EPA se conocen como LEF, en Europa se utilizan los límites dados por las normas de la unión europea conocidas como EURO22 (Rojas y Argoti, 2015).

2.3. Características de los Combustibles:

Los diferentes tipos de combustible utilizados en esta investigación son de origen fósil, cuya composición va desde hidrocarburos con carbonos C5 hasta C11, usados para generar la energía requerida en la transportación vehicular que emplean motores de ignición por chispa de combustión. En las instalaciones de la Refinería Esmeraldas se produce gasolina extra y gasolina súper cumpliendo la norma de calidad NTE INEN 935:2015 (ANEXO A) con excepción del octanaje debido a la Resolución No 15 386 Modificatoria 1 (2015-11-23) (ANEXO B) en la cual se indica que el octanaje se reduce de 87 RON a 85 RON en la gasolina extra (E) y 92 RON a 90 RON para la gasolina súper (S) (Aguirre y Vaca, 2017).

En función a la gasolina extra de la Refinería de Esmeraldas, cuya composición aproximada de naftas es: 22% alto octano 93 RON (NAO), 21% tratada 92 RON (NT), 15% reformada 70-92 RON (NR), 15% pesada 54 RON (NP), 8% liviana 73 RON y 22% otras gasolinas, dando como producto final la gasolina de 87 octanos (EP PetroEcuador, 2019).

El número de octano experimental (RON) es el valor que cuantificado a "una velocidad de 600 revoluciones por minuto (rpm) y a una temperatura de entrada de aire de 125 °F (51.7 °C)" (Castillo, 2016). De esta manera este valor con la denominación de octanajes es el utilizado para comercializar en las estaciones de servicio y consta como base de datos de nuestra biografía en la Refinería de Esmeraldas en su ensayo 2018. En la tabla 2-2 se presenta las propiedades químicas, costos y destilación de los combustibles (origen mediante refinería) utilizados como líquidos operantes en las pruebas de emisiones de gases.

Tabla 2-2: Propiedades de los Combustibles.

Característica	EXTRA	SUPER	Unidad
Octanos (RON)	87	92	
Contenido de Azufre	0,065	0,065	%
Contenido de Aromáticos	30	35	
Contenido de Benceno	1	2	%
Contenido de Olefinas	18	25	%
Contenido de Plomo	No detectable	No detectable	mg/L
Contenido de Manganeso	No detectable	No detectable	mg/L
Contenido de Hierro	No detectable	No detectable	mg/L
Destilación 10%	70	70	°C
Destilación 50%	121	121	°C
Destilación 90%	189	190	°C
Costos	1,75	2,28	\$

Fuente:(INEN, 2016)

Realizado por: Molina Jorge,2021.

Por otro lado, el combustible Super (S) es un líquido operante empleado en esta investigación, el cual es de más alta calidad que el anterior combustible, este se encuentra comercializada en toda estación de servicio del Ecuador. Se usa en motores que poseen una relación de compresión elevada principalmente los hidrocarburos parafínicos y aromáticos, es decir cadenas de bencénicos que elevan el índice de octano, que se encuentran en la gasolina súper resistentes a presiones y temperaturas elevadas. También cuando se eliminan el tetraetilo de plomo como parte de su composición de las gasolinas, las empresas petroleras optan por usar compuestos oxigenados e hidrocarburos aromáticos, el problema que conlleva es que este compuesto se da cuando no combustión en completamente, ocasionando problemas al momento de ser expulsados al medio ambiente por medio del tubo escape, llegando a provocar una contaminación aún mayor que la provocada por el tetraetilo de plomo a partir de ellos se convierte en necesario el uso de convertidores catalíticos en vehículos que utilizan este combustible (Yépez, 2013).

En la tabla 3-2 se muestra el número de octanos y la densidad de los dos combustibles en análisis:

Tabla 3-2: Densidad de los Combustibles.

Propiedad Combustible	NTE INEM: 935:2012	EXTRA	SUPER
Número de octanos	87 min	88,3	92
Densidad (kg/m3)		748	750 - 775

Fuente: (González, 2015)

Realizado por: Molina Jorge,2021.

Técnicamente todo estos datos puntuales, conforman los requisitos establecidos por la Norma (INEN, 2016b), documento que establece las exigencias que debe tener los combustibles en el país para un acorde funcionamiento en motores de encendido provocado, en la tabla 4-2 se indican los requisitos más relevantes de los combustibles utilizados en las pruebas de generación de gases. Así como también los resultados de dos investigaciones ecuatorianas en función a las propiedades fisicoquímicas de los combustibles.

Tabla 4-2: Datos de control de los combustibles por Norma ASTM y INEN.

Propiedades del combustible	Norma	Gasolina 87 Octanos	Gasolina 92 Octanos	Norma INEN:935
Número de Octanos	ASTM D2699	88,3	92	87 min.
Curva de destilación		-	-	-
T10-10% evap. °C		50	54	70 max.
T10-50% evap. °C	ASTM D88	99	105	77-121
T10-90% evap. °C		163	168	189 max.
Residuos %		98,5	98,8	98 min.
Presión vapor Reid, Kpa	ASTM D4953	58,6	62	60 max.
Corrosión a la lámina de cobre (3h at 50°C)	ASTM D130	1	1	1
Contenido de azufre (ppm)	ASTM D7220	169	-	650 max.
Contenido de gomas (mg/cm3)	ASTM D381	1	1	3 max.

Fuente: (Rocha-Hoyos, Tipanluisa y Zambrano, 2018a; Aguilar et al., 2016)

Realizado por: Molina Jorge, 2021.

2.4. Condiciones Atmosféricas:

Una de las características y palabras claves de esta investigación es el lugar donde se efectúa y la condición a la cual se rige el motor para su trabajo, en este caso se realiza en condiciones de altura, específicamente a más de los 2500 msnm. Es decir, referentes a la región sierra, por tal motivo se considera como un promedio ejemplar a la cuidad más representativa, Quito (tabla 5-2).

Tabla 5-2: Condiciones Atmosféricas de Quito.

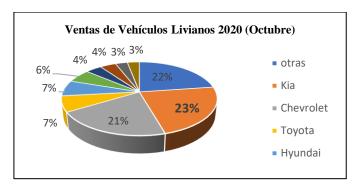
able t = Conditioned Limitodicions at Quito.							
Condición Atmosférica	valor	unidad					
Presión Atm.	72852	Pa					
Temperatura	15	°C					
Humedad	60	%					
Altura	2850	m					
Velocidad del viento	16	Km/h					

Fuente: (Rocha-Hoyos et al., 2018) **Realizado por:** Molina Jorge,2021.

El lugar donde toma desarrollo este proyecto es en la ciudad Riobamba (geografía en condiciones de altura), de ahí parte las referencias para la fuente de datos, ubicado según su altitud por encima de los

2500 msnm, muy similar a la cuidad de Quito. Cuyas características atmosféricas se señalan en la tabla 6-2.

Tabla 6-2: Condiciones Atmosféricas de Riobamba.


Condición Atmosférica	valor	unidad
Presión Atm.	102500	Pa
Temperatura	17	°C
Humedad	60	%
Altura	2754	m
Velocidad del viento	15	Km/h

Fuente: (Pilco, 2016).

Realizado por: Molina Jorge, 2021.

2.5. Características del Vehículo de Prueba:

La base de datos (AEADE) ya antes mencionada para la selección efectiva del Vehículo de segmento A, se presenta en el gráfico 1-2. En la cual el porcentaje más representativo pertenece a la marca Kia Motors, en su comercialización de ejemplares de vehículos livianos. Por tal motivo se infiere que el vehículo más característico es el Picanto 1.0 DPi GT-Line 5 Puertas (A1).

Gráfico 1-2: Porcentajes de Ventas por Marca. **Fuente**:(AEADE, 2020).

En la tabla 7-2, se describen los datos particulares de la ficha técnica del ejemplar, el cual cumple con las especificaciones de un auto de segmento A, con inyección electrónica multi punto, además que posee un manteniendo efectivo, con un correcto cambio de aceite, filtro de aire y gasolina, bujías de encendido e inyectores en perfecto estado, siendo considerado este proceso preventivo como un requisito fundamental para le ejecución de las pruebas dinámicas.

Tabla 7-2: Datos Técnicos A1.

Picanto 1.0 DPi GT-Line 5 Puertas							
Combustible: Gasolina Potencia: 67 CV							
Caja:	Manual	Puertas:	5				
Cilindrada:	998	CO2:	100 g/km				
# Cilindros:	3	Sobrealimentado:					

Par:	98 Nm	Potencia:	49 KW	
Aceleración:	(0-100) =14.60 s	Velicad Max:	161 km/h	
Deposito C.	35 litros	Consumo Urbano:	0.0 l/100 km	
Consumo Medio:	0.0 l/100 km	Consumo Carretera:	0.0 l/100 km	
Batalla:	2400 mm	Ancho:	1595 mm	
Peso/Masa Max:	1400 kg	Largo:	3595 mm	

Fuente: (Aguilar, 2017)

Realizado por: Molina Jorge, 2021.

2.6. Protocolo de Pruebas Dinámicas de Inspección y Mantenimiento ciclo IM240:

El paso siguiente al culminar de recabar la información de los porcentajes de gases y haber puntualizado las propiedades físico químicas de las dos variables de los combustibles fósiles y sus porcentajes, recae en realizar una tabulación estadística para el desarrollo del análisis técnico en función a los niveles para determinar el combustible más óptimo a tratar, sin embargo se aclara que el ciclo IM240 seleccionado, consta de pruebas dinámicas de inspección y mantenimiento (figura 2-2), realizadas en un Dinamómetro Dynocom, FX500 (ANEXO G), cuyas pruebas duran alrededor de 240 segundos con una ruta aproximadamente de 3 km a una velocidad promedio 47.3 km/h y una velocidad máxima de 91 km/h (Rocha-Hoyos et al., 2018).

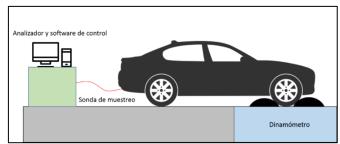
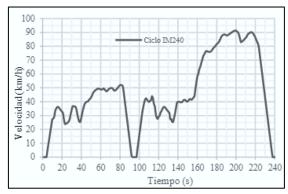



Figura 2-2: Esquema de toma de muestras, Dinamómetro.

Fuente: (Novaes Murta, 2008).

Este ciclo es el más ideal para esta investigación, a la razón que la simulación del ciclo de conducción cumple con un patrón de manejo en un tránsito urbano y de carretera para así efectuar lo más idealmente posible el análisis a la realidad, de tal manera las curvas características en función al tiempo y la velocidad se ve representado en el gráfico 2-2.

Gráfico 2-2: Plano General del ciclo IM240. **Fuente:** (Rocha-Hoyos, Tipanluisa y Zambrano, 2018a)

Ante estas consideraciones, para obtener de manera efectiva las emisiones de gases, se presenta el accionar del protocolo de pruebas dinámicas, comenzando con el proceso de trabajo de un dinamómetro; se instala el vehículo en el dinamómetro, se asegura el vehículo mediante anclajes hacia el piso por las altas velocidades que va a tener el mismo en la prueba. Una vez anclado el vehículo en el dinamómetro se empieza la simulación de conducción, para este ciclo se debe seguir una condición de manejo ya pre establecido, que ayuda a dar el software de aplicación del ciclo IM240 (Rojas y Argoti, 2015). La práctica de este anclaje se observa en el ANEXO C.

En cada prueba para el análisis de gases, el trabajo del dinamómetro se realiza en correlación con el analizador de gases MAHA; MET 6.3 serie # 50362, ambos con certificados de calibración vigentes ANEXO D, E. Ejecutando la medición de gases contaminantes en las condiciones de marcha dada por el software, la prueba debe tener un porcentaje mínimo de error sino no es dada como válida, también existe un ventilador que ayuda a enfriar el motor en prueba.

Los resultados se analizaron bajo el NT INEN 2204 (ANEXO F) sobre los límites permitidos de emisiones producidas por fuentes móviles terrestres a gasolina, evaluando como gases ponderables al CO y HC (Rocha-Hoyos et al., 2018).

Por consiguiente, se despliega todos los pasos que conforman el procedimiento general de obtención de emisiones de gases mediante una prueba dinámica, bajo las normas de seguridad y normas técnicas empleadas en esta investigación. Los pasos son los siguientes:

- 1. Verificar que el Sistema de Escape (original), físicamente no posea perforaciones ni oxidación.
- 2. Verificar que la presión de los neumáticos sea la correcta, según fabricante.
- 3. Verificar que el automóvil posea filtro de aire, gasolina y componentes del sistema de inyección efectivos.

- 4. Colocar el combustible específico para cada prueba en el tanque original del vehículo.
- 5. Realizar el anclaje del vehículo en el Dinamómetro AWD-5000-FX.
- 6. Instalar y colocar el analizador de gases MAHA, MET 6 en la punta de la salida de los gases.
- 7. Encender el vehículo y calentar hasta que alcance una temperatura de operación (95° C)
- 8. Revisar que los accesorios del vehículo estén desactivados.
- Instalar un escáner automotriz en el puerto OBD2 para obtener el PID del sistema de inyección.
- 10. Ingresar los datos técnicos en el dinamómetro y analizador.
- 11. Iniciar el ciclo de conducción IM240.
- 12. Grabar los datos según su unidad de la composición de los gases de escape.
- 13. Repetir el procedimiento general para cada tipo de combustible.

Nota: Se realizaron tres pruebas de cada tipo de combustible, para determinar si existe alguna diferencia significativa en la generación de emisiones de gases.

2.7. Equipos utilizados en la evaluación de gases:

La tecnología para el análisis de emisiones en esta investigación se indica en la siguiente tabla 8-2:

Tabla 8-2: Equipos utilizados para el análisis de Gases.

Equipo	Características	Función		
Analizador de gases	MAHA, MET 6.3 serie # 50362	Medición de concentraciones de gases (CO2 CO, NOx, HC)		
Dinamómetro de Chasis	DYNOCOM AWD- 5000-FX	Simulación del ciclo IM240		
Recipiente Externo Presurizado	LIQUI MOLY, Jet Clean Plus	Suministro de combustión bajo presión específica.		

Realizado por: Molina Jorge, 2021.

El Analizador MET de gases (figura 3-2) es un equipo con poco peso y tamaño compacto, con un tiempo de calentamiento rápido, posee una sola sonda común para diésel y gasolina, cualidad que le otorga una mayor precisión de los componentes gaseosos HC, CO, CO2, O2 y a su vez realiza un cálculo del valor Lambda. Para la comprobación y/o diagnóstico rápido y sin complicaciones de la opacidad y concentración de partículas la realiza mediante el procedimiento de corriente parcial con aceleración libre o bajo carga del motor. Su control es por medio de un manejo intuitivo, con una estructura simple del proceso de análisis de gases de escape según la actual guía 5 (Norma Internacional) para tiempos de procesamiento mínimos. La característica única e innovadora de este producto se ve reflejada en la separación de condensado mediante un separador de agua activo,

conocida como "Base Seca". Como resultado, este equipo es de fácil mantenimiento con acceso mejorado, dispuesto a pruebas del futuro con la tecnología más avanzada, a la razón que todos los valores de medición de HC, CO, CO2, O2, valor K, opacidad, concentración de partículas pueden visualizarse al mismo tiempo (DYNOCOM, 2000).

Figura 3-2: Analizador MET 6.3. **Fuente:** (DYNOCOM, 2000).

Los componentes que conforman y ayudan a la toma de muestras del equipo MET 6.3 son:

- Sonda de medición de enrejado de acero 600 mm, manguera de sonda 2000 mm.
- Interfaz LAN con cable LAN (RJ 45).
- Fuente de alimentación 110V 230V, 50/60Hz.
- Manguera transparente para la separación del condensado con recipiente.
- Filtro principal, filtro de punto cero, filtro de condensado.
- Sensor de O2 electroquímico.
- Pinzas Trigger para MET 6.3 para el registro inductivo del número de revoluciones en cables de encendido.
- 2 filtros de repuesto, 2 juntas de repuesto.
- Software de valores de medición para una medición continua y control del MET sin rutina de prueba específica de cada país.

Figura 4-2: Sistema Interno, MET 6.3.

Fuente: (DYNOCOM, 2000).

En la tabla 9-2, se presenta una ficha técnica, los rangos de medición y exactitud de las pruebas del analizador MET 6.3, siendo este la última versión en el mercado internacional en función a análisis de emisiones de gases.

Tabla 9-2: Ficha Técnica Analizador MET 6.3.

Analizador de gases para gasolina				
Gases mesurables	HC, CO, CO2, O2			
Principio de medición espectrometría de infrarrojo	HC, CO, CO2			
Principio de detección electroquímica	O2			
Tiempo de calentamiento	60 s			
Índice de flujo	3,5 l/min			
Clase de precisión	O (OIML)			
Tensión de a bordo	10 V / 30 V			
Alimentación de corriente	1/N/PE 110 V/230 V 50 Hz/60 Hz			
Temperatura ambiente	0 °C - 45 °C			
Altura de funcionamiento	-100 m - 3000 m			
Dimensiones totales (La x An x Al)	406 mm x 225 mm x 160 mm			
Peso	4,6 kg			
CO - Rango de medición/Exactitud de medición (máx)	0 - 15 % Vol. / 0,01			
CO2 - Rango de medición/Exactitud de medición (máx)	0 - 20 % Vol. / 0,01			
HC - Rango de medición/Exactitud de medición (máx	0 - 9999 ppm / 0,1			
O2 - Rango de medición/Exactitud de medición (máx)	0 - 25 % Vol. / 0,01			
Lambda (calculada)	0,5 - 9,99 / 0,01			

Fuente: (DYNOCOM, 2000) Realizado: Molina Jorge, 2021.

El equipo utilizado para realizar la simulación de conducción es el dinamómetro de la serie AWD-5000-FX, de la marca DYNOCOM (datos técnicos tabla 10-2). Este el sistema de dinamómetro de chasis es vinculado mecánicamente a su parte delantera, la cual posee una unidad 2WD serie 5000 y está unida con una enorme correa denominada Gates Poly Chain a una cama trasera de 6 rodillos (parte posterior) enlazados con un ancho de vía de 36"-86" pulgadas. Este equipo es capaz de soportar velocidades de hasta 175+ MPH y 2000+ HP. El peso máximo del eje es de 6.500 libras y el rango de ancho de vía es de 36"-86". De forma general fue diseñado para una variedad de escenarios de

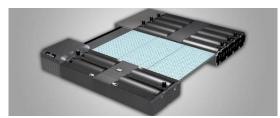

prueba diferentes: automóviles FWD / RWD, compactos deportivos, motocicletas y ATV. Está equipado con un freno de Foucault Frenelsa y puede realizar pruebas de aceleración, paso, barrido y estado estable.

Tabla 10-2: Dimensiones y Características, 5000FX

Especificaciones Dinamómetro 5000FX				
Peso máximo del eje	6,500 lbs			
Potencia máxima	2250 + hp			
Velocidad Máxima	175 + mph (AWD 155 MPH)			
Rango de seguimiento del vehículo	16 "(mínimo en el interior) - 86" (máximo)			
Distancia entre ejes máxima	86"			
Longitud de la distancia entre ejes	96 "- 122" (estándar de 3 rodillos)			
Longitud de la distancia entre ejes	83 "- 122" (4 rodillos opcionales			
Longitud de la distancia entre ejes	83 "- 148" (5 rodillos opcionales)			
Par máximo en estado estable *	2,200 pies Ibs. por retardador			
Par dinámico máxima	10,000 pies Ibs. por eje			
Requisitos eléctricos	220/240 VCA a 25 A			
Requisitos de aire	90 PSI a 4,5 CFM (para kit de elevación de bolsa de aire)			

Fuente: (DYNOCOM, 2000). Realizado: Molina Jorge, 2021.

Entre sus análisis en tiempo real otorga la salida de torque / caballos de fuerza, a velocidades constantes y cambiantes, para evaluar instantáneamente los cambios que ha realizado en los mapas de combustible o sincronización del motor. También diagnostica problemas con el motor y la transmisión. En el campo deportivo ejecuta simulaciones de vueltas de pista de ¼ de milla o de pista circular con tiempos de reacción en los parámetros del software. Idóneamente este dinamómetro puede operar en modo AWD mientras se prueban vehículos con tracción en dos ruedas. Este proceso permite que los rodillos del dinamómetro hagan girar el eje no motriz a la misma velocidad que el eje motriz, eliminando el diferencial de velocidad que ocurre en los dinamómetros de tracción en dos ruedas y asegura la seguridad del diferencial del vehículo (DYNOCOM, 2000).

Figura 5-2: Dinamómetro 5000-FX **Fuente:** (DYNOCOM, 2000).

La seguridad es lo primordial para la marca Dynocom, todos sus productos de la serie 5000 incluyen una rueda estándar y barras estabilizadoras para evitar que el vehículo se mueva de los rodillos. Por

tal motivo son fundamentales los componentes que conforman y ayudan al ciclo de conducción, los mencionados son:

Cinturones; el sistema de articulación de la correa se compone de 4 Cinturones denominados
 Gates Poly Chain. Estos cinturones son superiores a los cinturones de goma de la competencia
 tanto en velocidad como en clasificaciones de caballos de fuerza.

Figura 6-2: Cinturones, 5000-FX. **Fuente:**(DYNOCOM, 2000).

- La AWD 5000-FX está compuesta por una construcción de acero inoxidable y una plataforma de diamante chapada en zinc de alta resistencia.

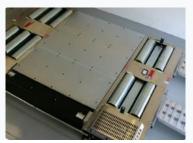
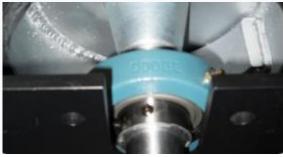


Figura 7-2: Plataforma, 5000-FX. Fuente: (DYNOCOM, 2000).

- FRENESLA Eddy Brake / Plug & Play; son frenos que son reconocidos como la más alta calidad del mundo.

Figura 8-2: Freno, 5000-FX. **Fuente**: (DYNOCOM, 2000).


- Opción de asistencia de elevación / amarre vertical serie 5000; este kit de elevación asistida por airbag ayuda a levantar los vehículos para facilitar la carga y descarga. La unidad consta

de dos conjuntos, uno para cada rueda. También se integra con una barra de sujeción vertical lo que permite una mayor repetibilidad en cada ejecución del banco de pruebas.

Figura 9-2: Kit de elevación, 5000-FX. **Fuente:** (DYNOCOM, 2000).

- Eje cónico patentado por CNC para máxima carga y velocidad. Una primicia en la industria de los dinamómetros.

Figura 10-2: Eje cónico, 5000-FX.

Fuente: (DYNOCOM, 2000).

En la figura 11-2, se observa el equipo para generar la presión requerida por el vehículo A1. El cual consta con una bomba manual con la que se efectúa una presurización del sistema de combustible, en este caso es de 3.2 bar y así asegurar una presión constante del flujo de cada combustible S y E. Nota: Después de cada prueba realizada, el auto A1 debe permanecer encendido unos 5 minutos para eliminar todo residuo.

Figura 11-2: Recipiente Externo Presurizado **Fuente:** (Rocha-Hoyos, Tipanluisa y Zambrano, 2018a).

2.8. Estimación de Factores de Emisión de Gases:

Se establece como base el modelo simplificado de la combustión aire – combustible, con el cual se determina las variables dependientes e independientes del experimento. Los valores que se determinan experimentalmente son las concentraciones de volumen expresadas en (%) de NO, HC, CO y CO2. El análisis dinámico del comportamiento de los gases de escape en los vehículos se expresa en la Ecuación 1, las variables a, b, c, d, e, f y m corresponden a coeficientes estequiométricos desconocidos y determinados por mol de combustible consumido. Se desarrolla un balance de masa respecto a la cantidad de carbono, debido a que como fruto de la combustión se obtiene CO2, CO y HC presente en el combustible. El balance de masa para el carbono se puede escribir como la Ecuación 1 (Llanes Cedeño et al., 2018; Frey y Eichenberger, 1997).

$$CHy + m (0.21 O_2 + 0.79 N_2) aCO + bH_2O + cC_3H_6 + dCO_2 + eN_2 + fNO$$
 (1)

Donde cada termino corresponde a:

m = moles de aire consumido por mol de combustible consumido.

a = moles formados de CO por mol de combustible consumido.

b = moles formados de H_2O por mol de combustible consumido.

c = moles formados de C_3H_6 por mol de combustible consumido.

d = moles formados de CO_2 por mol de combustible consumido.

e = moles formadas de N_2 por mol de combustible consumido.

f = moles formados de *NO* por mol de combustible consumido.

Al ser el CO2 el gas predominante, en los residuos de combustión se pretende relacionar este gas con el resto de residuos que son indispensables en la relación de este estudio, para tal se presenta las Ecuaciones 2, 3, 4 y 5, según (Caiza y Portilla, 2011; Llanes Cedeño et al., 2018). Del mismo modo mediante el trabajo que se realiza con el analizador MAHA, obtenemos datos en cada segundo de todo el periodo del ciclo de conducción, en contraste de una base de volumen de todos los resultados analizados en la combustión, estos vínculos preliminares se aplican para obtener la porción de CO_2 , indicada en la Ecuación 5 (Llanes Cedeño et al., 2018):

$$1 = a + 3c + d \tag{2}$$

$$a = d * R_{co} \tag{3}$$

$$c = d * R_{HC} \tag{4}$$

$$d = \frac{1}{R_{co} + 3R_{HC} + 1} \tag{5}$$

Donde cada termino corresponde a:

 R_{co} = relación de CO respecto a CO_2 en porcentaje (%).

 R_{HC} = relación de HC respecto a CO_2 en porcentaje (%).

Bajo el seguimiento de la metodología de la investigación base mencionada en el inicio de este apartado, por medio de la Ecuación 6, se determina el factor de emisión (FE_i) medida en gramos de contaminante por kilómetro simulado, donde el subíndice i de manera simplificada hace relación con los gases contaminantes (CO, HC, NOx), MW_{comb} al peso molecular equivalente de cada combustible, MW_i al peso molecular equivalente de los contaminantes, ρ_{comb} es la densidad del combustible en g/m^3 y c.c es el consumo de combustible por distancia recorrida medida en m^3/km (Franco et al., 2013; Frey y Eichenberger, 1997).

$$FE_i = \frac{R_i}{R_{CO} + 3R_{HC} + 1} \times \frac{MW_i}{MW_{comb}} \times \rho_{comb} \times c.c$$
 (6)

2.9. Referencia del PID del Motor:

El PID (Parámetro de información del programa) es el nombre técnico que utiliza para la información requerida por el técnico, que va desde el PCM hacia el scanner. Cuando se diagnostica un problema relacionado con el desempeño del motor, el PID Data puede ser un modo rápido y confiable para adquirir información. Se accede a ella a través del Data Link Conector (DLC) ubicado bajo el panel del instrumental (Casa y Léon, 2012). Esta condición propia de los vehículos modernos es requerida para el análisis de gases de esta investigación, bajo el criterio de la comparativa y justificación de las emisiones contaminantes del motor en el mismo periodo de tiempo del protocolo general de la prueba dinámica, procedimiento que se lo realiza mediante un escáner automotriz básico.

Existen más de 200 PIDs para el desempeño de un motor, pero en la mayoría de los casos solo se necesitan 25 PIDs para diagnosticar un problema o en referencia a este análisis de gases, para obtener los valores reales del comportamiento de los elementos del sistema de inyección. En la tabla 11-2 se indica los pines utilizados en el puerto DLC:

Tabla 11-2: Numero de pines por Protocolo de conexión DLC.

Pines utilizados para PID			
1	Entrada		
2	Comunicación SAE VPW/PWM, SAE J1850		

4	Masa del Vehículo
5	Masa Señal
6	CAN, línea alta, SAE J2284
7	Comunicación ISO 9141-2 (Línea K)
10	Comunicación PWM, SAE J1850
14	CAN, línea baja, SAE J2284
15	Comunicación ISO 9141-2 (Línea L)
16	Positivo de la batería

Fuente: (Al-Awad, Abbass y Dubkh, 2018).

Realizado: Molina Jorge,2021.

La tabla 12-2 señala los PID´s primarios y secundarios, con sus valores típicos que realizan su trabajo en la generación de los gases contaminantes:

Tabla 12-2: Características de PID's primarios y secundarios.

Elemento:	Descripción				
MAF:	Marcha lenta 0.6 a 0.9 volts. Sube con RPM 3.5 a 4.2 volts con el acelerador a				
	fondo.				
RPM:	Revoluciones por minuto del motor 700 - 900 en marcha lenta.				
Sensor de oxígeno:	Cambiando el voltaje DC entre 0 volts y 1 volts con 0.5				
	volts indicando una mezcla balanceada de combustible.				
SFT1 – SFT2 Short Fuel	En muchos casos, el SFT estará entre +				
Trim correction:	o - 10 %.				
FPW1 - FPW2:	El valor normal en marcha lenta es de aproximadamente 3-5 ms.				
TP (V):	Por lo general está entre 0.7 a 1.1 volts en marcha lenta.				
ECT (V):	Un típico motor caliente debe estar alrededor de los 0.6 volts. Entre				
	3.5 volts a 32° F (0° C) y 2.5 volts a 90° F (32° C).				
LFT 1 - 2 Long Fuel	La corrección permitida es de + o - un 20 %. Pero los valores típicos				
Trim corrections:	oscilan entre + o - un 12 %.				
IAC (%):	De 35 a 40 % en marcha lenta, con un motor normal.				
O212 - O222 (V) Sensor	Operan entre 0.6 y 0.8 volts				
de Oxigeno:					
FTPT (V) Fuel Tank	Valores típicos son 0.2 a 0.6 volts.				
Pressure sensor:					

Fuente: (Al-Awad, Abbass y Dubkh, 2018)

Realizado: Molina Jorge,2021.

2.10. Análisis de Variables:

La prioridad de esta investigación es demostrar las concentraciones de las variables particulares dependientes del líquido operante del motor: CO2, CO, NOx, HC (%V). A la razón de esta generación química-mecánica se realiza las siguientes combinaciones de los dos combustibles fósiles en el automóvil de A1 presentes en la tabla 13-2.

Tabla 13-2: Designación de la nomenclatura para la formación de las combinaciones.

Factores	Niveles	Designación
Vehículo Segmento A	Kia Picanto 1.0 DPi GT-Line (2019)	A1
Combustibles	Super	S
Combustibles	Extra	E

Realizado: Molina Jorge, 2021.

Acorde al enfoque estadístico de los resultados, de igual manera se toma en cuenta la nomenclatura de la tabla 14-2 para evaluar si existe una diferencia significativa. Conjuntamente se aprovecha el método utilizado por los autores (Rocha-Hoyos et al., 2019) para inferir si existe alguna diferencia importante entre los tipos de combustible. Específicamente se usó el análisis ANOVA, en pruebas de comparación múltiple de medias con un 95% de confianza, denominadas Least Significant Difference (LSD).

Tabla 14-2: Tratamientos para las diferencias significativas.

Formación de Pruebas				
No. Auto Kia Picanto Combustibles Operantes				
1	A1	S		
2	A1	E		

Realizado: Molina Jorge, 2021.

CAPITULO III

3. RESULTADOS Y DISCUSIÓN

3.1. Relación de los Datos Primarios de las Pruebas:

Con la culminación de las pruebas dinámicas IM-240, se obtuvo el perfil de velocidad del ciclo de conducción, el cual permitió analizar las diferencias de generación de los gases en función a cada combustible operante.

En el gráfico 1-3 se presenta los datos de las velocidades por tiempo de la ruta (km/h), donde se observa la variación de la velocidad debido a las condiciones del cambio de marcha del motor. Aquí se puede apreciar una variación de la velocidad con máximos y mínimos entre 75 y 0 km/h, cumpliendo con el protocolo presentado en el trabajo (Rojas y Argoti, 2015), donde se efectuó el respectivo cambio de marchas en el instante preciso del incremento y desaceleración de la velocidad.

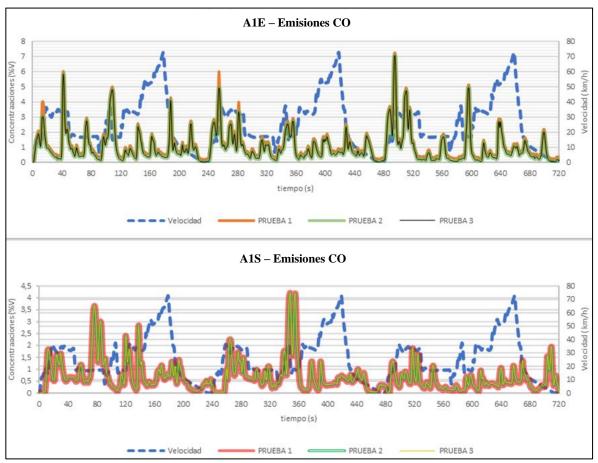


Gráfico 1-3: Cambio de la velocidad de A1- cicloIM240 con respecto al tiempo.

Fuente: Molina Jorge, 2021.

En el gráfico 2-3 se muestra los resultados de las pruebas referentes a los gases de emisiones en función al combustible extra y super, cuyos valores fueron proporcionados por el software los cuales son más fáciles de analizar en el instante de generación de cada contaminante presente en la combustión del motor (ANEXO O - T). Referente al gas CO para extra se observa una variación de las oscilaciones en los primeros segundos de cada prueba y en el paso del tiempo decrece hasta valores entre 0.5 % y 1%, además la tendencia de los porcentajes en función a la velocidad del ciclo de conducción tiene el mismo comportamiento en las tres pruebas realizadas. Por otro lado, el comportamiento de gas CO para súper muestra un decremento entre 0% y 0.5%, además en las dos primeras pruebas la tendencia de los porcentajes en función a la velocidad del ciclo de conducción tiene el mismo comportamiento alcanzando una concentración máxima de 4.3% V, mientras que en

la tercera prueba este comportamiento se estabiliza en todas las velocidades por tiempo transcurrido en la prueba. Es importante destacar en esta grafica que para extra se tiene una mayor generación de CO con una velocidad media entre 30 km/h y 40 km/h, mientras que en una velocidad máxima de 73 km/h la concentración de CO decrece, en cuanto a super nos referimos en una velocidad media entre 20 km/h y 30 km/h tiene una mayor generación de CO y en una menor generación en el proceso de una velocidad máxima 74km/h. Los valores obtenidos en el dinamómetro muestran una pequeña variación en relación a los obtenidos por (Rocha-Hoyos et al., 2018) los cuales superan para extra en 1% V y para super una diferencia de 4% V aproximadamente.

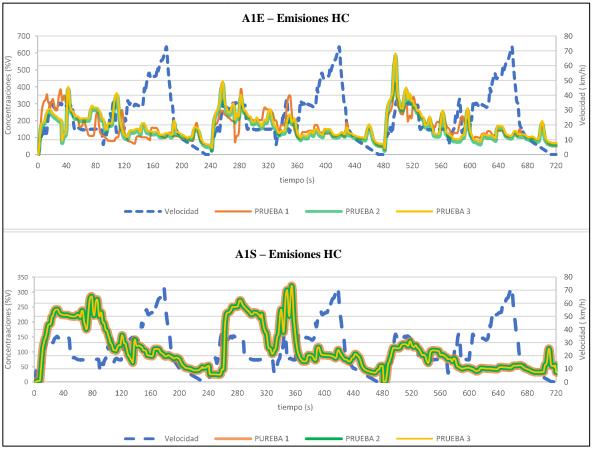


Gráfico 2-3: Comportamiento de Emisiones CO. **Fuente:** Molina Jorge, 2021.

En el gráfico 3-3 se observa un análisis de las partes por millón del gas de escape HC para combustible extra y super, en referencia a extra y la velocidad media 30-40 km/h presenta una inestabilidad en los primeros 120 s de cada prueba y en el resto de tiempo se aprecia un comportamiento estable en función al incremento de la velocidad, mientras que para super se tiene una elevada concentración en las dos primeras pruebas a una velocidad media entre 20 km/h y 30 km/h en los primeros 120 segundos y en el resto de tiempo se aprecia un comportamiento estable en función al incremento de

la velocidad, en particular en la tercera prueba se identifica una tendencia más estable de las concentraciones en función a todo el cambio de velocidad en el transcurso del tiempo.

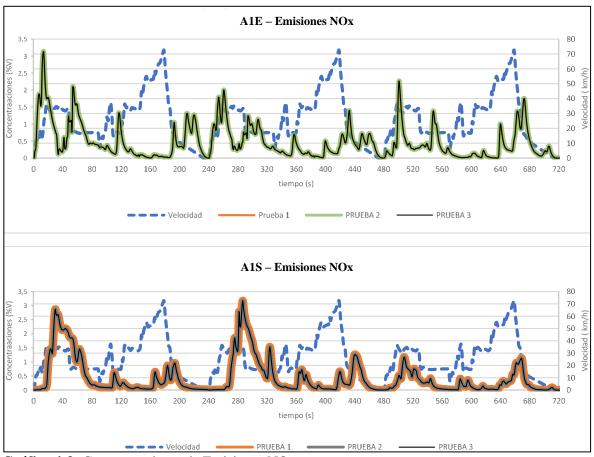

Considerando los siguientes parámetros: el año de producción y el mantenimiento efectivo del vehículo en los resultados presentados por (Rocha-Hoyos et al., 2018) se observa una mayor composición de HC y en comparación con esta investigación para extra y super se aprecia una baja composición de HC.

Gráfico 3-3: Comportamiento de Emisiones HC. **Fuente:** Molina Jorge, 2021.

El comportamiento del NO presentado en el gráfico 4-3 describe la misma tendencia que el gas HC, es decir un comportamiento inestable a una velocidad media y un comportamiento estable en el proceso de alcanzar una velocidad máxima para combustible extra, por otra parte con el segundo combustible analizado se observa que el incremento máximo de la concentración de NO tiene lugar en las dos primeras pruebas desde el segundo 20 y un comportamiento estable en relación a la velocidad máxima y como resultado final en la tercera prueba para este combustible se observa un comportamiento proporcional a la velocidad en el transcurso del tiempo del ciclo de conducción para

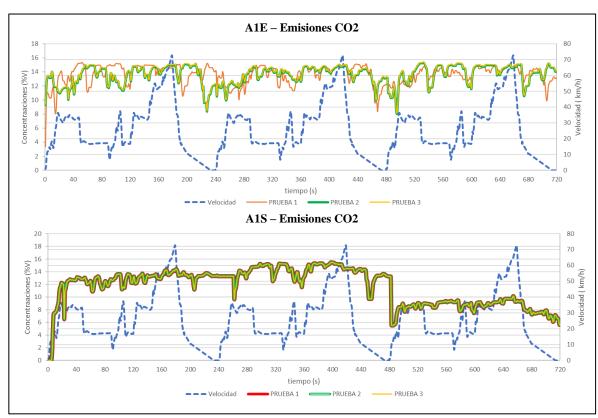

esta investigación. En comparación con los datos obtenidos en (Rocha-Hoyos et al., 2018) donde la diferencia existente va hacer menor en función a la automatización y años de producción del vehículo.

Gráfico 4-3: Comportamiento de Emisiones NOx.

Fuente: Molina Jorge, 2021.

El comportamiento del gas predominante CO2 con generación extra y super respectivamente se describe en el gráfico 5-3, cuyo valor máximo para A1E es alrededor de 14.2% V y para A1S 14.6 % V, de acuerdo con los resultados mostrados en la investigación (Rocha-Hoyos et al., 2018) se puede evidenciar similitud y concordancia con los porcentajes obtenidos bajo el mismo ciclo de conducción IM240, de igual manera la diferencia del comportamiento de este gas CO2 con estos dos combustibles tienen un impacto directo en la calidad del combustible, así también otros factores como tráfico vehicular, estado y mantenimiento del motor, lugar geográfico y motorización del sistema de inyección. Esto se respalda en la estabilidad que presentan las gráficas, obteniendo valores más bajos de contaminación para A1S.

Gráfico 5-3: Comportamiento de Emisiones CO2.

Fuente: Molina Jorge, 2021.

Teóricamente el valor de lamba se debe acercar a 1, debido a que es el reflejo de una mezcla ideal tanto de un porcentaje de combustible y de aire requerido por el motor. En el gráfico 6-3 el valor de A1E para lamba fluctúa entre 0.9 - 1.2 y para A1S entre 0.9 - 1.3, por tal motivo se fundamenta que el motor se encuentra en condiciones perfectas para su operación y para el análisis idóneo de emisiones de gases contaminantes.

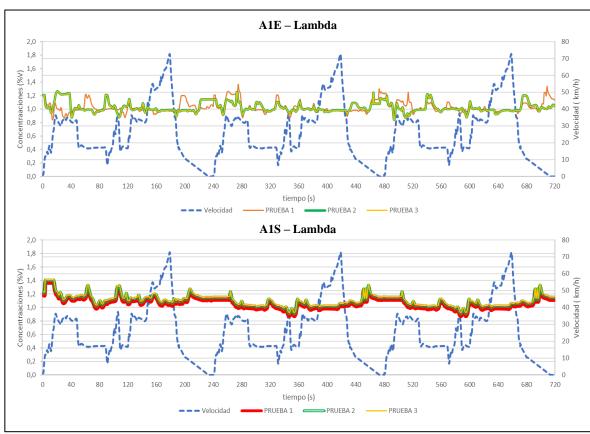


Gráfico 6-3: Comportamiento de Lambda para los dos combustibles.

Fuente: Molina Jorge, 2021.

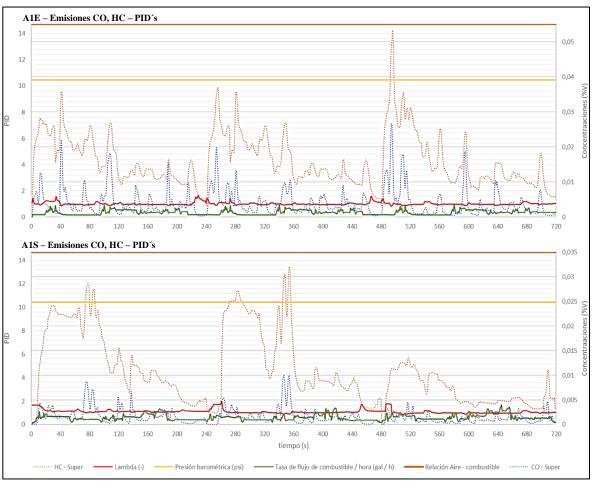
3.2. Medidas del Consumo de Combustible:

La elaboración del cálculo bajo las medidas del consumo en litros al inicio y al final de cada prueba y el cálculo de la densidad se ven reflejados en los ANEXOS I y ANEXOS J de esta investigación. En la tabla 1-3 se presentan los promedios de dichas mediciones y bajo el recorrido de 8760 metros también se presenta el rendimiento de cada prueba en km/lt.

Tabla 1-3: Valores Promedios de consumo y rendimiento A1E y A1S.

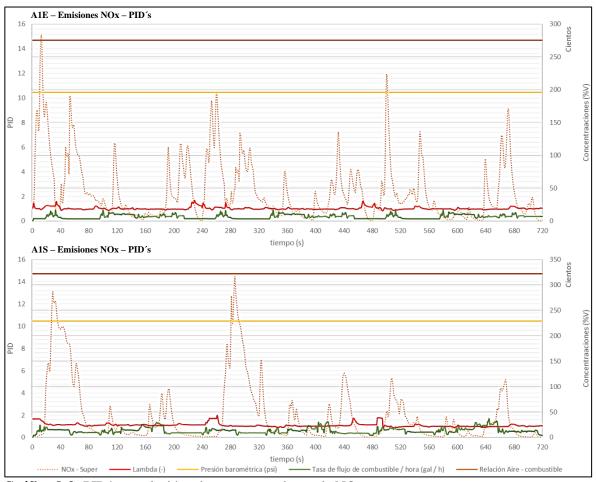
	EXTRA				SUPI	ER		
	Medición 1	Medición 2	Medición 3	Promedio	Medición 1	Medición 2	Medición 3	Promedio
Consumo en litros	0,40	0,400	0,377	0,390	0,325	0,360	0,360	0,348

	EXTRA				SUPER			
Rendimiento	Medición 1	Medición 2	Medición 3	Promedio	Medición 1	Medición 2	Medición 3	Promedio
(Km/lt)	22,18	21,90	23,24	22,437	26,95	24,33	24,33	25,206

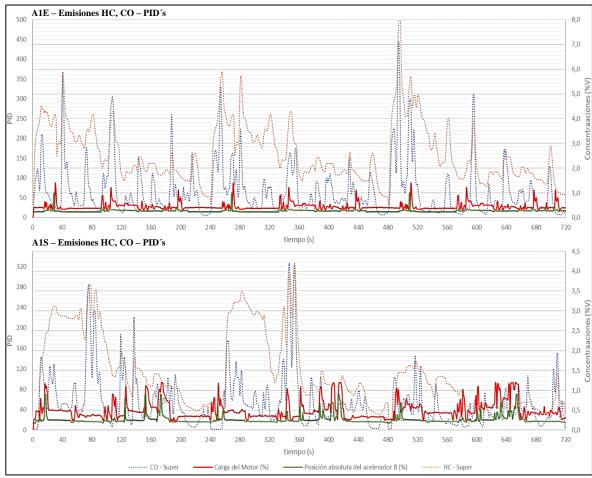

Realizado por: Molina Jorge,2021.

3.3. Análisis del comportamiento de los principales PID's del Vehículo:

Este comportamiento nos permite adquirir datos a través del protocolo OBD2, con el cual se puede obtener los PID's principales del vehículo A1. Bajo este análisis se determina los diferentes comportamientos en base a la composición de las emisiones de gases con los combustibles super y extra de las tres repeticiones del clico de conducción IM-240.


En el gráfico 7-3 se presenta el comportamiento de los PID´s de lambda, presión manométrica (psi), tasa de flujo del combustible/hora (gal/h) y relación aire combustible en función a los valores de las concentraciones de HC y CO de los combustibles extra y super respectivamente considerando únicamente los valores de la tercera prueba mismos que se justifican con las emisiones ideales de esta investigación.

De esta manera el valor de lambda en función a extra y súper se acerca a una condición de factor lamba igual a 1, siendo esto un parámetro ideal para una formación de una mezcla estequiométrica casi perfecta. En relación a la tasa de flujo se puede apreciar que existe un comportamiento más elevado en función al incremento de velocidad vs tiempo y con una concentración de HC y CO inferior que en los primeros 120 segundo de cada inicio de la prueba para ambos casos. En el caso de la presión barométrica y la relación aire combustible los valores reflejados se mantiene constantes en el transcurso de las pruebas, siendo estos 10.4 PCI y 10.7(-) respectivamente.


Gráfico 7-3: PID´s en relación a las concentraciones de HC, CO. **Fuente:** *Molina Jorge*,2021.

El análisis del gráfico 8-3 nos presenta los mismos PID´s de la figura anterior, donde el estudio del comportamiento tiene la misma tendencia con las emisiones de NOx con super y extra, es decir a mayor velocidad se obtiene menor concentración del gas NO reflejando un incremento en la tasa de combustible requerido por el vehículo. De igual manera los valores de la presión barométrica y la relación aire combustible se mantienen constantes. Según los resultados en la investigación de (Rocha-Hoyos et al., 2018), esta tendencia de PID´s de lambda son ideales cuando se efectúa una prueba dinámica obteniendo una mezcla estequiométrica igual a 1.

Gráfico 8-3: PID´s en relación a las concentraciones de NOx. **Fuente:** Molina Jorge,2021.

El gráfico 9-3 indica los PID´s de la carga del motor (%) y la posición absoluta del acelerador B (%) de las concentraciones de HC y CO de los combustibles extra y super respectivamente. Para el combustible extra se obtuvo un incremento directamente proporcional a la tendencia de la generación de las emisiones de gases e inversamente proporcional a la velocidad que se requiere. En el caso de la posición absoluta del acelerador B bajo su principio de funcionamiento se comprueba que a menor velocidad se requiere mayor generación de emisión de gases obteniendo el porcentaje más alto de la posición del acelerador. En relación al combustible super se observó que el PID´s que la carga del motor y la posición del acelerador fueron más elevados cuando la emisión de HC y CO sea inferior.

Gráfico 9-3: PID´s en relación a las concentraciones de HC, CO.

Fuente: Molina Jorge, 2021.

Del mismo modo en el gráfico 10-3 se refleja los PID's de la carga del motor (%) y la posición absoluta del acelerador B (%) con la generación de emisiones del NOx con extra y super respectivamente, donde se observa similar comportamiento al gráfico 9-3, es decir para combustible extra mientras mayor sea la generación de emisión de NOx su comportamiento se eleva y para combustible super mientras menor sea la concentración su comportamiento se eleva en comparación a la posición del acelerador y la carga del motor.

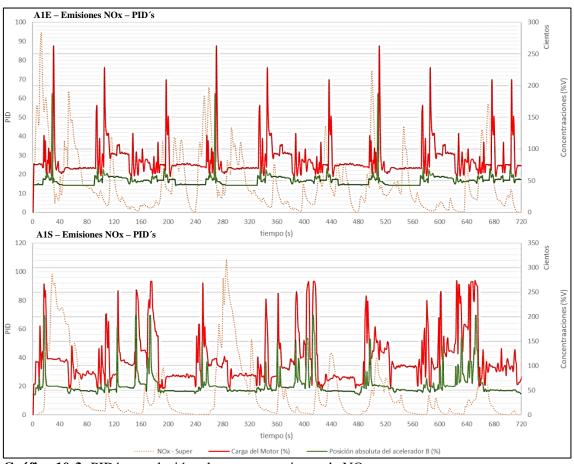
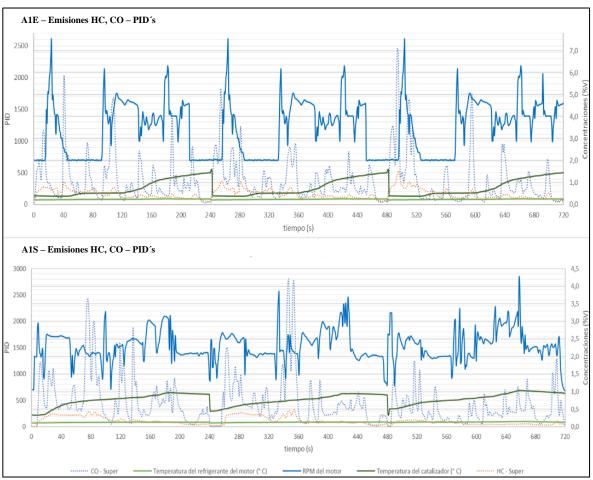



Gráfico 10-3: PID's en relación a las concentraciones de NOx.

Fuente: Molina Jorge, 2021.

En los PID´S de la temperatura del refrigerante del motor(C), rpm del motor y temperatura del catalizador (°C) de las concentraciones de la emisión de HC y CO de extra y super respectivamente se ven reflejadas en el gráfico 11-3. En el comportamiento del PID de las revoluciones del motor se observa que mientras mayor sea la velocidad que se requiere mayor es la concentración de CO y HC al igual que las revoluciones con extra y super, comparando su tendencia con la velocidad obtenida en el ciclo de conducción. Para el PID de la temperatura del refrigerante del motor se observa un comportamiento estable entre 71 °C y 90 °C para extra y super, siendo estos valores ideales para el comportamiento de un motor en función a la temperatura, mientras que para la temperatura del catalizador cuando incrementa la velocidad su concentración de HC y CO serán mínimas, obteniendo una temperatura promedio de 550 °C para extra y 615 °C para super.

Gráfico 11-3: PID´s en relación a las concentraciones de HC, CO. **Fuente:** Molina Jorge,2021.

En este último gráfico 12-3 de los PID's de la temperatura del refrigerante del motor (°C), rpm del motor y temperatura del catalizador (°C) de las concentraciones de la emisión de NOx con extra y super respectivamente, se observa que la tendencia va hacer la misma que la figura anterior en todos los PID's.

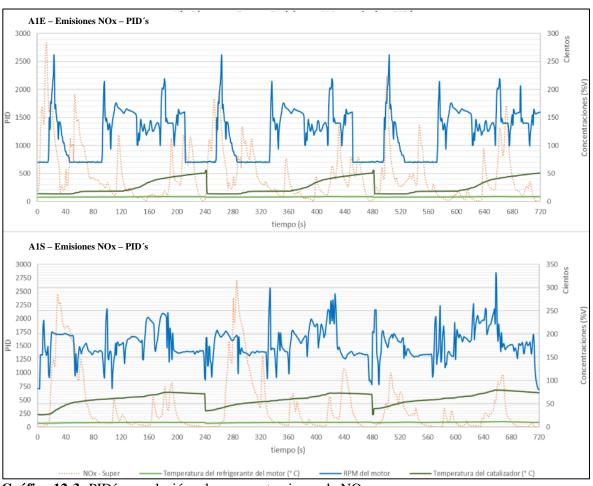


Gráfico 12-3: PID´s en relación a las concentraciones de NOx.

Fuente: Molina Jorge, 2021.

3.4. Análisis de la variabilidad en los factores de emisión:

Una vez establecida la fuente de datos con la respectiva conversión de porcentajes de volumen (% V), partes por millón ppm a gramos sobre kilómetro (g/km) (ANEXO K), para determinar la existencia entre los grupos experimentales de una diferencia significativa, siendo está la hipótesis principal para el análisis estadístico y teniendo en cuenta una hipótesis nula al no poseer alguna diferencia, en cuanto a los factores de emisión se aplica el análisis ANOVA. La tabla 2-3 ANOVA descompone la varianza de CONCENTRACIONES(g/km) de A1S Y A1E en dos componentes: un componente entre grupos y un componente dentro de grupos. La razón-F, que en este caso es igual a 152,498, es el cociente entre el estimado entre grupos y el estimado dentro de grupos. Puesto que el valor-P de la prueba-F es menor que 0,05, existe una diferencia estadísticamente significativa entre la media de CONCENTRACIONES(g/km) entre un nivel de F EMISIONES y otro, con un nivel del 5% de significación.

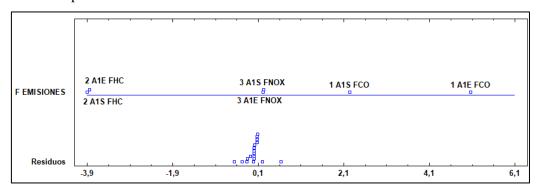

De esta manera se rechaza la hipótesis nula mediante este análisis de varianzas, descartando que entre las medias de concentraciones en (g/km) no exista variación alguna. Para ampliar y determinar cuáles medias son significativamente diferentes de otras, se aplica el método de Pruebas de Múltiples Rangos, denominada LSD (Least Significant Difference).

Tabla 2-3: ANOVA para CONCENTRACIONES(g/km) por F EMISIONES

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Entre grupos	50,6226	5	10,1245	152,50	0,0000
Intra grupos	0,796694	12	0,0663911		
Total (Corr.)	51,4193	17			

Realizado por: Molina Jorge, 2021.

Los datos determinados bajo este análisis de varianzas se ven reflejado gráficamente en el gráfico 13-3 en la cual con respecto a una concentración de g/km, se puede apreciar la diferencia significativa únicamente en el factor A1S y A1E de CO respectivamente para el caso los diferentes combustibles experimentados.

Gráfico 13-3: Análisis ANOVA para concentraciones (g/km)

Fuente: Molina Jorge,2021.

Esta tabla 3-3 se aplica un procedimiento de comparación múltiple para determinar cuáles medias son significativamente diferentes de otras. La mitad inferior de la salida muestra las diferencias estimadas entre cada par de medias. El asterisco que se encuentra al lado del par de comparación CO (g/km) indica que ese par muestran diferencias estadísticamente significativas con un nivel del 95,0% de confianza. No existen diferencias estadísticamente significativas entre aquellos niveles pertenecientes a A1S Y A1E para HC y NOx (g/km). El método empleado actualmente para discriminar entre las medias es el procedimiento de diferencia mínima significativa (LSD) de Fisher. Con este método hay un riesgo del 5,0% al decir que cada par de medias es significativamente diferente, cuando la diferencia real es igual a 0.

Tabla 3-3: Pruebas de Múltiple Rangos para CONCENTRACIONES(g/km) por EMISIONES

Método: 95,0 porcentaje LSD.

F EMISIONES	Casos	Media		Grupos Homo	Grupos Homogéneos			
2 A1S FHC	3	0,0804798		X				
2 A1E FHC	3	0,108964	0,108964					
3 A1E FNOX	3	2,24375		X				
3 A1S FNOX	3	2,25721	2,25721		X			
1 A1S FCO	3	3,31711		X				
1 A1E FCO	3	4,80412		X				
Contraste			Sig.	Diferencia	+/- Límites			
1 A1E FCO - 1 A1S F	CO		*	1,48701	0,458385			
2 A1E FHC - 2 A1S F	НС			0,0284846	0,458385			
3 A1E FNOX - 3 A1S	FNOX			-0,01346	0,458385			

Realizado por: Molina Jorge, 2021.

Nota: (*) indica una diferencia significativa.

En el gráfico 14-3 se aprecia todo el grupo que conforman los factores de emisión en función a (g/km) mediante el Ciclo IM-240, en la cual se puede ver la comparación en función a los dos combustibles; A1S y A1E, apuntando a lo determinado anteriormente, la diferencia que existe en los factores de emisión respecto al CO y un valor de emisión muy similar en función de HC y NOx, se aprecian con una mayor exactitud las diferencias de formulación de dichos gases contaminantes.

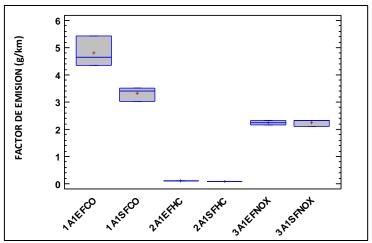


Gráfico 14-3: Factores de Emisión del Ciclo IM-240.

Fuente: Molina Jorge, 2021.

Estos datos estadísticos tienen igual comportamiento con los resultados de las investigaciones (Llanes Cedeño et al., 2018) y (Calero et al., 2018) , donde en base al mismo análisis Anova y Fisher, no presentan cambios mínimos en relación de A1S y A1E para factores de HC Y NOx, a pesar que las condiciones de campo donde se realizó la investigación de Calero et al,. (2018) fue ejecutada de manera on-board , pero coinciden que el factor FCO, posee una variación de la diferencia de esta emisión de gas

presente en los valores de A1S y A1E de FCO de manera opuesta, es decir en este proyecto de investigación efectuada con una altitud de 2754 metros (m) el FCO de A1E es mayor que el FCO de A1S. Contrario a lo que sucede en (Llanes Cedeño et al., 2018) donde el FCO de A1E es menor que el FCO de A1S, estas diferencias se sustentan con el cambio de altitud 2850 metros (m), cilindraje del motor (999cc – 1.6cc), humedad, valor de lambda muy cercano a 1 para pruebas dinámicas (Rocha-Hoyos et al., 2018).

En la investigación (Guzmán et al., 2018) los factores de emisión de CO con A1E bajo los parámetros de condición de altura (2850 msnm), presión atmosférica (72852 Pa) pero diferente ciclo de conducción, presentan comportamientos similares a los factores de emisiones obtenidos en esta investigación, es decir que el factor de emisión CO para combustible súper es menor en consideración que CO para combustible extra, teniendo este último factores ascendentes. No obstante, para los factores de HC y NOx no existe diferencia notable respecto a la investigación citada.

En estudios realizados con gasolina extra y mezclas con biocombustibles, alcoholes y etanol (Portilla y Campuzano, 2015; Freire Romero, 2013; Chalá y Ñacato, 2008; Caiza et al., 2019) , respecto a los factores de emisión se puede argumentar que el comportamiento es similar a los factores de emisión CO obtenidos en esta investigación, mientras que los factores de emisión de HC y NOx no existe diferencia notable para A1S y A1E. Esto relaciona las conclusiones presentadas en la investigación (Lapuerta et al., 2006), en dónde se menciona que la altitud sobre el nivel del mar produce efectos en la presión y temperatura atmosférica encontraste a las concentraciones de oxígeno en el aire y la composición de la mezcla estequiométrica del motor.

3.5. Análisis de la variabilidad en el consumo de Combustible:

Dentro de los datos requeridos para determinar la conversión de %V a g/km, fue importante conocer el consumo (c.c) y la densidad de cada combustible analizado. De este modo se puede analizar los valores correspondientes al consumo en litros (l) pertenecientes a tres mediciones efectuadas tanto para el combustible súper y extra, en este sentido se aplica el análisis de varianza ANOVA para poder verificar si existe alguna diferencia significativa, siendo está nuestra hipótesis principal, caso contrario al no existir ninguna diferencia, hipótesis nula.

La tabla 4-3 ANOVA descompone la varianza de CONSUMO en dos componentes: un componente entre grupos y un componente dentro de grupos. La razón-F, que en este caso es igual a 372,439, es el cociente entre el estimado entre grupos y el estimado dentro-de-grupos. Puesto que el valor-P de

la prueba-F es menor que 0,05, existe una diferencia estadísticamente significativa entre la media de CONSUMO entre un nivel de CICLO IM 240 y otro, con un nivel del 5% de significación.

De esta manera se rechaza la hipótesis nula mediante este análisis de varianzas, descartando que entre las medias de concentraciones en litros (l) no exista variación alguna. Para ampliar y determinar cuáles medias son significativamente diferentes de otras, se aplica el método de Pruebas de Múltiples Rangos, denominada a LSD (Least Significant Difference).

Tabla 4-3: ANOVA para CONSUMO por CICLO IM 240

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Entre grupos	0,191599	5	0,0383198	372,44	0,0000
Intra grupos	0,00123467	12	0,000102889		
Total (Corr.)	0,192834	17			

Realizado por: Molina Jorge, 2021.

Los datos determinados bajo este análisis de varianzas se ven reflejado gráficamente en el gráfico 15-3 en la cual con respecto a una medida en litros (l), se puede apreciar la diferencia significativa en el consumo de cada combustible analizado considerando el periodo de tiempo de cada ciclo de conducción.

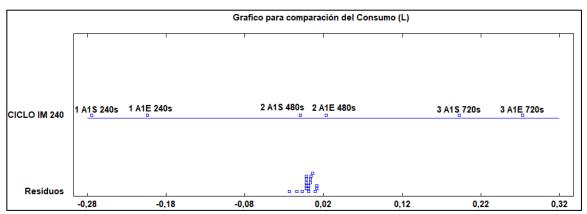


Gráfico 15-3: Grafico para comparación del Consumo (L).

Fuente: Molina Jorge, 2021.

Esta tabla 5-3 se aplica un procedimiento de comparación múltiple para determinar cuáles medias son significativamente diferentes de otras. La mitad inferior de la salida muestra las diferencias estimadas entre cada par de medias. El asterisco que se encuentra al lado de los 2 pares (c.c - 240s – c.c - 720s) indica que estos pares muestran diferencias estadísticamente significativas con un nivel del 95,0% de confianza. Por otro lado, no existen diferencias estadísticamente significativas entre aquellos niveles

pertenecientes a c.c - 480 segundos, considerando que todos estos niveles pertenecen a el consumo de litros en función a la velocidad y el tiempo de generación de las emisiones de gases.

El método empleado actualmente para discriminar entre las medias es el procedimiento de diferencia mínima significativa (LSD) de Fisher. Con este método hay un riesgo del 5,0% al decir que cada par de medias es significativamente diferente, cuando la diferencia real es igual a 0.

Tabla 5-3: Pruebas de Múltiple Rangos para CONSUMO por CICLO IM 240 (Método: 95,0

porcentaje LSD)

CICLO IM 240	Casos	Media	7		Grupos Homogéneos				
1 A1S 240s	3	0,1016	667		X				
1 A1E 240s	3	0,139			X				
2 A1S 480s	3	0,2416	667		X				
2 A1E 480s	3	0,259			X				
3 A1S 720s	3	0,3483	333		X				
3 A1E 720s	3	0,3906	667		X				
Contraste			Sig.	Di	ferencia	+/- Límites			
1 A1E 240s - 1 A1S 2	240s		*	0,0	373333	0,0180451			
2 A1E 480s - 2 A1S	480s		•	0,0	0173333	0,0180451			
3 A1E 720s - 3 A1S	720s		*	0,0	0423333	0,0180451			

Realizado por: Molina Jorge,2021.

Nota: (*) indica una diferencia significativa.

En el gráfico 16-3 se aprecia todo el grupo que conforman al consumo de la generación de los factores de emisión, en litros mediante la ejecución del Ciclo IM-240(1, 2, 3), en la cual se puede ver la comparación en función a los dos combustibles; super (93 octanos) y extra (89 octanos), apuntando a lo determinado anteriormente, la diferencia significativa estadísticamente que existe en los litros consumidos en el periodo de c.c - 240 segundos y c.c - 720 segundos, y un valor de consumo muy similar en función al periodo de c.c - 480 segundos, gráficamente se aprecia con una mayor exactitud la diferencia de este gasto del líquido operante.

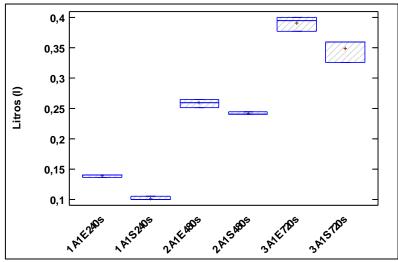


Gráfico 16-3: Consumo en Litros (240s - 480s - 720s).

Fuente: Molina Jorge, 2021.

Todo estos análisis apuntan que el consumo con gasolina super A1S es menor que el consumo con gasolina extra A1E, tal como se menciona a continuación: "El motor consumió menos combustible en la ruta con la gasolina Súper con 0.842 l, en cambio consumió más combustible con la mezcla de gasolina Súper 50% V con Extra 50% V, 1.202 l, la mezcla de gasolina Súper 70% V con Extra 30% V tuvo un consumo similar a la gasolina Súper, y la Extra un valor intermedio con 0.967 l", (Guzmán et al., 2018). Fundamentos que se justifican que a pesar que la relación entre estas dos investigaciones, efectuadas de manera dinámica y en ruta, cumplen con parámetros de estudio similares al consumo de A1S y A1E.

Por otro lado y en relación a los estudios presentado por: (Portilla y Campuzano, 2015; Freire Romero, 2013; Chalá y Ñacato, 2008; Caiza et al., 2019), se muestra que los resultados del consumo de dichos combustibles modificados presentan resultados opuestos a los resultados de consumo obtenidos por A1S y A1E en esta investigación, a consecuencia del ciclo de conducción IM240, calidad del combustible y altitud dónde se ejerció la prueba.

Referente a la investigación elaborada por (Guzmán et al., 2018) donde realizaron pruebas dinámicas pero con un protocolo de velocidad diferente, concuerdan los resultados del consumo con esta investigación, de tal manera el combustible extra genera más consumo que el combustible súper.

CONCLUSIONES:

Los porcentajes de componentes dañinos correspondientes a cada tipo de combustible con parámetros de un ciclo de conducción IM240 en condiciones de altura mayor a 250msnm (Riobamba) se interpretó a través de la figura 2,3,4 y 5; mismas que nos permite concluir que los factores de emisiones de CO, emisiones de HC y emisiones NOx con generación de combustible super (A1S - 93 octanos) se obtuvo un valor máx 3.509 (g/km), 0.083 (g/km) y 2.329 (g/km) respectivamente, representando un comportamiento más bajo y más estable que las emisiones generadas por el combustible extra (A1E - 87 octanos) que presenta valores máx 5.429 (g/km), 0.111 (g/km) y 2.317 (g/km) respectivamente, es decir que el trabajo efectuado por un motor de encendido provocado de segmento Tipo A con el combustible super es menos contaminante atribuyendo este análisis a la calidad del combustible.

Los valores de los principales sensores que interfieren en la inyección electrónica para justificar con emisiones en el instante que se realicen las pruebas se obtuvieron a través de un escáner automotriz bajo el protocolo OBD-II, en conclusión para emisiones de HC, CO y NOx con generación de combustible super cuando las concentraciones son menores el valor de PID lambda se acercan a 1, esto permitió determinar que la mezcla homogénea estequiométrica posee 14.7 partículas de oxígeno y 1 partícula de combustible, cuyo valor constante se ve reflejado en el PID aire combustible esto para super y extra, además se concluye que el comportamiento de los PID: tasa de flujo del combustible/hora (gal/hora), carga del motor(%), posición absoluta del acelerador B(%) y temperatura de catalizador es directamente proporcional a la necesidad del incremento de velocidad con menor emisión de HC, CO y NOx respecto a combustible super, mientras que en combustible extra los mismos PID´s tiene baja fluctuación en relación al incremento de las emisiones de HC, CO y NOx, consideradas estas como variables independientes. En cuanto al PID de presión barométrica(psi) y temperatura del refrigerante del motor (°C), tiene un valor constante de 10.4 psi en cada segundo de toda la prueba y 71C -90 °C respectivamente en función a los dos combustibles.

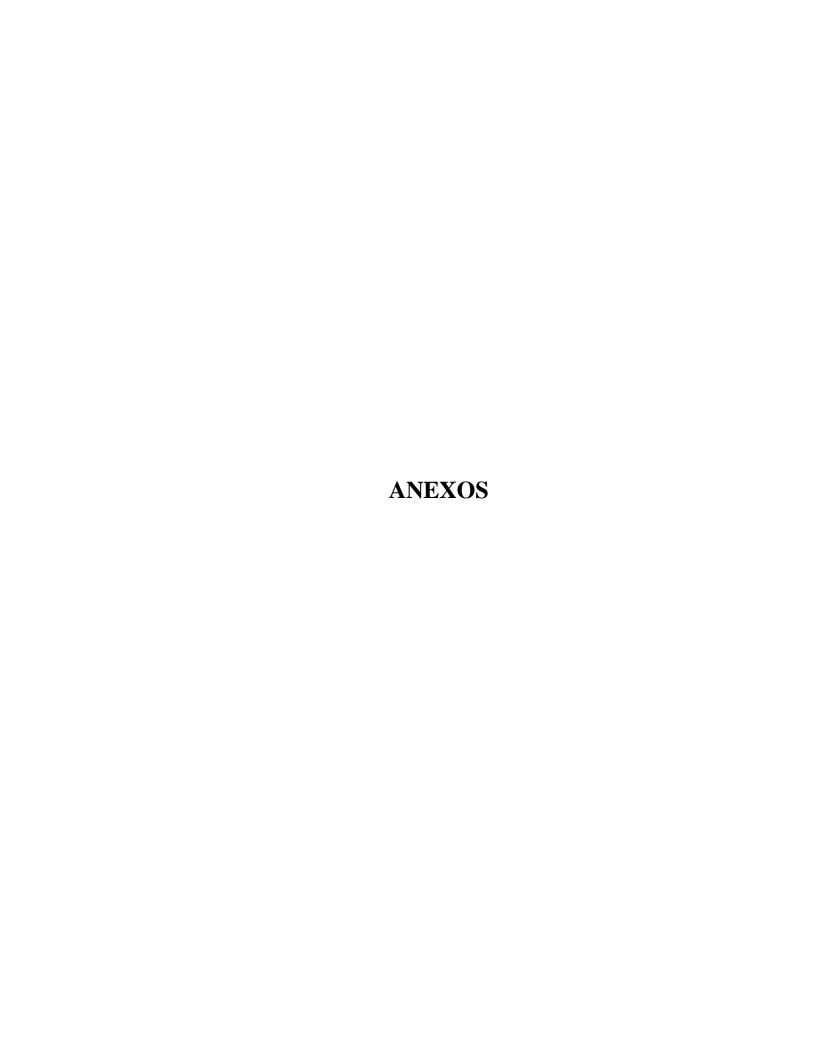
La generación de gases de escape para cada muestra del vehículo Kia Picanto 2019 (A1), se obtuvo mediante la simulación del ciclo de conducción; inspección y mantenimiento IM240, a través del dinamómetro DYNOCO FX5000 donde se verificó el mismo cambio de marcha y velocidad promedio en cada instante durante todo el periodo de la prueba, resaltando que por estándares de

fiabilidad y estabilidad, ocasionadas por las condiciones y parámetros en el campo de generación de emisiones, se ejecutó tres pruebas por cada toma realizada (ANEXO M). Por otro lado, un parámetro específico que justifico de manera real la ejecución del mismo protocolo en todas la pruebas fue el consumo de combustible, donde cada valor del líquido operante respectivo (S – E) en función del tiempo (240 – 480 -720 segundos) tiene una tendencia de proporcionalidad homogénea igual, considerando el primer valor obtenido de cada prueba de 0.13 (l) y 0.11(l) como el incremento de consumo entre cada muestra, de esta manera se concluye que el protocolo fue el mismo en cada prueba de la investigación, además se presentan los valores de velocidad - tiempo en el Anexo H.

A través del análisis estadístico ANOVA para factores de emisiones de las tres variables y consumo de los dos combustibles (3 casos), se concluye que existe una diferencia significativa en el análisis de las varianzas y a través de las pruebas de múltiples rangos, denominada LCD (Least Significant Difference) de Fisher, se determinó que la diferencia significativa de 1.48701* (g/km) se encuentra en el grupo homogéneo perteneciente al factor CO de A1S – A1E. Caso contrario sucede con la existencia de una diferencia mínima descartable de 0.028 (g/km) y -0.1346 (g/km), pertenecientes a los grupos homogéneos de HC y NOx de A1S – A1E (tabla 3-3). Del mismo modo dentro de los grupos homogéneos del consumo de combustible, se evidencio en relación al tiempo transcurrido en cada prueba (240 - 480 -720 segundos) que existe una diferencia significativa de 0.037 (l), 0.017 (l) y 0.042 (l), respectivamente al tiempo (tabla 5-3), determinado un mayor consumo para A1E (extra) y menor consumo para A1S (super).

RECOMENDACIONES

- Debido a la falta de base de datos para este análisis, se sugiere realizar un Inventario de Emisiones efectiva bajo las normas de control que ejercen en el Ecuador.
- Es muy recomendable que la EIA, efectúe convenios con mecánicas, institutos u organismos de carácter Automotriz, para que el desarrollo investigativo sea más amplio.
- Para mejorar el análisis de emisiones de forma global, es necesario que se ejecute más proyectos de investigación de emisiones en fuentes móviles diversas.
- Si se requiere obtener los factores de emisiones de varios vehículos, se recomienda tener la guía práctica para el desmontaje del sistema de alimentación de gasolina.


BIBLIOGRAFÍA

- **AEADE**. Boletín Mercado automotor regional. [en línea], 2019. [Consulta: 30 noviembre 2020]. Disponible en: https://www.aeade.net/publicaciones/mercado-automotor-regional/.
- **AEADE**. Boletin Sector en cifras 50. Sector Automotriz en cifras, 2020, no. 50.
- **AEADE**. Regional Automotive Market Dynamics., 2021, no. 47, pp. 9-14.
- AGUILAR, A., VALVERDE, Y., COTO, R., GUARDIÁN, R. y CHAVES, C. Manual de productos 2016. [en línea], 2016. [Consulta: 30 noviembre 2020]. Disponible en: https://www.recope.go.cr/wp-content/uploads/2019/06/Manual-de-Productos-2019.pdf.
- **AGUILAR, E.** ANALISIS DE PRUEBAS DE MOTOR KIA PICANTO 1.0MPI PARA HOMOLOGAR KIT DE CONVERSION DE GLP DE QUINTA GENERACION (Trabajo de Titulación) (Ingeniería). Universidad Cesar Vallejo, Mecánica. CHICLAYO. 2017. *Ucv*, pp. 358.
- AGUIRRE, G. y VACA, L. ESTUDIO DE LAS PROPIEDADES FISICOQUÍMICAS DE LA GASOLINA EXTRA ADITIVADA CON ALCOHOLES, EN LA REFINERÍA ESMERALDAS (Trabajo de Titulación) (Ingeniería). Universidad Central del Ecuador, Química. Quito Ecuador. 2017. S.l.: s.n. ISBN 1717012353.
- **AL-AWAD, N.A., ABBASS, A.M. y DUBKH, M.E.** "PID controller design for a magnetic levitation system using an intelligent optimisation algorithm. *International Journal of Simulation: Systems, Science and Technology"*. Research Gate, 2018, vol. 19, no. 1, pp. 6.1-6.8. ISSN 1473804X. DOI 10.5013/IJSSST.a.19.01.06.
- AMBIENTUM. ¿Qué países emiten más CO2? Ambientum Portal Lider Medioambiente. [en línea], 2020. [Consulta: 30 noviembre 2020]. Disponible en: https://www.ambientum.com/ambientum/contaminacion/que-paises-emiten-mas-co2.asp.
- ARTAMONOV, J.D., HENAO, S.A. y MOSQUERA, J.C. "ANÁLISIS DE EMISIONES DE CO2 PARA DIFERENTES COMBUSTIBLES EN LA POBLACION DE TAXIS EN PEREIRA Y DOSQUEBRADAS. ANÁLISIS DE EMISIONES DE CO2 PARA DIFERENTES COMBUSTIBLES EN LA POBLACION DE TAXIS EN PEREIRA Y DOSQUEBRADAS". Research Gate, 2010, pp. págs. 141-146. ISSN 0122-1701. DOI 10.22517/23447214.385.
- **BALLESTER, F.** "Contaminación atmosférica, cambio climático y salud". Research Gate, 2005. S.l.: s.n. .ISS 11355727 .DOI 10.1590/S1135-57272005000200005.
- **CABALLERO, A.** Análisis de emisiones de vehículos livianos según ciclos de conducción específicos para la región metropolitana. [en línea], 2011. pp. 185. Disponible en: http://repositorio.uchile.cl/tesis/uchile/2011/cf-caballero_mm/pdfAmont/cf-caballero_mm.pdf.
- CAIZA, L., ROCHA-HOYOS, J., GUEVARA, M., FLORES, F. y TELLO, J. "Análisis de emisiones contaminantes en los motores de encendido provocado con uso de combustibles con presencia de etanol". VII Congreso Redu [en línea], 2019, Ecuador, pp. 776-784. [Consulta: 30 noviembre 2020]. ISBN: 9781626239777.
- CAIZA, P.G. y PORTILLA, Á.A. Determinación de la Influencia de la Altura en Emisiones Contaminantes de un Vehículo con Motor de Ciclo Otto, de Inyección Electrónica de Gasolina (Trabajo de Titulación) (Maestría). ESPN, Mecánica. Ouito-Ecuador. 2011.

- CALERO, E., CAMPOVERDE, H., LLANES CEDEÑO, E., CELI, S., PERALTA, D. y ROCHA, J.C. "Evaluación en Ruta de las Emisiones Vehiculares en Frío a 2850 msnm con Oxigenación de Gasolina a Base de Etanol". *Congreso de Ciencia y Tecnología ESPE, 2018*, vol. 13, no. 1. ISSN 1390-4663. DOI 10.24133/cctespe.v13i1.571.
- **CAMPAÑA, I.** ¿A mayor contaminación ambiental, mayor mortalidad? Opción S. [en línea], 2019. S.l.: [Consulta: 30 noviembre 2020]. Disponible en: https://opcions.ec/portal/2019/08/01/a-mayor-contaminacion-ambiental-mayor-mortalidad/.
- CASA, E.G. y LÉON, E.S. "ANÁLISIS DE PARÁMETROS DE INFORMACIÓN DE DIAGNÓSTICOS PID'S Y AJUSTES DE COMBUSTIBLE LFT-SFT MEDIANTE EL USO DEL ESCÁNER EN VEHÍCULOS DE LA MARCA CHEVROLET D-MAX 3.0 PERTENECIENTES A LA ESPE EXTENSIÓN LATACUNGA" (Trabajo de Titulación) (Tegnología). ESPE, Mecánica. Latacunga-Ecuador. 2012.
- **CASTILLO, J.** ¿Qué es Octanaje? [en línea], 2013. S.l.: [Consulta: 5 enero 2021]. Disponible en: www.ref.pemex.com/octanaje/que.htm.
- CHALÁ, F. y ÑACATO, J. ESTUDIO COMPARATIVO DEL USO DE BIOCOMBUSTIBLE Y GASOLINA EN MOTORES DE CICLO OTTO. PROYECTO. [en línea], 2008. Disponible en: http://bibdigital.epn.edu.ec/bitstream/15000/5799/1/CD-4686.pdf.
- **CONCHA, G.** Emisiones de dióxido de carbono producidos por diferentes mezclas de etanol y gasolina. [en línea], 2018.[Consulta: 30 noviembre 2020]. Disponible en: https://issuu.com/gusstockconchaflores/docs/emisiones_de_di_xido_de_carbono_pro.
- **DYNOCOM**. "Dynocom industries inc". [en línea], 2000.[Consulta: 28 noviembre 2020], vol. 1, no. 866. Disponible en: https://dynocom.net.
- **EL COMERCIO**. Ajuste en los motores por regla ambiental | El Comercio. [en línea], 2017. [Consulta: 1 diciembre 2020]. Disponible en: https://www.elcomercio.com/actualidad/ajuste-motores-reglaambiental-autos.html.
- **EP PETROECUADOR**. "Memoria de Sostenibilida 2018". *Journal of Chemical Information and Modeling* [en línea], 2019, vol. 53, no. 9, pp. 1689-1699. ISSN 1098-6596.
- **FLACSO-SEDE ECUADOR, MAE y PNUMA**. GEO Ecuador 2008: Informe sobre el estado del medio ambiente. *Flacso-Mae-Pnuma*, 2008.
- FRANCO, V., KOUSOULIDOU, M., MUNTEAN, M., NTZIACHRISTOS, L., HAUSBERGER, S. y DILARA, P. "Road vehicle emission factors development: A review. *Atmospheric Environment*" [en línea], 2013, vol. 70, pp. 84-97. ISSN 13522310. DOI 10.1016/j.atmosenv.2013.01.006. Disponible en: http://dx.doi.org/10.1016/j.atmosenv.2013.01.006.
- **FREIRE ROMERO, D.R.** Comportamiento de un motor a gasolina utilizando alcohol anhidro como combustible de aporte. [en línea], 2013, pp. 151. Disponible en: http://bibdigital.epn.edu.ec/bitstream/15000/5799/1/CD-4686.pdf.
- **FREY, C. y EICHENBERGER, D.** Remote Sensing of Mobile Source Air Pollutant Emissions: Variability and Uncertainty in On-Road Emissions Estimates of Carbon Monoxide and Hydrocarbons for School and Transit Buses. 1997, USA, no. June, pp. 168.
- GONZÁLEZ, R. Motores Térmicos y sus Sistemas Auxiliares. [en línea]. [Consulta: 5 enero 2021], 2015. Disponible en: https://www.researchgate.net/publication/313895542_Motores_Termicos_y_sus_Sistemas_Au

- GUZMÁN, A.R., CUEVA, E., PERALVO, A., REVELO, M. y ARMAS, A. Estudio del rendimiento dinámico de un motor Otto al utilizar mezclas de dos tipos de gasolinas: "Extra" y "Súper". *Enfoque UTE*, 2018, vol. 9, no. 4, pp. 208-220. ISSN 1390-9363. DOI 10.29019/enfoqueute.v9n4.335.
- INEC. Anuario de Estadísticas de Transporte 2017 Diciembre, 2018. [en línea], 2017, pp. 12-12. Disponible en: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_Economicas/Estadistica de Transporte/2017/2017_TRANSPORTE_PRESENTACION.pdf.
- **INEN**. Norma Técnica Ecuatoriana Ecuatoriana NTE INEN 2204. *Inen* [en línea], 2016, Disponible en: http://www.aeade.net/wp-content/uploads/2016/12/PROYECTO-A2-NTE-INEN-2204.pdf.
- INEN. Productos derivados del petróleo. Gasolina. Requisitos. [en línea], 2016, pp. 9. Disponible en: http://www.controlhidrocarburos.gob.ec/wp-content/uploads/downloads/2016/06/nte-inen-935-9.pdf.
- LAPUERTA, M., ARMAS, O., AGUDELO, J.R. y SÁNCHEZ, C.A. Estudio del efecto de la altitud sobre el comportamiento de motores de combustión interna. Parte 1: Funcionamiento. *Informacion Tecnologica* [en línea], 2016, vol. 17, no. 5, pp. 21-30. [Consulta: 17 marzo 2021]. ISSN 07168756. DOI 10.4067/s0718-07642006000500005. Disponible en: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-07642006000500005&lng=es&nrm=iso&tlng=es.
- **LEOBARDO, L.** Estimación De Factores De Emisión Para Vehículos Automotores De Gasolina (Trabajo de Titulación) (Docencia). UNIVERSIDAD AUTÓNOMA METROPOLITANA AZCAPOTZALCO, México. 2002, pp. 129.
- **LLANES CEDEÑO, E., ROCHA HOYOS, J.C., PERALTA ZURITA, D.B. y LEGUÍSAMO MILLA, J.C.** Evaluación de emisiones de gases en un vehículo liviano a gasolina en condiciones de altura. Caso de estudio Quito, Ecuador. *Enfoque UTE*, 2018, vol. 9, no. 2, pp. 149-158. ISSN 1390-9363. DOI 10.29019/enfoqueute.v9n2.201.
- **LOAIZA, Y.** ¿Respiramos aire contaminado en las ciudades del Ecuador? [en línea], 2019. S.l.: [Consulta: 30 noviembre 2020]. Disponible en: https://gk.city/2019/09/16/aire-contaminado-ecuador-ciudades/.
- MERCEDES, Y., MORALES, R. y HERNÁNDEZ, A. Caracterización De Un Motor De Combustión Interna Con Dos Tipos De Combustible. *Imt Sct* [en línea], 2014, vol. 417, no. 417, pp. 1-85. ISSN 0188-7297. Disponible en: http://www.imt.mx/archivos/Publicaciones/PublicacionTecnica/pt417.pdf.
- NOVAES MURTA, M.H. Simulação Do Ciclo Padrão De Emissões U . S . Ftp-75 en Dinamometro de Bancada (Trabajo de Titulación) (Ingeniería). PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS, Belo Horizonte. 2008, vol. 75.
- **OECD y UNEP**. Older Gasoline Vehicles In Developing Countries and Economies in Transition: Their Importance and the Policy Options for Addressing Them. Paris-Francia, 1999, no. 33.
- **OMS**. Calidad del aire ambiente (exterior) y salud. [en línea], 2018. [Consulta: 30 noviembre 2020]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.
- PEIXOTO, Y. As leis da termodinâmica. Brazil: Sumário 1, 2019, pp. 2-54.

- PILCO, G. DISEÑO E IMPLEMENTACIÓN DE UNA RADIOSONDA DE TRANSMISIÓN DE PARÁMETROS METEOROLÓGICOS PARA EL "PROGRAMA INTEGRADO DE MONITOREO DE CONTROL DE CALIDAD DEL AIRE EN LA CIUDAD DE RIOBAMBA USANDO MODELOS MATEMÁTICOS" (Trabajo de Titulación) (Ingeniería). UNACH, Riobamba-Ecuador, 2016.
- **PORTILLA, A. y CAMPUZANO, M.** "Evaluación del Comportamiento de Motores Otto y Diésel con el Uso de Biocombustibles en la Ciudad de Quito". Research Gate, 2015, Ecuador, no. September.
- ROCHA-HOYOS, J., TIPANLUISA, L. y ZAMBRANO, V. "Estudio de un Motor a Gasolina en Condiciones de Altura con Mezclas de Estudio de un Motor a Gasolina en Condiciones de Altura con Mezclas de Aditivo Orgánico en el Combustible Study of a Gasoline Engine in Altitude Conditions with Mixtures containing Org". Research Gate, 2018, no. October. DOI 10.4067/S0718-07642018000500325.
- ROCHA-HOYOS, J., TIPANLUISA, L. y ZAMBRANO, V. "Study of a gasoline engine in altitude conditions with mixtures containing organic additive in the fuel". *Informacion Tecnologica*, 2018, vol. 29, no. 5, pp. 325-334. ISSN 07180764. DOI 10.4067/S0718-07642018000500325.
- ROCHA-HOYOS, J., ZAMBRANO, D., PORTILLA, A., ERAZO, G., TORRES, G. y LLANES CEDEÑO, E. "Análisis de Gases del Motor de un Vehículo a través de Pruebas Estáticas y Dinámicas". *Revista Ciencia UNEMI*, 2018. ISBN: 0000000306607.
- ROCHA-HOYOS, J.C., LLANES CEDEÑO, E.A., PERALTA, D. y CELI, S. "Efecto de la Adición de Biodiésel en el Rendimiento y la Opacidad de un Motor Efecto de la Adición de Biodiésel en el Rendimiento y la Opacidad de un Motor Diésel Effect of the Addition of Biodiesel on the Performance and Opacity of a Diesel Engine". Research Gate, 2019, no. June. DOI 10.4067/S0718-07642019000300137.
- **ROJAS, M.** Tipos de Investigación científica: Una simplificación de la complicada incoherente nomenclatura y clasificación. *Revista Electronica de Veterinaria* [en línea], 2015, vol. 16, no. 1, pp. 1-14. ISSN 16957504. Disponible en: http://www.veterinaria.org/revistas/redvet/2015Volumen16N°01-http://www.veterinaria.org/revistas/redvet/n010115.html.
- **ROJAS, N. y ARGOTI, V.** Análisis De Emisiones En Vehículos a Gasolina Utilizando Pruebas Estacionaria Y Dinámica Mediante Ciclo Im-240 (Trabajo de Titulación) (Maestría). ESPN, Mecánica, Quito-Ecuador. 2015, pp. 1-168.
- **TOYOTA TECHNICAL**. Advanced Emissions & Driveability Diagnosis-Course 972. Chicago: Toyota Edition, 2015, pp. 15-28.
- VALLEJO, M., JÁUREGUI-RENAUD, K., HERMOSILLO, A.G., MÁRQUEZ, M.F. y CÁRDENAS, M. "Efectos de la contaminación atmosférica en la salud y su importancia en la ciudad de México". Gaceta Medica de México, 2013, México, vol. 139, no. 1, pp. 57-63. ISSN 00163813.
- **YEPEZ, R.** Estudio De Factibilidad Para La Creación Y Operación De Una Estación De Servicio En La Vía Aloag Tandapi, Parroquia Manuel Cornejo Astorja (Trabajo de Titulación) (Ingeniería). ESPE, Sangolquí-Ecudor. 2013.

NTE INEN 935 2016-02

TABLA 1. Requisitos de la gasolina de 87 octanos (RON)

Requisitos	Unidad	Mínimo	Máximo	Método de ensayo
Número de octano Research (RON) a		87		NTE INEN 2102
Destilación: 10 %	°C		70	ASTM D86
50 %	°C	77	121	ASTM D86
90 %	°C		189	ASTM D86
Punto final	°C		220	ASTM D86
Residuo de destilación	% ^b		2	ASTM D86
Relación vapor – líquido a 60 °C			20	ASTM D5188
Presión de vapor	kPa		60	ASTM D323 ASTM D4953 ASTM D5191
Corrosión a la lámina de cobre (3 h a 50 °C)			1	ASTM D130
Contenido de gomas	mg/100 mL		3	ASTM D381
Contenido de azufre	% ^c		0,065	ASTM D2622 ASTM D4294 ASTM D5453
Contenido de aromáticos	% ^b		30	ASTM D1319
Contenido de benceno	% ^b		1	ASTM D3606 ASTM D5580 ASTM D6277 ASTM D6730
Contenido de olefinas	% ^b		18	ASTM D1319
Estabilidad a la oxidación	min	240		ASTM D525 ASTM D7525
Contenido de oxígeno	% ^c		2,7	ASTM D4815 ASTM D5845
Contenido de plomo	mg/L		No detectable	ASTM D3237 ASTM D5059 ASTM D5185
Contenido de manganeso	mg/L		No detectable	ASTM D3831 ASTM D5185
Contenido de hierro	mg/L		No detectable	ASTM D5185

NOTA. En el caso que las gasolinas contengan etanol anhidro la presión de vapor, este puede llegar hasta 62 kPa.

^a Para determinar el número de octano Research en ciudades de altura, se debe considerar la ecuación descrita en NTE INEN 2102.

^b % corresponde a fracción de volumen expresada en porcentaje.

^{° %} corresponde a fracción de masa expresada en porcentaje.

Parte 2 (Super): Norma NTE INEN 935 Novena Edición 2016-03

REQUISITOS	UNIDAD	MÍNIMO	MÁXIMO	MÉTODO DE ENSAYO
Número de octano Research (RON)	RONJ	92.0		NTE INEN 2102
Destilación : 10%	°C		70	
50%	°C	77	121	NTE INEN 926
90%	°C		190	1412 114214 020
Punto final	°C		220	
Residuo de destilación, φ _r	%	\	2	
Relación vapor – líquido, a 60°C, V/L		-	20	NTE INEN 932 ASMT D 5188 ^D
Presión de vapor	KPa ^A	-	60 ^B	ASTM D 4953 ASTM D 5191 ^D
Corrosión a la lámina de cobre (3 h a 50°C)		1	1	NTE INEN 927
Contenido de gomas	mg/100 cm ³		4,0	NTE INEN 933
Contenido de azufre	ppm	-	650	NTE INEN 929 ASTM D 4294 ^D
Contenido de aromáticos, φ _a	%	-	35,0	NTE INEN 2252 ^D ASTM D 6730
Contenido de benceno, φ _b	%		2,0	ASTM D 3606 ^C ASTM D 5580 ^D ASTM D 6277 ASTM D 6730
Contenido de olefinas, φ _o	%		25,0	NTE INEN 2252 ^D ASTM D 6730
Estabilidad a la oxidación	mín.	240		NTE INEN 934 ASTM D 7525
W contenido de oxígeno	%		2,7 ^E	ASTM D 4815 ASTM D 5845
Contenido de plomo	mg/l		No detectado ^{F, G}	ASTM D 3237 ASTM D 5185
Contenido de manganeso	mg/l		No detectado ^{F, H}	ASTM D 3831 ASTM D 5185
Contenido de hierro	mg/l		No detectado ^{F, J}	ASTM D 5185

Baquerizo Moreno E8-29 y 6 de Diciembre Edificio INEN www.normalizacion.gob.ec Quito – Ecuador

MODIFICATORIA 1 (2015-11-23)

REGLAMENTO TÉCNICO ECUATORIANO RTE INEN 028 (1R) "COMBUSTIBLES"

En la página 8, en DISPOSICIONES TRANSITORIAS

Dice:

TRANSITORIA 1.- De conformidad con la solicitud de la Empresa Pública de Hidrocarburos del Ecuador, EP PETROECUADOR, expresada mediante Oficio No. 10682-PCO-2014 de fecha 2014-04-30, en la que se indica que debido a los trabajos de rehabilitación en la Refinería Esmeraldas será necesario variar en hasta menos dos unidades de octano en las gasolinas establecidas en la norma NTE INEN 935, se aceptará dicha variación por el lapso de 18 meses a partir del 01 de junio del 2014.

TRANSITORIA 2.- De conformidad con la solicitud de la Empresa Pública de Hidrocarburos del Ecuador, EP PETROECUADOR, expresada mediante Oficio No. 12520-PCO-2014 de fecha 2014-05-20, los requisitos que se muestran en las Tablas A.1 y B.1 de los Anexos A y B de este Reglamento Técnico, entrarán en vigencia cuando se ejecuten y se encuentre en operación normal la Refinería del Pacífico y la reconfiguración de la Refinería Esmeradas.

TRANSITORIA 1. De conformidad con la solicitud de la Empresa Pública de Hidrocarburos del Ecuador, EP PETROECUADOR, expresada mediante Oficio Nro. 28243-RREF-2015 de fecha 2015-10-07, en la que se indica que debido a las circunstancias que atraviesa el país, por la caída del precio del petróleo y los altos costos de producción que requeriría la importación de un mayor volumen de nafta de alto octano para las mezclas y, debido a que el plazo establecido en la Transitoria 1 del Reglamento Técnico Ecuatoriano RTE INEN 028 (1R) vigente, se encuentra próximo a fenecer, se concede una nueva prórroga para que la EP PETROECUADOR comercialice la gasolina Extra y Súper con hasta menos dos unidades de octano de las establecidas en la Norma Técnica Ecuatoriana NTE INEN 935 vigente, por el lapso de 18 meses a partir del 01 de diciembre de 2015.

Anexo C: Correcto Anclaje en un Dinamómetro.

Realizado por: Molina Jorge.

Anexo D: INFORME DE SERVICIO TÉCNICO

Quito, 14 de diciembre de 2020

Ingeniero.

Jorge Molina

Escuela Politécnica del Chimborazo

Presente.

De mi consideración,

El 11 de diciembre del presente año se procede a realizar el mantenimiento preventivo, ajuste y verificación bajo la especificación de fábrica, al analizador de gases combinados MET 6.3 serie # 50362 de fabricación alemana a cargo del Técnico de la Empresa Leal Importaciones, representante de MAHA en Ecuador:

Diagnóstico inicial:

-Mantenimiento, ajuste y verificación del equipo MET 6.3 serie # 50362.

Acciones a realizar:

- -Limpieza general del equipo MET 6.3.
- -Revisión y verificación de filtros F1 y F2.
- -Revisión y verificación de sensor de Oxigeno
- -Revisión de Módulos Internos para conexiones al software MAHA EMISSION.
- -Revisión de mangueras para toma de mediciones.
- -Revisión de conectores eléctricos.
- -Verificación de los lentes emisor y receptor respectivamente.
- -Verificación, ajuste de los equipos.

Procedimiento:

- -Limpieza interna y externa del equipo.
- -Revisión, comprobación de componentes eléctricos y electrónicos del equipo MET 6.3.
- -Verificación y comprobación de conexión con el software MAHA EMISSION.
- -Verificación y comprobación de transmisión de datos del equipo MET 6.3 al software MAHA EMISSION.
- -Verificación y ajuste de equipo.

Observaciones:

 Mantenimiento realizado bajo la orden de servicio técnico No. LST -00054.

Recomendaciones:

- Soplar con aire comprimido la sonda antes y después de usar el equipo.
- Verificar que el vehículo sujeto al ensayo se encuentre a temperatura optima de funcionamiento antes de realizar una medición.
- Mejorar el mantenimiento preoperativo y la limpieza del equipo antes, después y durante la jornada de operación.

Anexos:

1. Verificación opacidad

2. Ajuste con lente de opacidad

3. Modelo equipo patrón

5. Pantalla de diagnóstico para gases

4. Ajuste con equipo patrón para gases

6. Pantalla de diagnóstico de N

Atentamente,

Alexander Cáceres LEAL Importaciones. Representantes MAHA Quito – Ecuador.

Stempel / Sello

Werkskalibrierzertifikat

Anexo E: Certificado de Calibración 2020.

Calibración D1 4600ZE1--D01

Gegenstand / Equipo:	5-Gas-Tester / Analizado	r de Gases
Hersteller: Fabricante: Typ / Tipo:	MAHA Maschinenbau Haldenwa Hoyen 20, D - 87490 Haldenwa MET 6.3	
Seriennummer / N° de Serie:	50362	
Temperaturbereich Rango de temperatura	- 10 °C → + 40 °C	
GAS 1	Soll-Wert / Valor nominal	Ist-Wert / Valor real
	CO 2,5 %	CO 2,5 %
GAS 2	Soll-Wert / Valor nominal	Ist-Wert / Valor real
	CO2 11,5%	CO2 11,5%
GAS 3	Soll-Wert / Valor nominal	Ist-Wert / Valor real
	HC 1275 ppm	HC 1275 ppm
GAS 4	Soll-Wert / Valor nominal	Ist-Wert / Valor real
	N2 Balance	N2 Balance
Genauigkeit / <i>Exactitud</i> :	□ ok ± 3 % absoluter Fehler bezogen ± 3 % <i>error absoluto referido al</i>	
Ungenauigkeit der Kalibrierung Incertidumbre de calibración	± 1 % bezogen auf den Skaler referido al rango máxin	
Umgebungsbedingungen Condiciones ambientales	Temperatur / Temperatura:	<u>19 ° C</u>
Prüfintervall: Intervalo de calibración recome	6 Monate / <i>Meses</i> endado:	
Verwendete Prüfmittel: Elementos utilizados:	Prüfgas; <i>Gas</i> <i>Gas</i>	
	14 de diciembre 2020	Alexander Cáceres

Es wird gegen ein Bezugsnormal kalibriert, dessen Genauigkeit auf nationale Normale rückführbar ist. Verwendete Prüfmittel unterliegen der Prüfmittelüberwachung gemäß DIN EN ISO 9001. Dieser Werkskalibrierschein darf nur vollständig und unverändert weiterverbreitet werden. Auszüge und Änderungen bedürfen der Genehmigung durch QM der Firma MAHA. Werkskalibrierscheine ohne Stempel und Unterschrift haben keine Gültigkeit.

Unterschrift / Firma

Datum / Fecha

La calibración cumple con los estandares establecidos por organismos legales. Todos los equipos de medición estan sujetos a un control de calidad basado en la norma DIN EN ISO 9001. Este certificado de calibración solo será válido si no presenta enmiendas.

NTE INEN 2204 2017-01

4.2 Límites máximos de emisiones para fuentes móviles de gasolina. Ciclos FTP-75 (prueba dinámica)

Toda fuente móvil que emplea gasolina no podrá emitir al aire monóxido de carbono (CO), hidrocarburos (THC), hidrocarburos diferentes al metano (NMHC), óxidos de nitrógeno (NOx), en cantidades superiores a las indicadas en la Tabla 2.

TABLA 2. Límites máximos de emisiones para fuentes móviles con motor de gasolina (prueba dinámica) (ciclos americanos FTP-75, g/mi)

		50,000	millas/5 a	ños	100,000 millas/10 añosª					
Categoría	CO g/mi	THC g/mi	NMHC g/mi	NOx g/mi	CO g/mi	THC g/mi	NMHC g/mi	NOx g/mi		
Vehículos de pasajeros	3,4	0,41	0,25	0,4	4,2	-	0,31	0,6		
LLDT, LVW < 3750 lbs	3,4	-	0,25	0,4	4,2	0,80	0,31	0,6		
LLDT, LVW > 3750 lbs	4,4	-	0,32	0,7	5,5	0,80	0,40	0,97		
HLDT, ALVW < 5750 lbs	4,4	0,32	-	0,7	6,4	0,80	0,46	0,98		
HLDT, ALVW > 5750 lbs	5,0	0,39	-	1,1	7,3	0,80	0,56	1,53		

º Vida útil 120,000 millas/11 años para todos los estándares HLDT, THC y LDT.

Abreviaturas:

PBV Peso bruto vehicular

LVW Peso del vehículo cargado (tara + 300 lbs)

ALVW LVW ajustado (promedio numérico de la tara y el PBV)

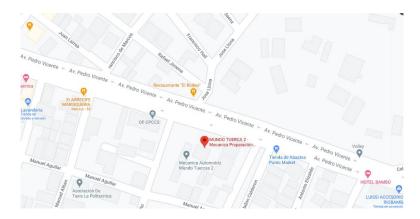
LDT Camión ligero

LLDT Camión liviano ligero (debajo de 6000 lbs PBV) HLDT Camión ligero pesado (sobre 6000 lbs PBV)

4.3 Límites máximos de emisiones para fuentes móviles de gasolina. (prueba dinámica)

Toda fuente móvil con motor de gasolina no debe emitir al aire monóxido de carbono (CO), hidrocarburos (HC), óxidos de nitrógeno (NOx), y emisiones evaporativas, en cantidades superiores a las indicadas en la Tabla 3.

TABLA 3. Límites máximos de emisiones para fuentes móviles con motor de gasolina (prueba dinámica) (Directiva de la UE 98/69/CE)


Categoría	Clase	Peso de referencia (PR) kg	CO g/km	HC g/km	HC + NOx g/km	NOx	Ciclo de prueba	
Ma	-	Todas	2,3	0,2	-	0,15		
	1	PR ≤ 1 305	2,3	,3 0,2 -		0,15	ECE + EUDC	
N1 ^b	Ш	1 350 < PR ≤1 760	4,17	0,25	-	0,18	(también conocido como	
	III	1 760 < PR	5,22	0,29	-	0,21	MVEG-A)	

^a Salvo los vehículos cuyo peso máximo sobrepase 2500 kg.
^b Y los vehículos de la categoría M que sobrepasen 2500 Kg

2016-849

Anexo G: "MECANICA "MUNDO TUERCA"

Nombre: MUNDO TUERCA 2 - Mecánica Preparación De Motor Para Competencia, Mantenimiento En General

Dirección: Dinamómetro Dynocom, FX500

Equipo:

Propietario y Responsable:

Ing. Álvaro Condo

Anexo H: Tabla de Velocidad – Tiempo de la Prueba IM-240 (dinamómetro)

#	Time	Veloci dad km/h	#	Time	Veloci dad km/h	#	Time	Veloc idad km/h	#	Time	Velocida d km/h	#	Time	Velocida d km/h	#	Time	Veloc idad km/h
1	1,3	2,4	41	122,8	25,3	81	16,3	30,0	121	171,6	63,0	161	53,4	17,9	201	186,9	33,4
2	3,7	10,9	42	127,2	34,4	82	18,9	35,6	122	174,0	64,8	162	57,7	17,7	202	189,4	21,3
3	6,2	13,7	43	131,4	33,5	83	21,6	32,9	123	176,5	69,0	163	61,9	16,8	203	190,1	19,2
4	8,7	15,8	44	135,4	33,7	84	24,4	30,8	124	179,0	70,7	164	66,0	16,7	204	191,7	18,0
5	11,2	16,0	45	139,6	33,1	85	27,3	31,8	125	181,5	56,4	165	70,2	16,8	205	192,1	16,8
6	13,7	20,1	46	143,7	32,1	86	30,3	34,1	126	184,0	43,4	166	74,2	17,1	206	198,3	12,4
7	16,2	29,5	47	148,0	42,0	87	33,3	34,1	127	186,5	34,6	167	78,6	17,1	207	204,1	9,4
8	18,7	35,6	48	152,4	50,7	88	36,1	34,6	128	188,9	23,3	168	82,9	17,2	208	207,0	8,5
9	21,2	33,3	49	156,6	52,3	89	39,3	33,0	129	190,1	19,2	169	87,1	17,2	209	210,1	7,5
10	23,7	31,3	50	160,8	52,4	90	43,6	31,9	130	190,8	18,6	170	91,3	8,5	210	214,5	6,1
11	26,2	30,5	51	165,0	55,0	91	48,0	32,1	131	191,8	17,3	171	95,5	14,3	211	218,8	4,7
12	28,7	33,3	52	169,0	59,3	92	52,3	17,3	132	192,5	16,5	172	99,6	22,1	212	223,2	3,3
13	31,2	34,4	53	173,2	64,1	93	56,5	18,1	133	200,7	10,9	173	103,8	30,5	213	227,4	2,0
14	33,7	34,2	54	177,4	70,6	94	60,7	17,0	134	204,2	9,4	174	108,0	25,1	214	231,6	0,6
15	36,2	34,6	55	181,8	54,6	95	64,8	16,7	135	206,7	8,6	175	112,3	17,5	215	235,6	0,0
16	38,7	33,4	56	186,0	35,6	96	69,1	16,7	136	209,2	7,8	176	116,5	17,0	216	239,4	0,0
17	41,2	32,3	57	189,8	19,8	97	73,3	17,0	137	211,7	7,0	177	120,7	20,3			
18	43,7	31,9	58	191,0	18,5	98	76,1	17,1	138	214,2	6,2	178	124,8	33,8			
19	46,3	32,9	59	192,3	16,7	99	80,3	17,1	139	216,9	5,3	179	129,0	34,4			
20	48,9	28,2	60	202,4	10,0	100	84,5	17,1	140	219,4	4,5	180	132,7	32,6			
21	51,1	17,9	61	206,5	8,7	101	88,0	17,1	141	221,7	3,8	181	137,1	33,6			
22	53,7	18,1	62	208,9	7,9	102	92,4	10,0	142	224,2	3,0	182	139,5	33,1			
23	56,4	18,1	63	211,4	7,1	103	96,6	15,5	143	226,9	2,1	183	142,0	32,4			
24	59,2	17,3	64	213,9	6,3	104	100,6	25,5	144	229,8	1,2	184	144,5	32,3			
25	62,1	16,8	65	216,4	5,5	105	104,8	34,6	145	232,6	0,3	185	147,0	38,0			
26	65,1	16,7	66	218,9	4,7	106	108,9	19,0	146	235,6	0,0	186	149,5	43,5			
27	68,1	16,7	67	221,4	3,9	107	113,2	17,7	147	238,6	0,0	187	152,0	49,7			
28	70,9	16,9	68	223,9	3,1	108	117,6	16,8	148	1,5	3,0	188	154,5	54,3			
29	74,1	17,1	69	226,4	2,3	109	121,8	23,0	149	4,6	12,2	189	157,0	51,9			
30	78,4	17,1	70	228,9	1,5	110	126,0	35,5	150	9,0	16,4	190	159,5	51,9			
31	82,8	17,2	71	231,4	0,7	111	130,2	34,2	151	13,3	18,5	191	162,0	52,7			
32	87,1	17,2	72	233,9	0,0	112	134,2	33,1	152	17,7	34,4	192	164,5	53,9			
33	91,3	8,5	73	236,4	0,0	113	138,4	33,3	153	21,9	32,6	193	167,0	57,5			
34	95,5	14,3	74	234,0	0,0	114	142,6	32,2	154	26,1	30,5	194	169,5	60,1			
35	99,6	22,1	75	1,4	2,7	115	147,0	38,0	155	30,1	34,0	195	172,0	63,3			
36	103,9	31,1	76	3,9	11,3	116	151,2	47,5	156	34,5	34,6	196	174,5	65,5			
37	108,1	23,9	77	6,4	13,9	117	155,4	54,0	157	38,7	33,4	197	177,0	69,9			
38	110,9	16,3	78	8,9	16,2	118	159,4	51,9	158	41,5	32,2	198	179,5	69,0			
39	115,1	17,4	79	11,5	15,5	119	163,6	53,0	159	45,6	32,5	199	182,1	52,7			
40	119,3	16,9	80	14,1	21,9	120	167,4	57,6	160	49,8	22,7	200	184,7	40,0			

Realizado por: Autor.

TOMA #1

Anexo I: Tablas del Consumo total – Densidad para cada prueba de Super (S).

	PRUEBA 1													
2000	cm3	0,002	m3	densidad =	728,5	km/m3								
1457	g	1,457	kg				DENSIDAD	730,938093						
				litros=	2	L								
	Toma al final de la prueba:													
1860	cm3	0,00186	m3	densidad =	732,258065	km/m3								
1362	g	1,362	kg				CONSUMO	0,14						
				litros=	1,86	L								
PRUEBA 2														
2000	cm3	0,002	m3	densidad =	728,5	km/m3								
1457	g	1,457	kg											
				litros=	2	L								
				Toma	al final de la pru	ieba:								
1895	cm3	0,001895	m3	densidad =	732,453826	km/m3								
1388	g	1,388	kg				CONSUMO	0,105						
				litros=	1,895	L								
					PRUEBA 3									
2000	cm3	0,002	m3	densidad =	728,5	km/m3								
1457	g	1,457	kg											
				litros=	2	L								
				Toma	al final de la pru	eba:								
1920	cm3	0,00192	m3	densidad =	735,416667	km/m3								
1412	g	1,412	kg				CONSUMO	0,08						
				litros=	1,92	L								

CONSUMO T 0,33

TOMA # 2

					PRUEBA 1									
2000	cm3	0,002	m3	densidad =	728,5	km/m3								
1457	g	1,457	kg				DENSIDAD	730,385023						
				litros=	2	L								
	Toma al final de la prueba:													
1860	cm3	0,00186	m3	densidad =	732,258065	km/m3								
1362	g	1,362	kg				CONSUMO	0,14						
				litros=	1,86	L								
PRUEBA 2														
2000	cm3	0,002	m3	densidad =	728,5	km/m3								
1457	g	1,457	kg											
				litros=	2	L								
			1	Toma	al final de la pro	ueba:	,							
1900	cm3	0,0019	m3	densidad =	732,105263	km/m3								
1391	g	1,391	kg				CONSUMO	0,1						
				litros=	1,9	L								
					PRUEBA 3									
2000	cm3	0,002	m3	densidad =	728,5	km/m3								
1457	g	1,457	kg											
				litros=	2	L								
	,		1	Toma	al final de la pro	ueba:	<u>, </u>							
1880	cm3	0,00188	m3	densidad =	732,446809	km/m3								
1377	g	1,377	kg				CONSUMO	0,12						
				litros=	1,88	L								

CONSUMO T	0,36
	0,50

TOMA #3

					PRUEBA 1							
2000	cm3	0,002	m3	densidad =	728,5	km/m3						
1457	g	1,457	kg				DENSIDAD	730,385023				
				litros=	2	L						
				Toma	al final de la pr	ueba:						
1860	860 cm3 0,00186 m3 d		densidad =	732,258065	km/m3							
1362	g	1,362	kg				CONSUMO	0,14				
				litros=	1,86	L						
	PRUEBA 2											
2000	cm3	0,002	m3	densidad =	728,5	km/m3						
1457	g	1,457	kg									
				litros=	2	L						
			•	Toma	al final de la pr	ueba:						
1900	cm3	0,0019	m3	densidad =	732,105263	km/m3						
1391	g	1,391	kg				CONSUMO	0,1				
				litros=	1,9	L						
					PRUEBA 3							
2000	cm3	0,002	m3	densidad =	728,5	km/m3						
1457	g	1,457	kg									
				litros=	2	L						
			•	Toma	al final de la pr	ueba:						
1880	cm3	0,00188	m3	densidad =	732,446809	km/m3						
1377	g	1,377	kg				CONSUMO	0,12				
				litros=	1,88	L						

CONSUMO T	0,36
	0,00

TOMA #1

Anexo J: Tablas del Consumo total – Densidad para cada prueba de Extra (E).

					PRUEBA 1			
2000	cm3	0,002	m3	densidad =	735,5	km/m3		
1471	g	1,471	kg				DENSIDAD	732,402488
				litros=	2	L		
				Toma	al final de la pru	ieba:		
1880	cm3	0,00188	m3	densidad =	743,617021	km/m3		
1398	g	1,398	kg				CONSUMO	0,12
				litros=	1,88	L		
					PRUEBA 2			
2000	cm3	0,002	m3	densidad =	735,5	km/m3		
1471	g	1,471	kg					
				litros=	2	L		
				Toma	al final de la pru	ieba:		
1860	cm3	0,00186	m3	densidad =	723,11828	km/m3		
1345	g	1,345	kg				CONSUMO	0,14
				litros=	1,86	L		
					PRUEBA 3			
2000	cm3	0,002	m3	densidad =	735,5	km/m3		
1471	g	1,471	kg					
				litros=	2	L		
				Toma	al final de la pru	ieba:		
1865	cm3	0,001865	m3	densidad =	721,179625	km/m3		
1345	g	1,345	kg				CONSUMO	0,135
				litros=	1,865	L		

CONSUMO T	0,40
	0,.0

TOMA #2

					PRUEBA 1							
2000	cm3	0,002	m3	densidad =	735,5	km/m3						
1471	g	1,471	kg				DENSIDAD	732,466317				
				litros=	2	L						
				Toma	al final de la pru	ieba:						
1875	cm3	0,001875	m3	densidad =	744	km/m3						
1395	g	1,395	kg				CONSUMO	0,125				
				litros=	1,875	L						
	PRUEBA 2											
2000	cm3	0,002	m3	densidad =	735,5	km/m3						
1471	g	1,471	kg									
				litros=	2	L						
				Toma	al final de la pru	ieba:						
1860	cm3	0,00186	m3	densidad =	723,11828	km/m3						
1345	g	1,345	kg				CONSUMO	0,14				
				litros=	1,86	L						
					PRUEBA 3							
2000	cm3	0,002	m3	densidad =	735,5	km/m3						
1471	g	1,471	kg									
				litros=	2	L						
				Toma	al final de la pru	ieba:	,					
1865	cm3	0,001865	m3	densidad =	721,179625	km/m3						
1345	g	1,345	kg				CONSUMO	0,135				
				litros=	1,865	L						

CONSUMO T 0,40

TOMA #3

					PRUEBA 1							
2000	cm3	0,002	m3	densidad =	735,5	km/m3						
1471	g	1,471	kg				DENSIDAD	735,88021				
				litros=	2	L						
				Toma a	ıl final de la prue	eba:						
1885	cm3	0,001885	m3	densidad =	741,114058	km/m3						
1397	g	1,397	kg				CONSUMO	0,115				
				litros=	1,885	L						
	PRUEBA 2											
2000	cm3	0,002	m3	densidad =	735,5	km/m3						
1471	g	1,471	kg									
				litros=	2	L						
				Toma a	ıl final de la prue	eba:						
1863	cm3	0,001863	m3	densidad =	739,667203	km/m3						
1378	g	1,378	kg				CONSUMO	0,137				
				litros=	1,863	L						
					PRUEBA 3							
2000	cm3	0,002	m3	densidad =	735,5	km/m3						
1471	g	1,471	kg									
				litros=	2	L						
				Toma a	ıl final de la prue	eba:						
1875	cm3	0,001875	m3	densidad =	728	km/m3						
1365	g	1,365	kg				CONSUMO	0,125				
				litros=	1,875	L						

CONSUMO T 0,38

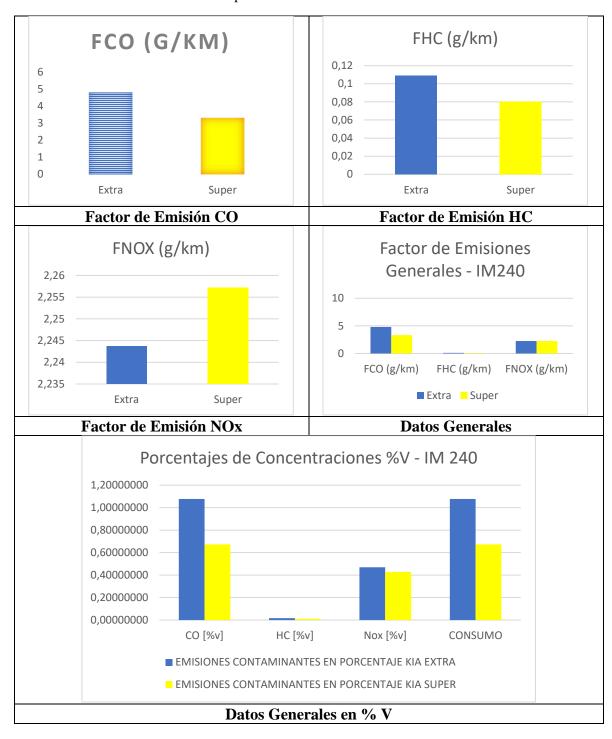
 $\boldsymbol{Anexo}\;\boldsymbol{K:}$ Tabla del Sistema de Ecuaciones % V a g/km.

		EX	TRA		SUPER			
	Medición 1	Medición 2	Medición 3	Promedio	Medición 1	Medición 2	Medición 3	Promedio
Consumo	0,40	0,400	0,377	0,390666667	0,325	0,360	0,360	0,348333333

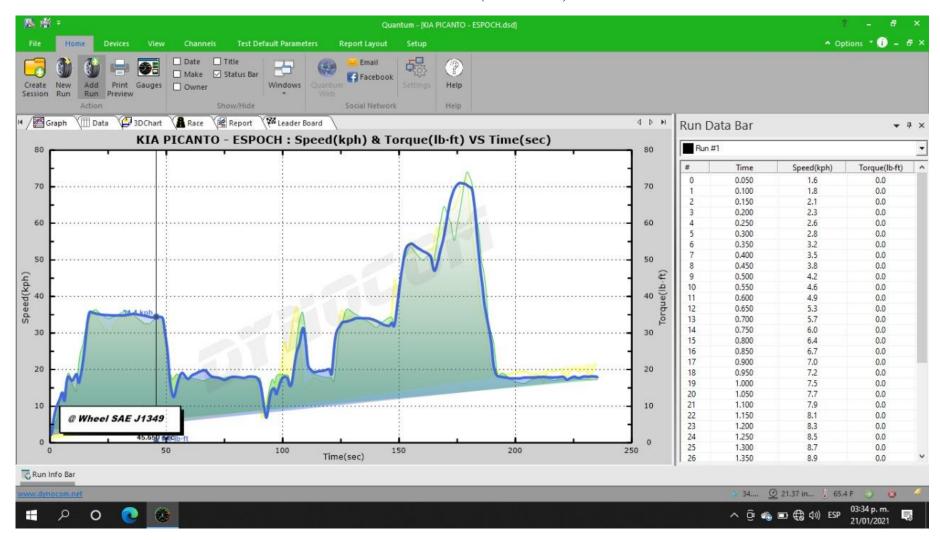
		EX	TRA		SUPER			
Rendimiento	MediciónMedición 2Medición 3Proposition 3			Promedio	Medición 1	Medición 2	Medición 3	Promedio
(Km/lt)	22,18	21,90	23,24	22,415	26,95	24,33	24,33	25,201

	EMISIONES CONTAMINANTES EN PORCENTAJE											
		EX	TRA		SUPER							
Parámetros	Medición 1	Medición 2	Medición 3	Promedio	Medición 1	Medición 2	Medición 3	Promedio				
CO [%v]	1,212886	1,00883208	1,017961	1,07714019	0,66129131	0,66905881	0,69116631	0,67383881				
CO2 [%v]	13,54140	13,541407	13,641407	13,57474071	11,202889	11,203664	11,20572	11,204114				
HC [%v]	0,015966	0,01574376	0,017476	0,01630839	0,01090441	0,01090518	0,01090739	0,01090566				
Nox [%v]	0,474314	0,47044314	0,467326	0,46962318	0,42794693	0,42844068	0,42824332	0,42821031				

	R EN FUNCIÓN DE CO2											
		EX	TRA		SUPER							
	Medición											
Parámetros	1	Medición 2	Medición 3	Promedio	Medición 1	Medición 2	Medición 3	Promedio				
RCO	0,089083	0,074496	0,0740458	0,079361915	0,058657	0,059713	0,061676	0,0601499				
RHC	0,001099	0,001638	0,001249	0,001201228	0,000357	0,000959	0,0009363	0,00097336				
RNOX	0,0347081	0,0347481	0,0306084	0,0345082	0,0389704	0,0382419	0,0382141	0,0382921				


			FACTO	DRES DE EN	MISIÓN			
		EX	TRA		SUPER			
	Medición							
Parámetros	1	Medición 2	Medición 3	Promedio	Medición 1	Medición 2	Medición 3	Promedio
FCO (g/km)	5,429	4,638	4,345	4,804	3,039	3,403	3,509	3,317
FHC (g/km)	0,107	0,109	0,111	0,109	0,075	0,083	0,083	0,080
FNOX								
(g/km)	2,257	2,317	2,157	2,244	2,107	2,335	2,329	2,257

PROMEDIO FACTORES DE EMISIÓN			
Parámetros	Extra	Super	
FCO (g/km)	4,8015796	3,317103871	
FHC (g/km)	0,1089452	0,080479767	
FNOX (g/km)	2,2437646	2,257205048	

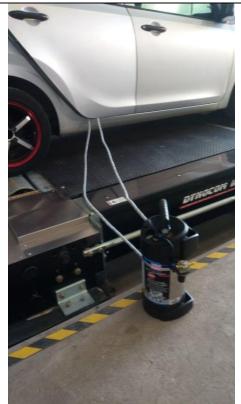

Densidad del combustible	
(Kg/m3)	748

Densidad del combustible	
(Kg/m3)	750

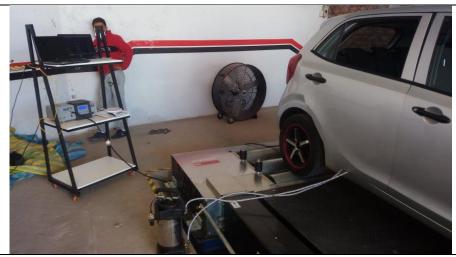
Anexo L: Graficas Comparativas de los Factores de Emisión A1E Y A1S.

Anexo M: Interfaz Software DYNOCO (dinamómetro)-Ciclo IM-240.

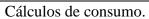
Anexo N: Registro Fotográfico.


Filtro de Combustible.

Reservorio.


Proceso de Presurización.

Conexión de Presurizador de Presión.



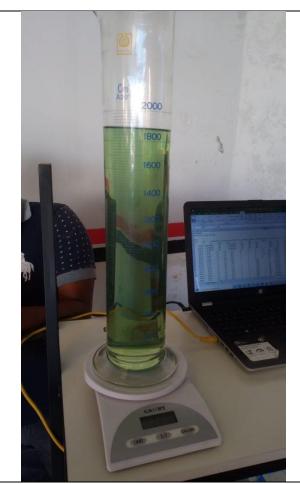
Elementos del Dinamómetro.

Conexiones Generales: Presurizador, analizador y dinamómetro.

Interfaz del dinamómetro.

Cálculos Combustible Extra. Instalación del vehículo en el dinámetro. Sincronización del Analizador de Gases. Ingreso de Combustible.

Presión del Presurizador (3.2bar)



Equipo Jet Clean.

Interfaz del dinamómetro.

Proceso de la Prueba en desarrollo.

Cálculos de consumo.

Kia Picanto (5 puertas).

Anexo O: Resultados Tabulados de cada toma IM-240. (Prueba #1: A1E).

TIEMPO (s)	CO (MET6)	CO2 (MET6)	HC (MET6)	Lambda (MET6)	NO (MET6)	TIEMPO (s)	CO (MET6)	CO2 (MET6)	HC (MET6)	Lambda (MET6)	NO (MET6)
1	0,233	33,667	22,889	1,311	389,556	68	0,158	138,200	135,000	1,114	13081,444
2	0,614	94,589	89,667	1,846	986.889	69	0,126	140,167	115,556	1,075	10982,889
3	1,251	109,767	152,889	1,435	2049,111	70	0,143	142,780	108,400	1,054	10097,500
4	2,257	110,200	218,444	1,196	2116,444	71	0,242	146,956	107,000	1,035	10066,889
5	2,962	108,533	260,444	1,101	1730,111	72	0,250	148,686	106,143	1,021	9014,857
6	3,259	104,322	285,111	1,069	1519,778	73	0,250	149,156	106,000	1,011	7375,778
7 8	3,445	102,875	299,250	1,058	1220,250	74 75	0,241	149,333	106,000	1,003	5874,111
9	3,525 3,236	102,900 103,300	310,800 314,000	1,053 1,064	1043,500 920,000	76	0,199 0,222	149,600 149,667	106,000 106,000	1,000 0,997	4650,333 3850,889
10	2,530	109,856	321,556	1,090	735,444	77	0,718	149,667	109,667	0,981	3239,111
11	1,734	115,867	336,667	1,082	738,889	78	1,244	149,256	139,444	0,965	2739,667
12	2,453	118,522	351,111	1,033	2218,111	79	1,515	147,489	182,556	0,956	2398,111
13	5,334	107,044	440,778	0,916	4575,444	80	1,619	141,360	221,400	0,952	2033,100
14	7,024	88,011	521,111	0,841	4564,000	81	1,710	137,475	240,250	0,964	1841,000
15 16	7,032	80,262	545,375	0,861	3631,250 2976,222	82	1,628	133,337	242,500	0,981	1672,000
17	5,308 2,813	86,878 106,922	581,333 526,444	0,959 1,062	3396,778	83 84	1,168 0,661	132,900 132,990	218,500 177,500	0,993 0,998	1515,750 1438,800
18	1,406	126,389	409,889	1,085	9350,222	85	0,364	135,488	144,000	1,008	1773,250
19	1,163	133,280	339,100	1,051	17759,700	86	0,281	143,122	123,111	1,011	2694,444
20	1,391	135,025	323,750	1,016	22558,500	87	0,279	147,089	116,000	1,006	3099,889
21	1,398	137,540	310,100	1,000	21182,000	88	0,265	148,722	112,111	1,001	2732,444
22	1,084	139,100	287,875	0,999	17968,500	89	0,206	149,022	108,556	0,998	2184,222
23	0,923	141,367	261,444	0,997	14781,778	90	0,157	149,556	105,111	0,998	1797,667
24 25	1,229 1,509	139,156 129,120	257,000 257,000	0,982 0,980	12191,667 9852,000	91 92	0,148 0,141	149,922 150,256	102,222 99,111	0,998 0,998	1534,778 1264,333
26	1,590	127,200	257,700	1,023	7935,400	93	0,141	149,033	95,111	1,002	1028,000
27	2,717	126,933	285,111	0,991	6662,222	94	0,101	148,610	91,400	1,006	931,800
28	4,268	123,825	331,875	0,914	6089,250	95	0,091	148,875	88,125	1,005	877,875
29	4,517	121,800	351,500	0,888	5387,750	96	0,080	148,900	78,600	1,003	695,400
30	4,738	121,478	373,556	0,873	4657,778	97	0,079	148,937	78,000	1,009	696,250
31	4,561	120,300	380,333	0,871	4200,000	98	0,079	148,790	78,000	1,002	580,500
32	2,898	129,900	347,333	0,913	3730,778	99	0,078	150,900	77,250	1,001	531,500
33 34	2,174 2,893	134,289 130,733	314,000 318,333	0,933 0,913	3985,667 4380,222	100 101	0,077 0,087	151,700 151,767	76,778 75,333	0,999 0,997	445,889 325,889
35	3,476	126,544	339,111	0,895	4079,667	102	0,187	151,790	75,000	0,995	317,100
36	2,869	128,389	344,556	0,909	3332,889	103	0,222	151,589	75,667	0,993	273,778
37	1,801	136,300	329,500	0,940	2854,200	104	0,205	151,467	76,000	0,993	194,444
38	1,264	140,400	302,500	0,956	2787,000	105	0,187	151,478	76,000	0,993	190,889
39	1,299	140,444	302,000	0,955	2871,111	106	0,233	151,362	78,375	0,992	134,500
40 41	1,274 0,896	140,500 142,322	302,889 290,111	0,955 0,966	2615,889 2492,444	107 108	0,286 0,298	150,275 145,057	91,125 96,143	0,990 0,998	126,000 149,000
41	0,896	144,744	274,556	0,988	2638,444	108	0,270	144,238	97,000	1,013	164,125
43	0,609	145,556	273,556	0,975	2844,778	110	0,255	144,943	97,000	1,011	168,571
44	0,427	148,311	271,667	0,980	2818,667	111	0,786	145,425	99,875	0,986	202,000
45	0,263	148,689	256,556	0,985	2901,222	112	1,749	138,714	124,857	0,956	216,714
46	0,217	150,889	246,111	0,987	2995,000	113	2,432	128,438	152,125	0,955	219,000
47	0,198	152,000	242,556	0,988	2961,222	114	3,981	122,287	200,750	0,943	219,250
48 49	0,221	152,000 152,189	242,000 242,000	0,987 0,987	3043,778 3205,333	115 116	4,908 4,926	119,325 118,629	241,000 259,429	0,901 0,875	287,000 467,571
50	0,231	152,189	236,500	0,987	3513,125	117	3,411	119,025	248,125	0,873	430,375
51	0,180	152,387	224,375	0,989	3690,375	118	1,840	123,313	194,750	0,942	430,250
52	0,162	153,111	215,778	0,990	3847,222	119	0,949	120,075	143,750	0,978	607,750
53	0,184	153,067	207,333	0,990	3828,333	120	0,568	115,833	118,111	1,069	1028,111
54	0,229	151,422	207,000	0,988	3787,222	121	0,501	131,233	109,111	1,113	1279,667
55	0,214	149,478	205,222	0,989	3516,889	122	0,373	139,433	99,000	1,058	1455,889
56 57	0,158	145,456 144,911	183,444	0,993	3299,222 3637,111	123	0,283	143,933	89,889	1,020	1429,778
57	0,141	134,722	162,444 159,111	0,998	4331,111	124 125	0,214 0,169	146,300 146,867	79,111 74,667	1,005 1,001	1410,667 1219,556
59	0,290	114,511	159,000	1,074	4019,889	126	0,163	148,300	74,007	1,001	949,222
60	0,609	111,011	161,222	1,197	3272,667	127	0,167	148,900	73,222	1,008	652,778
61	0,652	111,933	168,333	1,221	2724,667	128	0,166	148,956	71,778	1,011	607,778
62	0,605	117,733	185,556	1,187	2450,556	129	0,154	149,056	69,444	1,008	476,222
63	0,403	118,356	208,889	1,161	2356,889	130	0,114	149,156	67,889	1,002	389,889
64	0,200	117,600	207,500	1,179	3215,600	131	0,073	149,200	64,000	1,000	269,750
65 66	0,131	118,150 124,120	176,000 159,200	1,206 1,193	6638,250 11452,200	132 133	0,063 0,069	149,100 147,989	61,500 60,889	1,000 1,013	236,000 119,889
67	0,130	132,100	145,750	1,193	13825,750	133	0,069	147,989	60,556	1,013	562,222
07	0,130	132,100	173,730	1,100	13023,730	134	0,247	177,300	00,330	1,020	302,222

135	0,819	147,900	76,778	0,993	1756,222	
136	1,290	147,600	96,333	0,969	2255,778	
137	1,161	147,400	102,556	0,968	1884,000	
138	0,766	147,356	104,000	0,976	1369,444	
139	0,537	147,456	103,444	0,982	900,556	Т
140	0,444	149,600	103,000	0,984	645,222	H
141	0,374	149,700		0,987	489,000	-
	-		102,000	· ·		-
142	0,354	149,550	100,400	0,987	428,700	-
143	0,367	149,556	99,000	0,986	371,000	
144	0,588	149,600	98,000	0,980	243,556	
145	0,637	149,544	98,000	0,979	232,222	
146	0,572	149,500	98,000	0,980	175,556	
147	0,454	149,500	98,000	0,984	113,750	
148	0,373	149,500	98,000	0,986	101,000	
149	0,322	149,556	97,000	0,987	104,556	
150	0,320	149,356	97,000	0,987	44,889	
151	0,305	149,389	95,111	0,988	97,222	_
152	0,302	149,400	89,111	0,988	41,000	-
						H
153	0,290	149,211	87,333	0,989	40,667	-
154	0,246	149,000	83,222	0,990	3,667	
155	0,530	146,500	81,000	0,982	0,000	L
156	2,473	135,111	125,000	0,927	30,000	L
157	2,703	137,300	153,000	0,922	1313,222	L
158	2,305	141,800	154,900	0,933	6371,000	L
159	2,679	137,250	155,000	0,923	9974,000	Ĺ
160	2,357	135,389	153,222	0,930	9357,556	
161	1,915	138,500	152,000	0,941	7574,556	Г
162	1,684	140,033	152,333	0,948	6065,444	
163	1,310	143,000	153,889	0,957	4920,667	_
164	0,979	144,600	152,667	0,967	3986,111	
			,			H
165	0,915	144,600	149,667	0,968	3400,222	
166	0,793	145,844	140,556	0,973	2998,778	
167	0,643	146,000	129,222	0,977	2803,444	
168	0,572	146,000	119,222	0,979	2552,000	
169	0,558	146,578	108,556	0,980	2428,444	
170	0,556	147,111	105,222	0,980	2315,889	
171	0,519	148,122	102,222	0,982	2330,556	
172	0,479	149,300	100,222	0,983	2244,111	
173	0,466	149,940	98,800	0,983	2188,500	
174	0,478	150,500	97,125	0,984	2072,750	
175	0,663	148,020	95,400	0,981	2063,400	
176	0,810	145,462	94,000	0,982	2330,750	
177	1,035	145,400	96,000	0,975	4111,100	
178	1,057	145,400	99,125	0,971	5645,875	
179	1,028	146,222	109,556	0,970	6590,778	
180	0,928	147,900	118,444	0,972	8835,778	
181	0,984	149,300	123,889	0,970	11812,444	
182	1,070	147,967	125,000	0,967	13794,556	
183	0,853	147,100	125,000	0,972	13674,667	
184	0,623	149,911	121,556	0,979	12529,556	
185	0,458	150,522	110,222	0,983	10780,222	
186	0,540	150,389	106,111	0,981	8978,222	l
187	0,584	149,922	105,000	0,980	8542,778	l
188	0,613	149,789	105,000	0,979	9605,222	
189	0,631	150,567	104,778	0,979	11962,889	l
190	0,670	150,700	104,000	0,978	14977,000	
191	0,932	141,375	104,000	0,979	17372,750	
192	1,402	127,500	104,000	1,006	17503,222	
193	1,450	111,322	104,000	1,060	15664,111	
194	1,252	105,489	104,000	1,141	12998,778	
195	1,056	108,456	103,333	1,192	10589,111	
196	0,828	113,767	101,444	1,203	8805,889	l
197	0,694	119,800	96,778	1,199	7447,111	
198	0,626	119,800	93,111	1,199	6328,667	
199	0,543	120,044	91,111	1,201	5397,667	l
200	0,454	120,500	89,556	1,195	4616,889	l
201	0,416	122,533	88,000	1,182	3974,889	l
202	0,384	132,500	88,000	1,152	3396,667	l
203	0,365	134,500	88,222	1,109	2938,556	l
204	0,397	135,144	90,556	1,092	2435,556	l
205	0,372	137,125	92,000	1,065	2060,375	

1561,333

1418.444

1290,667

1097,625

948,700

791,778

731,667

634,111

604,000

727,889

958,125

1272,333

1662,556

2082,778

2184,111

1880,222

1910,333

2544,889

3434,333

3462,375

2826,000

1935,200

1380,375

900,556

607,444

356,222

266,222

82,222

0,000

0,000

0,000

0,000

0,000

1,038

1,032

1,040

1,046

1,049

1,053

1,058

1,059

1,054

1,040

1,005

0,977

0,964

0,977

1,008

1,027

1,027

1,020

1,013

1,007

1,005

1,003

1,002

1,001

1,010

1,034

1,032

1,019

1,017

1,028

1.045

1,059

1,063

1,055

1,039

206

207

208

209

210

211

212

213

214 215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

0,260

0,326

0,381

0,358

0,281

0,259

0,223

0,237

0,347

0,496

0,988

1,555

1,989

1,995

1,589

1,087

0,665

0,404

0,249

0,168

0,125

0,092

0,076

0,068

0,068

0,067

0,060

0,044

0,048

0,094

0,176

0,187

0,166

0,106

0,202

137,900

140,100

139,144

138,722

138,800

139,120

139,156

139,000

139,067

142,211

144,211

140,687

133,433

128,989

128,156

127,922

128,200

132,644

137,578

143,978

145,613

149,044

151,840

151,888

149,644

146,944

145,989

145,900

145,956

145,900

145,800

142,767

140.544

140,038

141,640

91,778

90,333

87,778

85,222

81.500

78,200

76,778

76,000

76,000

78,333

100,111

129,125

163,000

179,333

182,000

160,000

131,000

103,556

89,222

76,333

71,875

65,667

61,600

59,875

58,889

57,889

56,444

55,333

54,000

54,000

54,000

54,000

54,000

54,000

Anexo P: Resultados Tabulados de cada toma IM-240. (Prueba #2: A1E).

TIEMPO	СО	CO2	НС	Lambda	NO	TIEMPO	со	CO2	НС	Lambda	NO
(s)	(MET6)	(MET6)	(MET6)	(MET6)	(MET6)	(s)	(MET6)	(MET6)	(MET6)	(MET6)	(MET6)
2	0,157 0,619	93,000 115,287	29,222 92,500	1,991 1,457	2079,444 2512,125	68 69	0,401 0,416	149,200 149,022	199,333 199,556	0,990 0,989	8272,778 7642,000
3	1,022	129,522	143,333	1,205	5389,778	70	0,410	149,022	199,444	0,989	7094,222
4	1,488	133,750	166,750	1,078	11165,125	71	1,870	141,533	209,778	0,948	6594,889
5	1,561	134,278	170,333	1,031	15247,000	72	2,521	135,233	241,444	0,928	5881,444
6	1,761	131,922	172,889	1,018	18295,222	73	2,754	132,111	260,778	0,919	5033,111
7	1,899	131,300	176,556	1,016	18899,667	74	2,424	132,300	272,375	0,925	4357,500
8	1,663	131,300	180,111	1,010	17563,444	75	1,635	138,611	273,333	0,948	4091,333
9	1,226	132,522	190,000 205,375	1,022	15284,889	76 77	1,195	140,167	266,333 262,667	0,960	4305,000
11	1,052 1,917	140,313 137,167	203,375	1,027 0,988	16540,875 26335,778	77	1,163 1,100	140,922 141,838	262,375	0,961 0,963	4459,000 4268,750
12	2,973	125,575	240,000	0,944	30393,000	79	0,790	144,775	262,625	0,971	4213,875
13	3,036	119,333	248,111	0,951	31310,889	80	0,608	145,744	261,222	0,977	4361,111
14	2,831	118,556	252,444	0,985	27706,111	81	0,665	145,467	261,000	0,975	4481,667
15	2,252	118,400	255,000	1,029	22702,000	82	0,675	144,600	261,000	0,975	4308,778
16	1,683	118,400	254,222	1,072	19278,556	83	0,526	144,600	256,889	0,979	4113,444
17	1,254	117,675	251,750	1,122	17529,125	84	0,470	144,750	249,500	0,981	4078,875
18 19	1,015 0,939	112,820 111,475	239,000 231,125	1,185 1,230	17513,000 17879,500	85 86	0,443 0,351	144,875 143,589	243,000 235,889	0,981 0,984	4011,500 3948,222
20	0,932	110,500	229,250	1,253	17469,875	87	0,258	126,911	214,778	1,019	3929,556
21	0,895	109,300	224,889	1,263	16245,778	88	0,232	118,250	200,000	1,126	3694,625
22	0,815	110,367	220,750	1,255	14894,333	89	0,210	118,620	198,000	1,208	3391,500
23	0,740	112,867	216,333	1,242	13659,333	90	0,195	116,978	197,667	1,203	3208,889
24	0,670	114,289	212,667	1,235	12443,111	91	0,178	121,133	186,778	1,206	3287,889
25	0,614	115,800	211,556	1,225	11290,667	92	0,142	133,133	164,111	1,172	3347,778
26 27	0,543 0,480	116,378 117,411	207,222 202,889	1,218 1,214	10367,111 9489,111	93 94	0,164 0,629	138,467 136,089	142,333 133,111	1,105 1,063	3276,889
28	0,480	117,700	197,250	1,214	8757,875	95	1,355	127,889	136,111	1,053	3167,667 3119,000
29	0,376	117,700	195,889	1,218	8021,222	96	1,709	127,344	157,333	1,046	2837,333
30	0,358	117,700	193,400	1,219	7330,600	97	1,527	133,378	170,000	1,035	2570,889
31	0,355	117,700	192,000	1,220	6709,625	98	1,145	135,056	170,000	1,016	2585,778
32	0,355	117,700	192,000	1,220	3085,901	99	1,171	131,900	168,667	1,011	3397,000
33	0,225	100,450	69,750	1,979	1121,725	100	1,532	126,867	168,000	1,032	3734,889
34 35	0,258	109,500 113,550	86,889 101,000	1,583 1,367	2630,778 2693,875	101 102	1,603 1,593	125,200 127,267	169,778 174,000	1,051 1,044	3561,778 3073,778
36	0,263	115,833	107,000	1,290	2289,111	102	2,193	127,207	194,111	1,008	2721,222
37	0,226	117,256	108,000	1,264	2067,778	104	3,167	120,613	238,250	0,967	2330,625
38	0,227	121,611	116,444	1,233	1805,000	105	4,000	117,756	278,889	0,939	2079,000
39	0,963	133,300	155,125	1,133	1862,000	106	4,379	117,733	310,000	0,915	1771,333
40	4,190	119,556	303,444	0,959	3734,222	107	4,649	117,300	331,000	0,887	1651,222
41	5,809	107,989	381,778	0,874	6092,000	108	4,815	114,811	343,222	0,877	1493,556
42	5,067 3,203	111,900 123,300	382,000 331,125	0,892 0,943	2905,750 2719,788	109 110	4,555 3,638	113,389 113,122	346,000 336,444	0,897 0,938	1366,000 1257,111
44	1,958	126,300	275,625	0,980	3836,786	111	2,563	113,122	291,778	0,938	1166,889
45	1,900	125,950	253,000	1,003	5904,245	112	1,754	118,478	241,667	1,005	1256,889
46	2,204	124,200	245,000	1,015	6584,278	113	1,137	123,622	202,111	1,029	2278,000
47	2,142	129,178	245,000	1,009	12225,444	114	0,765	129,211	173,222	1,044	5299,778
48	1,566	135,100	238,889	0,997	10829,222	115	0,553	133,511	153,556	1,049	9984,444
49 50	1,233 1,092	135,122	225,333	0,996 1,020	10622,444 11017,857	116 117	0,407 0,298	138,733 140,822	136,333	1,044 1,035	13287,889 13119,000
50	0,871	129,600 136,967	215,857 210,000	1,020	11017,857	117	0,298	140,822	125,667 109,000	1,035	10998,222
52	0,934	139,613	210,000	1,035	7927,082	119	0,206	140,444	102,778	1,042	8712,000
53	0,920	141,867	210,000	1,010	20990,444	120	0,187	136,022	96,889	1,059	6981,444
54	0,731	144,633	210,000	1,000	20701,444	121	0,147	126,144	94,333	1,106	5663,889
55	0,580	144,922	210,000	0,998	18250,333	122	0,128	134,200	90,889	1,147	4597,778
56	0,472	147,089	206,000	0,998	16219,444	123	0,149	141,356	90,000	1,096	3880,889
57	0,414	149,500	198,889 197,000	0,998	15566,222	124	0,298	147,800	90,333	1,029	3336,556
58 59	0,715 0,973	148,256 144,938	197,000	0,988 0,978	15979,222 15768,125	125 126	0,645 0,827	147,800 147,613	101,889 121,750	0,998 0,985	2886,111 2567,125
60	0,853	145,611	199,000	0,980	14113,556	127	0,678	147,613	127,556	0,983	2236,778
61	0,598	146,700	199,000	0,986	12863,556	128	0,579	147,411	128,556	0,985	2019,111
62	0,449	147,637	199,000	0,990	12119,625	129	0,532	147,489	129,000	0,988	1838,778
63	0,399	149,233	198,444	0,991	11576,222	130	0,457	142,267	128,333	0,993	1981,444
64	0,408	149,300	199,000	0,991	11036,800	131	0,634	139,611	128,000	1,005	2492,222
65	0,413	149,263	199,000	0,990	10459,500	132	0,913	140,256	128,222	1,008	2773,778
66 67	0,446	149,200 149,200	199,000 199,000	0,989 0,989	9773,400 8981,143	133 134	0,909 0,773	141,500 142,022	130,667 132,111	1,000 0,997	2507,111 2146,667
0/	0,441	143,200	133,000	0,989	0701,143	134	0,773	142,022	132,111	0,997	2140,007

135	0,647	143,089	135,000	0,999	1711,333	
136	0,530	147,300	136,667	1,002	1485,889	
137	0,467	146,967	137,000	1,004	1170,556	
138	0,356	146,700	137,000	1,008	1061,556	
139	0,299	145,443	136,429	1,011	930,857	
140	0,259	135,122	134,667	1,029	810,333	
141	0.227	131,300	120,111	1,083	615,333	t
142	/	135,850			,	
	1,027		118,500	1,069	730,250	┢
143	2,366	135,490	155,400	0,980	931,800	┢
144	2,209	135,700	169,500	0,954	475,070	<u> </u>
145	2,037	135,522	170,444	0,947	915,444	<u> </u>
146	1,909	128,311	171,000	0,959	998,111	
147	1,466	128,322	170,556	1,011	986,667	
148	1,239	136,222	160,667	1,029	994,333	
149	0,917	140,667	151,111	1,015	862,889	
150	0,673	142,767	134,667	1,002	765,333	
151	0,573	145,011	127,667	0,993	630,000	
152	0,514	146,400	125,000	0,989	455,375	
153	0,479	146,822	125,000	0,989	397,333	
154	0,451	147,100	124,556	0,987	303,667	
155	0,402	147,100	124,000	0,989	232,222	
156	0,394	147,100	123,500	0,989	155,875	H
157	0,375	146,078	120,333	0,989	175,556	<u> </u>
158	0,368	144,800	119,222	0,993	70,556	\vdash
159	0,355	144,733	119,000	1,006	74,556	L
160	0,488	143,900	119,000	1,005	22,444	
161	1,262	139,511	119,000	0,973	153,667	
162	1,719	136,200	119,889	0,967	367,222	L^{T}
163	1,570	136,689	120,000	0,971	697,556	
164	1,448	139,667	120,000	0,964	975,333	
165	1,341	141,644	120,889	0,962	979,111	
166	0,901	141,789	121,000	0,972	814,222	
167	0,576	144,200	115,889	0,981	866,667	H
168	0,468	145,511		0,981	874,000	
			106,667			-
169	0,496	146,233	102,000	0,983	810,222	┢
170	0,607	146,300	102,000	0,979	551,222	4
171	0,693	147,144	102,000	0,977	506,000	
172	0,600	148,237	102,000	0,980	476,250	1
173	0,521	148,900	102,400	0,982	479,200	1
174	0,520	149,700	103,875	0,982	531,625]
175	0,484	149,425	106,875	0,983	531,500	
176	0,410	149,013	110,750	0,985	459,625	1
177	0,388	149,000	111,000	0,985	382,444	1
178	0,378	149,067	111,000	0,986	311,000	1
179	0,356	149,300	111,000	0,986	318,556	1
180	0,346	149,300	111,000	0,986	291,250	1
181	0,342		110,778	0,987		1
182		149,300 149,300	109.222		270,000 311,000	1
	0,341		,	0,986		1
183	0,338	150,078	107,000	0,987	209,667	ł
184	0,404	149,756	101,889	0,985	187,222	ł
185	0,856	141,044	101,000	0,975	123,333	ł
186	1,387	135,578	107,000	0,973	198,444	
187	3,150	129,911	147,222	0,927	543,778	
188	4,089	123,722	184,222	0,891	1080,667	1
189	2,945	125,867	184,556	0,914	1853,889	1
190	1,369	133,933	150,000	0,960	3516,778]
191	0,793	142,356	125,222	0,984	7942,444	1
192	0,999	145,100	118,444	0,978	10506,444	1
193	1,294	145,022	117,778	0,965	8532,000	1
194	1,066	145,278	117,000	0,969	6144,444	1
195	0,797	149,033	115,000	0,975	4556,889	1
196			111,222			ł
	0,653	150,011		0,979	3764,667	1
197	0,584	150,867	108,778	0,981	3408,111	ł
198	0,565	151,000	107,000	0,981	3391,600	1
199	0,558	150,962	105,375	0,981	3339,750	4
200	0,558	150,589	103,222	0,981	3408,000	
201	0,545	150,200	101,222	0,981	3396,778	1
202	0,466	150,311	98,667	0,983	3456,667	
203	0,763	150,011	94,000	0,976	3317,889]
204	1,164	147,111	92,333	0,966	3047,778]
205	0,853	145,589	89,111	0,974	2938,889	1
						•

7255,556

10412,556

13036,333

13130,222

11823,889

10412,333

9353,778

8430,444

7484,444

7293,111

9214,778

11767,556 12683,222

12398,222

11414,250

10175,889

8625,667

7158,111

5877,778

4578,889

3644,111

2968,667

2413,222

1831,222

1455,889

1099,556

795,333

487,556

345,750

190,667

93,333

67,111

30,000

0,000

0,980

0,980

0,977

0,973

0,973

0,977

0,981

0,970

0,954

0,927

0,924

0,947

0,964

0,971

0,982

1,055

1,122

1,141

1,141

1,480

2,085

2,217

1,891

1,672

1,536

1,439

1,401

1,375

1,341

1,296

1,255

1,238

1,236

1,232

1,226

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

0,670

0,680

0,786

0,900

0,907

0,715

0,592

0,979

1,565

2,500

2,547

1,691

1,063

0,813

0,833

1,021

1,030

0,897

0,605

0,369

0,205

0,137

0,090

0,061

0,042

0,028

0,026

0,023

0,023

0,023

0,024

0,046

0,081

0,085

0,079

146,722

148,589

148,900

148,878

148,800

149,444

151,611

148,311

143,956

137,111

135,211

139,022

143,444

143,456

130,744

121,313

114,289

119,200

96,111

65,500

52,078

62,056

83,533

94,422

100,589

107,211

107,456

108,589

113,678

117,650

119,922

120,511

120,600

122,056

122,200

84,333

84,222

85,222

89,111

92.000

92,000

91,778

90,333

92,889

116,111

142,222

145,667

146,000

145,333

142,222

139,375

136,444

131,889

113.778

95,667

77,444

71,111

65,556

56,556

53,000

51,667

47,778

45,889

45,000

44,875

43,444

43,000

43,000

42,444

Anexo Q: Resultados Tabulados de cada toma IM-240. (Prueba #3: A1E).

TIEMPO (s)	CO (MET6)	CO2 (MET6)	HC (MET6)	Lambda (MET6)	NO (MET6)	TIEMPO (s)	CO (MET6)	CO2 (MET6)	HC (MET6)	Lambda (MET6)	NO (MET6)
1	0,181	94,000	29,432	1,992	2054,444	68	0,402	150,200	199,543	0,991	8247,778
2	0,631	116,287	92,710	1,459	2487,125	69	0,417	150,022	199,766	0,991	7617,000
3	1,023	130,522	143,543	1,207	5364,778	70	0,862	149,778	199,654	0,979	7069,222
4	1,489	134,750	166,960	1,079	11140,125	71	1,871	142,533	209,988	0,950	6569,889
5	1,562	135,278	170,543	1,033	15222,000	72	2,522	136,233	241,654	0,929	5856,444
6	1,762	132,922	173,099	1,020	18270,222	73	2,756	133,111	260,988	0,920	5008,111
7 8	1,901 1,665	132,300 132,300	176,766 180,321	1,018 1,012	18874,667 17538,444	74 75	2,425 1,636	133,300 139,611	272,585 273,543	0,927 0,949	4332,500 4066,333
9	1,227	133,522	190,210	1,012	15259,889	76	1,196	141,167	266,543	0,949	4280,000
10	1,053	141,313	205,585	1,028	16515,875	77	1,164	141,922	262,877	0,963	4434,000
11	1,919	138,167	223,766	0,990	26310,778	78	1,101	142,838	262,585	0,964	4243,750
12	2,974	126,575	240,210	0,945	30368,000	79	0,791	145,775	262,835	0,973	4188,875
13	3,037	120,333	248,321	0,952	31285,889	80	0,609	146,744	261,432	0,978	4336,111
14	2,832	119,556	252,654	0,986	27681,111	81	0,666	146,467	261,210	0,977	4456,667
15	2,253	119,400	255,210	1,031	22677,000	82	0,677	145,600	261,210	0,976	4283,778
16 17	1,685 1,255	119,400 118,675	254,432 251,960	1,074 1,124	19253,556	83 84	0,527 0,471	145,600 145,750	257,099 249,710	0,980 0,982	4088,444 4053,875
18	1,016	113,820	239,210	1,124	17504,125 17488,000	85	0,444	145,875	243,710	0,982	3986,500
19	0,940	112,475	231,335	1,232	17854,500	86	0,352	144,589	236,099	0,986	3923,222
20	0,933	111,500	229,460	1,254	17444,875	87	0,259	127,911	214,988	1,020	3904,556
21	0,896	110,300	225,099	1,265	16220,778	88	0,233	119,250	200,210	1,127	3669,625
22	0,816	111,367	220,960	1,256	14869,333	89	0,211	119,620	198,210	1,210	3366,500
23	0,741	113,867	216,543	1,243	13634,333	90	0,196	117,978	197,877	1,205	3183,889
24	0,671	115,289	212,877	1,237	12418,111	91	0,179	122,133	186,988	1,208	3262,889
25	0,615	116,800	211,766	1,227	11265,667	92	0,143	134,133	164,321	1,173	3322,778
26	0,544	117,378	207,432	1,220	10342,111	93 94	0,166	139,467	142,543	1,106	3251,889
27 28	0,481 0,424	118,411 118,700	203,099 197,460	1,215 1,217	9464,111 8732,875	95	0,630 1,356	137,089 128,889	133,321 136,321	1,065 1,054	3142,667 3094,000
29	0,424	118,700	196,099	1,220	7996,222	96	1,710	128,344	157,543	1,048	2812,333
30	0,359	118,700	193,610	1,221	7305,600	97	1,528	134,378	170,210	1,036	2545,889
31	0,356	118,700	192,210	1,222	6684,625	98	1,146	136,056	170,210	1,017	2560,778
32	0,356	118,700	192,210	1,222	3060,901	99	1,172	132,900	168,877	1,012	3372,000
33	0,226	101,450	69,960	1,980	1096,725	100	1,533	127,867	168,210	1,034	3709,889
34	0,259	110,500	87,099	1,585	2605,778	101	1,604	126,200	169,988	1,053	3536,778
35 36	0,271	114,550	101,210	1,369 1,291	2668,875	102 103	1,594	128,267	174,210 194,321	1,045	3048,778
37	0,265 0,228	116,833 118,256	107,210 108,210	1,265	2264,111 2042,778	103	2,194 3,168	128,056 121,613	238,460	1,010 0,969	2696,222 2305,625
38	0,229	122,611	116,654	1,234	1780,000	105	4,001	118,756	279,099	0,940	2054,000
39	0,964	134,300	155,335	1,135	1837,000	106	4,380	118,733	310,210	0,917	1746,333
40	4,191	120,556	303,654	0,961	3709,222	107	4,650	118,300	331,210	0,888	1626,222
41	5,811	108,989	381,988	0,876	6067,000	108	4,817	115,811	343,432	0,878	1468,556
42	5,068	112,900	382,210	0,893	2880,750	109	4,556	114,389	346,210	0,898	1341,000
43	3,204	124,300	331,335	0,944	2694,788	110	3,639	114,122	336,654	0,940	1232,111
44	1,959	127,300 126,950	275,835	0,982	3811,786	111	2,565	114,633	291,988	0,979	1141,889
45 46	1,901 2,205	125,200	253,210 245,210	1,004 1,016	5879,245 6559,278	112 113	1,755 1,138	119,478 124,622	241,877 202,321	1,006 1,030	1231,889 2253,000
47	2,144	130,178	245,210	1,010	12200,444	114	0,767	130,211	173,432	1,045	5274,778
48	1,567	136,100	239,099	0,999	10804,222	115	0,554	134,511	153,766	1,050	9959,444
49	1,234	136,122	225,543	0,997	10597,444	116	0,408	139,733	136,543	1,045	13262,889
50	1,093	130,600	216,067	1,022	10992,857	117	0,299	141,822	125,877	1,036	13094,000
51	0,873	137,967	210,210	1,058	11055,444	118	0,245	142,678	109,210	1,033	10973,222
52	0,935	140,613	210,210	1,037	7902,082	119	0,207	141,444	102,988	1,043	8687,000
53 54	0,921 0,733	142,867 145,633	210,210 210,210	1,011 1,002	20965,444 20676,444	120 121	0,188 0,148	137,022 127,144	97,099 94,543	1,061 1,107	6956,444 5638,889
55	0,733	145,633	210,210	1,002	18225,333	121	0,148	135,200	94,543	1,107	4572,778
56	0,381	148,089	206,210	1,000	16194,444	123	0,150	142,356	90,210	1,148	3855,889
57	0,416	150,500	199,099	1,000	15541,222	124	0,300	148,800	90,543	1,031	3311,556
58	0,717	149,256	197,210	0,989	15954,222	125	0,647	148,800	102,099	1,000	2861,111
59	0,974	145,938	198,210	0,980	15743,125	126	0,828	148,613	121,960	0,987	2542,125
60	0,854	146,611	199,210	0,982	14088,556	127	0,679	148,400	127,766	0,985	2211,778
61	0,599	147,700	199,210	0,988	12838,556	128	0,580	148,411	128,766	0,986	1994,111
62	0,451	148,637	199,210	0,992	12094,625	129	0,534	148,489	129,210	0,989	1813,778
63 64	0,400 0,410	150,233	198,654	0,993 0,993	11551,222 11011,800	130	0,458	143,267	128,543	0,994 1,006	1956,444
65	0,410	150,300 150,263	199,210 199,210	0,993	1011,800	131 132	0,635 0,915	140,611 141,256	128,210 128,432	1,006	2467,222 2748,778
66	0,414	150,200	199,210	0,991	9748,400	133	0,913	142,500	130,877	1,003	2482,111
67	0,442	150,200	199,210	0,991	8956,143	134	0,775	143,022	132,321	0,999	2121,667

135	0,649	144,089	135,210	1,000	1686,333	
136	0,532	148,300	136,877	1,003	1460,889	
137	0,468	147,967	137,210	1,006	1145,556	
138		,				H
	0,358	147,700	137,210	1,010	1036,556	H
139	0,300	146,443	136,639	1,012	905,857	
140	0,261	136,122	134,877	1,030	785,333	
141	0,228	132,300	120,321	1,085	590,333	
142	1,028	136,850	118,710	1,070	705,250	
143	2,367	136,490	155,610	0,981	906,800	
						H
144	2,210	136,700	169,710	0,955	450,070	H
145	2,038	136,522	170,654	0,948	890,444	
146	1,910	129,311	171,210	0,960	973,111	
147	1,468	129,322	170,766	1,012	961,667	
148	1,241	137,222	160,877	1,031	969,333	
149	0,918	141,667	151,321	1,016	837,889	
150	0,675	143,767	134,877	1,003	740,333	H
151	0,575	146,011	127,877	0,995	605,000	
152	0,515	147,400	125,210	0,991	430,375	
153	0,480	147,822	125,210	0,990	372,333	
154	0,452	148,100	124,766	0,989	278,667	
155	0,403	148,100	124,210	0,990	207,222	
156						
	0,395	148,100	123,710	0,990	130,875	H
157	0,376	147,078	120,543	0,990	150,556	_
158	0,370	145,800	119,432	0,995	45,556	L
159	0,357	145,733	119,210	1,008	49,556	
160	0,489	144,900	119,210	1,006	-2,556	
161	1,263	140,511	119,210	0,975	128,667	Т
162	1,721					H
		137,200	120,099	0,968	342,222	H
163	1,572	137,689	120,210	0,972	672,556	
164	1,449	140,667	120,210	0,966	950,333	
165	1,342	142,644	121,099	0,964	954,111	
166	0,902	142,789	121,210	0,973	789,222	
167	0,578	145,200	116,099	0,982	841,667	
		-				
168	0,469	146,511	106,877	0,985	849,000	
169	0,497	147,233	102,210	0,984	785,222	
170	0,608	147,300	102,210	0,981	526,222	
171	0,695	148,144	102,210	0,979	481,000	
172	0,601	149,237	102,210	0,981	451,250	
173	0,522	149,900	102,610	0,984	454,200	
				1		
174	0,521	150,700	104,085	0,984	506,625	
175	0,485	150,425	107,085	0,984	506,500	
176	0,411	150,013	110,960	0,986	434,625	
177	0,390	150,000	111,210	0,987	357,444	
178	0,379	150,067	111,210	0,988	286,000	
179	0,358	150,300	111,210	0,988	293,556	
		,				
180	0,347	150,300	111,210	0,988	266,250	
181	0,344	150,300	110,988	0,988	245,000	
182	0,343	150,300	109,432	0,988	286,000	
183	0,339	151,078	107,210	0,988	184,667	
184	0,405	150,756	102,099	0,986	162,222	
185	0,857	142,044	101,210	0,976	98,333	
186		136,578		0,974		
	1,388		107,210		173,444	l
187	3,151	130,911	147,432	0,928	518,778	1
188	4,090	124,722	184,432	0,893	1055,667	
189	2,947	126,867	184,766	0,915	1828,889	
190	1,371	134,933	150,210	0,962	3491,778	
191	0,794	143,356	125,432	0,986	7917,444	
192	1,000	146,100	118,654	0,979	10481,444	
193	1,295	146,022	117,988	0,967	8507,000	1
194	1,067	146,278	117,210	0,970	6119,444	
195	0,798	150,033	115,210	0,977	4531,889	
196	0,654	151,011	111,432	0,980	3739,667	
197	0,586	151,867	108,988	0,982	3383,111	
198	0,567	152,000	107,210	0,983	3366,600	
						1
199	0,559	151,962	105,585	0,983	3314,750	l
200	0,559	151,589	103,432	0,983	3383,000	
201	0,546	151,200	101,432	0,983	3371,778	
202	0,468	151,311	98,877	0,985	3431,667	
203	0,764	151,011	94,210	0,978	3292,889	
204	1,165	148,111	92,543	0,968	3022,778	
205	0,854	146,589	89,321	0,976	2913,889	ļ

7230,556

10387,556

13011,333

13105,222

11798,889

10387,333

9328,778

8405,444

7459,444

7268,111

9189,778

11742,556

12658,222

12373,222

11389,250

10150,889

8600,667

7133,111

5852,778

4553,889

3619,111

2943,667

2388,222

1806,222

1430,889

1074,556

770,333

462,556

320,750

165,667

68,333

42,111

5,000

0,000

0,982

0,981

0,978

0,975

0,974

0,979

0,983

0,972

0,955

0,928

0,926

0,948

0,966

0,973

0,984

1,057

1,123

1,142

1,143

1,481

2,086

2,219

1,893

1,674

1,538

1,441

1,403

1,377

1,343

1,297

1.257

1,240

1,237

1,234

1,228

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238 239

240

0,671

0,681

0,787

0,901

0,908

0,716

0,593

0,980

1,566

2,502

2,548

1,692

1,064

0,814

0,834

1,022

1,032

0,898

0,606

0,370

0,207

0,138

0,091

0,063

0,043

0,029

0,027

0,024

0,024

0,024

0,025

0,048

0,082

0,086

0,080

147,722

149,589

149,900

149,878

149,800

150,444

152,611

149,311

144,956

138,111

136,211

140,022

144,444

144,456

131,744

122,313

115,289

120,200

97,111

66,500

53,078

63,056

84,533

95,422

101,589

108,211

108,456

109,589

114,678

118,650

120,922

121,511

121,600

123,056

123,200

84,543

84,432

85,432

89,321

92,210

92,210

91,988

90,543

93,099

116,321

142,432

145,877

146,210

145,543

142,432

139,585

136,654

132,099

113.988

95,877

77,654

71,321

65,766

56,766

53,210

51,877

47,988

46,099

45,210

45,085

43,654

43,210

43,210

42,654

Anexo R: Resultados Tabulados de cada toma IM-240. (Prueba #1: A1S).

TIEMPO	CO	CO2	HC (Lambda	NO (acces)	TIEMPO	CO	CO2	HC	Lambda	NO
(s)	(MET6)	(MET6) 0,000	(MET6) 0,000	(MET6)	(MET6)	(s)	(MET6)	(MET6) 130,489	(MET6)	(MET6)	(MET6) 7724,556
2	0,000	0,000	0,000	1,947 1,947	0,000 29,444	68 69	0,532 0,642	130,489	197,333 191,250	1,134 1,113	6401,500
3	0,001	0,100	3,000	1,947	63,222	70	0,632	132,533	181,111	1,113	5356,222
4	0,001	0,163	3,000	1,947	79,750	71	0,945	132,489	175,222	1,085	4774,222
5	0,001	0,425	3,000	1,947	79,750	72	1,675	129,950	181,500	1,056	4535,125
6	0,001	12,278	3,000	1,947	63,222	73	2,469	122,775	208,000	1,028	4074,875
7	0,015	48,144	6,111	2,111	70,778	74	3,188	119,375	239,750	1,002	3470,625
8	0,207	72,020	36,000	2,456	87,400	75 76	3,555	115,600	264,750	0,990	2989,500
10	0,656 1,296	74,888 74,800	64,500 93,444	1,995 1,770	193,625 359,889	76	3,654 3,445	112,325 112,500	279,750 283,778	0,986 0,993	2601,000 2289,444
11	1,760	76,800	114,875	1,644	484,750	78	2,922	113,637	285,750	1,012	2052,000
12	1,829	78,533	126,111	1,562	509,778	79	2,214	118,800	281,556	1,035	1846,444
13	1,732	83,144	137,778	1,500	487,333	80	1,459	124,287	242,125	1,060	1773,000
14	1,501	87,200	145,500	1,467	484,750	81	1,310	125,288	222,000	1,064	1819,750
15	1,294	92,300	150,000	1,436	616,000	82	2,083	123,150	222,375	1,036	1886,875
16 17	1,055	106,856	162,000	1,369	840,556	83 84	2,836	120,044	241,444	1,009	1790,000
18	0,737 0,573	114,900 116,700	175,111 188,500	1,293 1,243	1384,667 4104,250	85	3,000 2,918	117,386 117,550	267,571 273,375	1,003 1,007	1621,000 1456,375
19	0,556	122,400	191,500	1,203	8698,875	86	2,274	120,163	274,875	1,028	1338,375
20	0,512	121,800	192,000	1,187	11359,500	87	1,623	124,686	257,286	1,049	1225,714
21	0,607	120,690	192,700	1,180	13073,600	88	1,177	128,011	225,778	1,065	1178,222
22	1,070	120,075	197,750	1,160	14349,250	89	1,167	127,950	218,000	1,065	1114,125
23	1,584	65,110	215,889	1,135	14627,778	90	1,404	126,438	222,625	1,055	1093,375
24 25	1,580	109,567	219,111	1,145	13528,000 12994,889	91 92	1,436	126,450	232,250	1,054	1017,250
26	1,326 1,307	112,456 119,300	221,667 232,714	1,187 1,173	16848,143	93	1,052 0,781	126,878 128,450	228,889 204,750	1,068 1,079	997,889 920,250
27	1,148	124,037	237,125	1,173	22533,500	94	0,707	129,712	197,750	1,080	987,500
28	1,245	125,600	241,000	1,101	26339,444	95	0,688	130,044	196,889	1,080	919,333
29	1,650	125,500	242,000	1,071	28671,900	96	0,500	133,478	191,222	1,086	908,222
30	1,466	126,933	242,000	1,067	27232,778	97	0,379	135,475	178,250	1,090	865,250
31	1,148	128,000	242,000	1,074	26452,125	98	0,368	136,057	172,000	1,089	912,000
32	0,943	127,690	240,400	1,088	26837,500	99	0,360	136,000	171,667	1,090	859,111
33 34	0,812 0,641	126,900 126,800	233,500 229,556	1,107 1,127	26760,500 25434,889	100 101	0,272 0,255	136,000 136,143	166,625 156,429	1,095 1,096	852,500 878,000
35	0,567	126,800	227,500	1,136	23898,000	102	0,226	135,789	148,556	1,097	878,000
36	0,502	126,800	225,500	1,141	22698,125	103	0,193	125,850	141,000	1,113	849,667
37	0,502	126,550	224,000	1,143	21979,200	104	0,177	112,280	131,000	1,184	830,700
38	0,534	126,300	224,000	1,144	21461,571	105	0,164	114,413	127,875	1,272	764,250
39	0,602	126,422	223,667	1,136	21388,333	106	0,131	116,037	123,375	1,270	743,000
40 41	0,642 0,655	128,211 131,300	223,000 223,000	1,124 1,110	21317,111 21493,444	107 108	0,086 0,072	114,333 114,622	116,111 106,889	1,262 1,288	878,111 2345,778
42	0,655	130,822	223,000	1,113	21763,667	109	0,199	123,511	106,000	1,249	5269,778
43	0,655	130,700	223,000	1,103	21876,333	110	0,248	129,033	105,444	1,194	6234,333
44	0,655	130,656	223,000	1,103	21673,889	111	0,261	132,656	104,444	1,153	5326,000
45	0,648	129,800	223,000	1,105	21397,125	112	0,570	135,900	104,000	1,114	4402,667
46	0,648	128,533	222,111	1,112	20870,444	113	0,770	135,837	109,750	1,093	3572,000
47	0,643	128,300	220,667	1,122	20236,000	114	0,710	135,578	116,889	1,087	2799,778
48 49	0,595 0,545	128,350 128,300	220,000 219,125	1,127 1,128	19273,125 18770,625	115 116	0,568 0,465	135,350 132,689	120,500 122,556	1,089 1,098	2246,125 1823,556
50	0,343	128,300	219,000	1,132	18530,000	117	0,403	122,956	122,444	1,133	1530,889
51	0,494	130,111	218,667	1,132	18475,222	118	0,683	122,200	122,000	1,175	1305,667
52	0,526	130,622	218,000	1,128	18482,778	119	2,372	122,300	141,222	1,102	1560,889
53	0,541	128,089	218,000	1,128	18194,000	120	2,188	129,533	155,000	1,054	2060,222
54	0,735	125,237	218,000	1,138	17254,625	121	1,372	132,500	153,125	1,052	2449,000
55	1,020	120,440	218,000	1,143	15229,000 12769,857	122	1,251	126,380	140,000	1,054	2634,800
56 57	1,119 1,184	120,386 121,688	218,429 220,750	1,137 1,125	10970,625	123 124	1,575 1,823	121,475 121,533	129,000 128,333	1,082 1,106	2512,125 2139,111
58	1,159	122,212	223,625	1,119	10202,250	125	1,673	122,600	126,500	1,098	1904,125
59	0,888	123,400	224,000	1,126	10008,000	126	1,199	125,289	116,111	1,096	1625,000
60	0,671	125,622	224,000	1,133	11275,778	127	0,861	129,200	106,000	1,096	1418,375
61	0,470	119,275	223,250	1,153	13289,375	128	0,617	131,633	95,556	1,096	1178,000
62	0,442	109,571	216,000	1,216	14521,714	129	0,437	132,400	87,000	1,099	1030,100
63	0,489	108,675	217,000	1,282	14154,875	130	0,351	133,350	86,500	1,100	835,500
64 65	0,506 0,506	111,100 119,525	233,500 237,750	1,292 1,256	13310,000 12368,500	131 132	0,258 0,206	134,400 135,522	81,444 75,556	1,102 1,104	757,889 637,556
66	0,500	125,722	236,667	1,210	11001,667	133	0,200	137,050	73,000	1,104	599,250
67	0,436	129,975	218,750	1,167	9340,625	134	0,121	132,356	67,667	1,112	513,556

135	0,258	123,950	64,375	1,148	506,000	
136	1,770	122,537	91,875	1,124	497,500	
137	2,820	122,456	133,333	1,062	589,000	
138	2,283	127,833	141,000	1,041	659,889	Т
139	1,334	132,389	130,333	1,049	817,778	Т
140	1,164	134,513	120,375	1,047	915,875	
141	1,293	132,778	120,000	1,055	952,556	_
141					945,000	
	1,081	132,300	120,444	1,073		
143	0,736	132,344	121,000	1,089	866,556	_
144	0,520	132,578	120,556	1,100	720,333	_
145	0,429	132,844	118,667	1,110	615,111	_
146	0,423	133,337	117,125	1,115	518,750	_
147	0,393	133,444	116,111	1,116	487,111	
148	0,322	133,625	113,625	1,117	472,125	
149	0,287	133,733	107,111	1,116	439,000	
150	0,363	134,450	105,125	1,109	447,250	
151	0,458	134,956	105,000	1,097	420,111	
152	0,467	135,756	105,000	1,090	405,000	
153	0,409	131,062	103,375	1,102	379,500	
154	0,335	129,611	95,444	1,132	340,889	
155	0,321	129,413	89,000	1,152	304,000	
156	0,330	128,900	88,125	1,159	316,375	Т
157	0,331	128,800	88,000	1,165	311,333	_
158	0,331	128,163	87,625	1,165	345,750	_
159	0,340	129,620	86,200	1,162	337,000	_
160	0,340		86,000	1,162	385,571	_
161	0,502	132,886		1,149		_
162		133,922	86,000		397,444	_
	0,617	135,871	86,000	1,100	511,000	_
163	0,870	136,356	92,000	1,077	863,000	_
164	0,893	140,967	105,889	1,059	2544,778	_
165	0,975	142,100	109,750	1,044	5493,500	_
166	0,933	142,244	110,000	1,034	6444,667	_
167	0,787	142,733	110,000	1,034	5325,889	
168	1,034	139,011	109,444	1,029	4410,111	
169	1,155	134,767	110,000	1,039	3757,000	
170	0,903	134,775	109,750	1,061	3099,000	l
171	0,704	135,300	108,667	1,073	2541,000	l
172	0,635	136,033	104,778	1,075	2233,111	l
173	0,561	137,922	99,111	1,075	2056,556	l
174	0,626	138,700	97,125	1,064	1874,625	l
175	0,664	140,056	95,444	1,051	1917,667	l
176	0,648	141,550	93,250	1,046	2123,500	l
177	0,796	141,922	92,667	1,039	2312,111	l
178	0,780	141,100	89,250	1,043	2410,750	l
179	0,686	143,000	85,500	1,048	2921,500	l
180	0,678	143,700	85,000	1,046	4203,889	l
						l
181 182	0,740	143,700	85,000	1,040	5814,625 7826 111	ı
	1,029	141,122	85,889	1,029	7826,111	ı
183	1,314	136,025	87,875	1,031	8661,000	ı
184	1,054	133,656	89,000	1,065	7323,444	ı
185	0,742	134,075	88,250	1,088	5333,125	ı
186	0,716	135,200	86,667	1,083	4188,778	ı
187	1,069	135,078	84,000	1,061	3512,778	ı
188	1,085	134,433	84,000	1,057	3745,667	l
189	0,609	135,356	83,333	1,071	5333,556	l
190	0,388	138,250	80,125	1,077	7558,625	ı
191	0,540	139,289	78,333	1,072	8528,000	l
192	1,168	136,956	78,222	1,056	9357,667	l
193	1,379	134,867	79,222	1,054	9545,111	ı
194	1,152	134,462	80,625	1,065	8336,000	l
195	1,087	134,500	81,000	1,062	6895,625	ı
196	0,952	134,522	80,778	1,057	5893,000	ı
197	0,771	132,311	79,778	1,064	4819,333	ı
198	0,613	131,167	78,111	1,093	3910,778	ı
199	0,576	132,589	76,556	1,099	3216,444	ı
200	0,549	133,600	73,222	1,090	2615,889	ı
201	0,477	133,978	67,111	1,088	2210,556	l
202	0,436	135,056	62,222	1,088	1846,333	ı
203	0,430	131,075	57,875	1,083	1591,625	ı
203	0,418	125,400	54,875	1,112	1401,625	ı
						ı
205	0,400	116,800	53,333	1,153	1257,222	

1095,667

1062,111 986,667

870,444

750,333

699,286

630,222

566,444

515,714

472,000

421,875

419,571

348,333

383,750

329,667

313,429

277,556

299,750

248,750

270,000

240,857

261,500

205,778

228,444

183,111

202,000

202,000

168,000

168,000

168,000

168,000

76,000

0,000

0,000

1,198

1,237

1,229

1,206

1,186

1,169

1,160

1,154

1,148

1,144

1,141

1,138

1,134

1,130

1,126

1,123

1,119

1,118

1,115

1,110

1,109

1,109

1,112

1,114

1,115

1,108

1,115

1,114

1,114

1,114

1.114

1,105

1,114

1,116

1,117

206

207

208

209

210

211

212

213

214 215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

0,266

0,199

0,184

0,162

0,146

0,137

0,118

0,091

0,076

0,073

0,068

0,064

0,062

0,060

0,082

0,098

0,123

0,134

0,163

0,226

0,260

0,349

0,368

0,356

0,355

0,506

0,354

0,368

0,368

0,368

0,368

0,575

0,329

0,315

0,284

111,838

120,344

128,589

130,667

130,933

132,856

133,457

133,133

133,089

133,400

133,411

133,900

133,857

134,456

135,850

136,189

137,700

137,700

137,700

137,387

136,600

135,814

135,050

134,700

133,211

133,144

133,100

133,100

133,100

133,100

133,100

133,200

134,000

132,900

132,800

50,875

47,889

46.889

46,000

45,889

45,000

45,000

44,000

43,444

42,429

41,889

40,375

39,429

38,444

38,000

38,000

38,000

38,000

38,000

38,500

39,000

40,429

42,375

45,444

46,000

50,000

46,000

47,000

47,000

47,000

47,000

51,000

50,500

53,000

Anexo S: Resultados Tabulados de cada toma IM-240. (Prueba #2: A1S).

TIEMPO (s)	CO (MET6)	CO2 (MET6)	HC (MET6)	Lambda (MET6)	NO (MET6)	TIEMPO (s)	CO (MET6)	CO2 (MET6)	HC (MET6)	Lambda (MET6)	NO (MET6)
1	0,000	0,000	0,000	1,982	0,000	68	0,540	130,497	197,341	1,169	7729,556
2	0,001	0,063	0,000	1,982	34,444	69	0,650	131,683	191,258	1,148	6406,500
3	0,001	0,108	3,000	1,982	68,222	70	0,640	132,541	181,119	1,138	5361,222
4	0,009	0,170	3,008	1,982	84,750	71	0,953	132,497	175,230	1,120	4779,222
5 6	0,009	0,433 12,286	3,008 3,008	1,982 1,982	84,750 68,222	72 73	1,682 2,477	129,958 122,783	181,508 208,008	1,091 1,063	4540,125 4079,875
7	0,003	48,152	6,119	2,146	75,778	74	3,195	119,383	239,758	1,003	3475,625
8	0,215	72,028	36,008	2,491	92,400	75	3,563	115,608	264,758	1,025	2994,500
9	0,664	74,895	64,508	2,030	198,625	76	3,662	112,333	279,758	1,021	2606,000
10	1,304	74,808	93,452	1,805	364,889	77	3,452	112,508	283,786	1,028	2294,444
11	1,768	76,808	114,883	1,679	489,750	78	2,929	113,645	285,758	1,047	2057,000
12	1,837	78,541	126,119	1,597	514,778	79	2,222	118,808	281,563	1,070	1851,444
13	1,740	83,152	137,786	1,535	492,333	80	1,467	124,295	242,133	1,095	1778,000
14	1,508	87,208	145,508	1,502	489,750	81	1,317	125,295	222,008	1,099	1824,750
15	1,302	92,308	150,008	1,471	621,000	82	2,091	123,158	222,383	1,071	1891,875
16	1,063	106,863	162,008	1,404	845,556	83	2,844	120,052	241,452	1,044	1795,000
17	0,745	114,908	175,119	1,328	1389,667	84	3,008	117,394	267,579	1,038	1626,000
18	0,580	116,708 122,408	188,508	1,278	4109,250	85 86	2,925	117,558	273,383	1,042	1461,375
19 20	0,563 0,519	121,808	191,508 192,008	1,238 1,222	8703,875 11364,500	86 87	2,282 1,630	120,170 124,694	274,883 257,294	1,063 1,084	1343,375 1230,714
21	0,615	120,698	192,708	1,215	13078,600	88	1,185	128,019	225,786	1,100	1183,222
22	1,077	120,083	197,758	1,195	14354,250	89	1,175	127,958	218,008	1,100	1119,125
23	1,592	65,118	215,897	1,170	14632,778	90	1,411	126,445	222,633	1,090	1098,375
24	1,588	109,574	219,119	1,180	13533,000	91	1,444	126,458	232,258	1,089	1022,250
25	1,334	112,463	221,674	1,222	12999,889	92	1,060	126,886	228,897	1,103	1002,889
26	1,315	119,308	232,722	1,208	16853,143	93	0,789	128,458	204,758	1,114	925,250
27	1,156	124,045	237,133	1,171	22538,500	94	0,715	129,720	197,758	1,115	992,500
28	1,253	125,608	241,008	1,136	26344,444	95	0,696	130,052	196,897	1,115	924,333
29	1,657	125,508	242,008	1,106	28676,900	96	0,508	133,486	191,230	1,121	913,222
30	1,474	126,941	242,008	1,102	27237,778	97	0,387	135,483	178,258	1,125	870,250
31	1,156	128,008	242,008	1,109	26457,125	98	0,376	136,065	172,008	1,124	917,000
32 33	0,951 0,820	127,698 126,908	240,408 233,508	1,123 1,142	26842,500 26765,500	99 100	0,368 0,280	136,008 136,008	171,674 166,633	1,125 1,130	864,111 857,500
34	0,649	126,808	229,563	1,142	25439,889	101	0,263	136,151	156,436	1,131	883,000
35	0,574	126,808	227,508	1,171	23903,000	102	0,233	135,797	148,563	1,132	883,000
36	0,510	126,808	225,508	1,176	22703,125	103	0,201	125,858	141,008	1,148	854,667
37	0,510	126,558	224,008	1,178	21984,200	104	0,185	112,288	131,008	1,219	835,700
38	0,542	126,308	224,008	1,179	21466,571	105	0,172	114,420	127,883	1,307	769,250
39	0,610	126,430	223,674	1,171	21393,333	106	0,139	116,045	123,383	1,305	748,000
40	0,650	128,219	223,008	1,159	21322,111	107	0,094	114,341	116,119	1,297	883,111
41	0,663	131,308	223,008	1,145	21498,444	108	0,079	114,630	106,897	1,323	2350,778
42	0,663	130,830	223,008	1,138	21768,667	109	0,207	123,519	106,008	1,284	5274,778
43	0,663	130,708	223,008	1,138	21881,333	110	0,256	129,041	105,452	1,229	6239,333
44 45	0,663 0,656	130,663 129,808	223,008 223,008	1,138 1,140	21678,889 21402,125	111 112	0,269 0,577	132,663	104,452 104,008	1,188 1,149	5331,000 4407,667
46	0,655	128,541	222,119	1,140	20875,444	113	0,377	135,908 135,845	104,008	1,149	3577,000
47	0,651	128,341	220.674	1,147	20241.000	114	0,778	135,586	116.897	1,123	2804.778
48	0,603	128,358	220,008	1,162	19278,125	115	0,576	135,358	120,508	1,124	2251,125
49	0,553	128,308	219,133	1,163	18775,625	116	0,473	132,697	122,563	1,133	1828,556
50	0,502	128,308	219,008	1,167	18535,000	117	0,356	122,963	122,452	1,168	1535,889
51	0,502	130,119	218,674	1,167	18480,222	118	0,690	122,208	122,008	1,210	1310,667
52	0,534	130,630	218,008	1,163	18487,778	119	2,380	122,308	141,230	1,137	1565,889
53	0,549	128,097	218,008	1,163	18199,000	120	2,195	129,541	155,008	1,089	2065,222
54	0,742	125,245	218,008	1,173	17259,625	121	1,380	132,508	153,133	1,087	2454,000
55	1,028	120,448	218,008	1,178	15234,000	122	1,259	126,388	140,008	1,089	2639,800
56 57	1,127 1,192	120,394 121,695	218,436 220,758	1,172 1,160	12774,857 10975,625	123 124	1,582 1,831	121,483 121,541	129,008 128,341	1,117 1,141	2517,125 2144,111
58	1,192	122,220	223,633	1,154	10975,625	124	1,680	121,541	126,508	1,141	1909,125
59	0,896	123,408	224,008	1,154	10207,230	126	1,000	125,297	116,119	1,133	1630,000
60	0,679	125,630	224,008	1,168	11280,778	127	0,868	129,208	106,008	1,131	1423,375
61	0,477	119,283	223,258	1,188	13294,375	128	0,624	131,641	95,563	1,131	1183,000
62	0,450	109,579	216,008	1,251	14526,714	129	0,444	132,408	87,008	1,134	1035,100
63	0,497	108,683	217,008	1,317	14159,875	130	0,359	133,358	86,508	1,135	840,500
64	0,514	111,108	233,508	1,327	13315,000	131	0,266	134,408	81,452	1,137	762,889
65	0,514	119,533	237,758	1,291	12373,500	132	0,214	135,530	75,563	1,139	642,556
66	0,508	125,730	236,674	1,245	11006,667	133	0,155	137,058	73,008	1,139	604,250
67	0,444	129,983	218,758	1,202	9345,625	134	0,129	132,363	67,674	1,147	518,556

135							
137	135	0,266	123,958	64,383	1,183	511,000	
137	136	1,778	122,545	91,883	1,159	502,500	
138							Т
139							
140							L
141	139	1,342	132,397	130,341	1,084	822,778	L
142	140	1,172	134,520	120,383	1,082	920,875	
143	141	1,301	132,786	120,008	1,090	957,556	
143	142	1,089	132,308	120,452	1,108	950,000	
144							Т
145							
146							L
147	145	0,437					
148	146	0,430	133,345	117,133	1,150	523,750	
149	147	0,400	133,452	116,119	1,151	492,111	
149	148	0,330	133,633	113,633	1,152	477,125	
150	149						
151							-
152							_
153							L
154	152		135,763			410,000	L
155	153	0,417	131,070	103,383	1,137	384,500	
156	154	0,343	129,619	95,452	1,167	345,889	
156	155	0,329	129,420	89,008			
157 0,339 128,808 88,008 1,200 316,333 158 0,335 128,170 87,633 1,200 350,750 159 0,348 129,628 86,208 1,197 342,000 160 0,403 132,894 86,008 1,184 390,571 161 0,509 133,930 86,008 1,158 402,444 162 0,625 135,879 86,008 1,158 402,444 162 0,625 135,879 86,008 1,153 516,000 163 0,878 136,363 92,008 1,112 868,000 164 0,901 140,974 105,897 1,094 2549,778 165 0,982 142,108 109,758 1,079 5498,500 166 0,941 142,252 110,008 1,069 5449,667 167 0,795 142,741 110,008 1,069 3104,000 170 0,911 134,783 109,758 1							
158 0,335 128,170 87,633 1,200 350,750 159 0,348 129,628 86,208 1,197 342,000 160 0,403 132,894 86,008 1,184 390,571 161 0,509 133,930 86,008 1,155 516,000 162 0,625 135,879 86,008 1,135 516,000 163 0,878 136,363 92,008 1,112 868,000 164 0,901 140,974 105,897 1,094 2549,778 166 0,941 142,252 110,008 1,069 6449,667 167 0,795 142,741 110,008 1,069 5330,889 168 1,042 139,019 109,452 1,064 4415,111 169 1,163 134,774 110,008 1,074 3762,000 171 0,711 135,308 108,674 1,108 2546,000 172 0,643 136,041 104,786 <							H
159							H
160							L
161 0,509 133,930 86,008 1,158 402,444 162 0,625 135,879 86,008 1,135 516,000 163 0,878 136,363 92,008 1,112 868,000 164 0,901 140,974 105,897 1,094 2549,778 165 0,982 142,108 109,758 1,079 5498,500 166 0,941 142,252 110,008 1,069 6449,667 167 0,795 142,741 110,008 1,069 5330,889 168 1,042 139,019 109,452 1,064 4415,111 169 1,163 134,774 110,008 1,074 3762,000 170 0,911 134,783 109,758 1,064 4415,111 169 1,163 134,774 110,008 1,074 3762,000 171 0,711 135,308 108,674 1,108 2546,000 171 0,711 135,308 108,674	159		129,628			342,000	L
162 0,625 135,879 86,008 1,135 516,000 163 0,878 136,363 92,008 1,112 868,000 164 0,901 140,974 105,897 1,094 2549,778 165 0,982 142,108 109,758 1,079 5498,500 166 0,941 142,252 110,008 1,069 6449,667 167 0,795 142,741 110,008 1,069 5330,889 168 1,042 139,019 109,452 1,064 4415,111 169 1,163 134,774 110,008 1,074 3762,000 170 0,911 134,783 109,758 1,096 3104,000 171 0,711 135,308 108,674 1,102 2238,111 173 0,569 137,930 99,119 1,110 2238,111 173 0,569 137,930 99,13 1,099 1879,625 176 0,654 141,558 93,258	160	0,403	132,894	86,008	1,184	390,571	L
162 0,625 135,879 86,008 1,135 516,000 163 0,878 136,363 92,008 1,112 868,000 164 0,901 140,974 105,897 1,094 2549,778 165 0,982 142,108 109,758 1,079 5498,500 166 0,941 142,252 110,008 1,069 6449,667 167 0,795 142,741 110,008 1,069 5330,889 168 1,042 139,019 109,452 1,064 4415,111 169 1,163 134,774 110,008 1,074 3762,000 170 0,911 134,783 109,758 1,096 3104,000 171 0,711 135,308 108,674 1,102 2238,111 173 0,569 137,930 99,119 1,110 2238,111 173 0,569 137,930 99,13 1,099 1879,625 176 0,654 141,558 93,258	161	0,509	133,930	86,008	1,158	402,444	
163 0,878 136,363 92,008 1,112 868,000 164 0,901 140,974 105,897 1,094 2549,778 165 0,982 142,108 109,758 1,079 5498,500 166 0,941 142,252 110,008 1,069 5330,889 168 1,042 139,019 109,452 1,064 4415,111 169 1,163 134,774 110,008 1,074 3762,000 170 0,911 134,783 109,758 1,096 3104,000 171 0,711 135,308 108,674 1,108 2546,000 172 0,643 136,041 104,786 1,110 2205,556 174 0,634 138,708 97,133 1,099 1879,625 175 0,672 140,063 95,452 1,086 1922,667 176 0,656 141,588 93,258 1,081 2128,500 177 0,804 141,930 92,674	162						Г
164 0,901 140,974 105,897 1,094 2549,778 165 0,982 142,108 109,758 1,079 5498,500 166 0,941 142,252 110,008 1,069 5330,889 167 0,795 142,741 110,008 1,069 5330,889 168 1,042 139,019 109,452 1,064 4415,111 169 1,163 134,774 110,008 1,074 3762,000 170 0,911 134,783 109,758 1,096 3104,000 171 0,711 135,308 108,674 1,108 2546,000 172 0,643 136,041 104,786 1,110 2238,111 173 0,569 137,930 99,119 1,110 2061,556 174 0,634 138,708 97,133 1,099 1879,625 175 0,672 140,063 95,452 1,086 1922,667 176 0,656 141,558 93,258							Т
165 0,982 142,108 109,758 1,079 5498,500 166 0,941 142,252 110,008 1,069 6449,667 167 0,795 142,741 110,008 1,069 5330,889 168 1,042 139,019 109,452 1,064 4415,111 169 1,163 134,774 110,008 1,074 3762,000 170 0,911 134,783 109,758 1,096 3104,000 171 0,711 135,308 108,674 1,108 2546,000 172 0,643 136,041 104,786 1,110 2238,111 173 0,569 137,930 99,119 1,110 2061,556 174 0,634 138,708 97,133 1,099 1879,625 175 0,672 140,063 95,452 1,086 1922,667 176 0,656 141,558 93,258 1,081 2128,500 177 0,804 141,930 92,674							
166 0,941 142,252 110,008 1,069 6449,667 167 0,795 142,741 110,008 1,069 5330,889 168 1,042 139,019 109,452 1,064 4415,111 169 1,163 134,774 110,008 1,074 3762,000 170 0,911 134,783 109,758 1,096 3104,000 171 0,711 135,308 108,674 1,108 2546,000 172 0,643 136,041 104,786 1,110 2238,111 173 0,569 137,930 99,119 1,110 2061,556 174 0,634 138,708 97,133 1,099 1879,625 175 0,672 140,063 95,452 1,086 1922,667 176 0,656 141,558 93,258 1,081 2128,500 177 0,804 141,930 92,674 1,074 2317,111 178 0,693 143,008 85,508							L
167 0,795 142,741 110,008 1,069 5330,889 168 1,042 139,019 109,452 1,064 4415,111 169 1,163 134,774 110,008 1,074 3762,000 170 0,911 134,783 109,758 1,096 3104,000 171 0,711 135,308 108,674 1,108 2546,000 172 0,643 136,041 104,786 1,110 2238,111 173 0,569 137,930 99,119 1,110 2061,556 174 0,634 138,708 97,133 1,099 1879,625 175 0,672 140,063 95,452 1,086 1922,667 176 0,656 141,558 93,258 1,081 2128,500 177 0,804 141,930 92,674 1,074 2317,111 178 0,788 141,108 89,508 1,083 2926,500 180 0,685 143,708 85,008	165	0,982	142,108	109,758		5498,500	
168 1,042 139,019 109,452 1,064 4415,111 169 1,163 134,774 110,008 1,074 3762,000 170 0,911 134,783 109,758 1,096 3104,000 171 0,711 135,308 108,674 1,108 2546,000 172 0,643 136,041 104,786 1,110 2238,111 173 0,569 137,930 99,119 1,110 2061,556 174 0,634 138,708 97,133 1,099 1879,625 175 0,672 140,063 95,452 1,086 1922,667 176 0,656 141,558 93,258 1,081 2128,500 177 0,804 141,930 92,674 1,074 2317,111 178 0,788 141,108 89,258 1,078 2415,750 179 0,693 143,008 85,008 1,081 4208,889 180 0,685 143,708 85,008	166	0,941	142,252	110,008	1,069	6449,667	
169 1,163 134,774 110,008 1,074 3762,000 170 0,911 134,783 109,758 1,096 3104,000 171 0,711 135,308 108,674 1,108 2546,000 172 0,643 136,041 104,786 1,110 2238,111 173 0,569 137,930 99,119 1,110 2061,556 174 0,634 138,708 97,133 1,099 1879,625 175 0,672 140,063 95,452 1,086 1922,667 176 0,656 141,558 93,258 1,081 2128,500 177 0,804 141,930 92,674 1,074 2317,111 178 0,788 141,108 89,258 1,078 2415,750 179 0,693 143,008 85,508 1,083 2926,500 180 0,685 143,708 85,008 1,081 4208,889 181 0,748 143,708 85,008	167	0,795	142,741	110,008	1,069	5330,889	
169 1,163 134,774 110,008 1,074 3762,000 170 0,911 134,783 109,758 1,096 3104,000 171 0,711 135,308 108,674 1,108 2546,000 172 0,643 136,041 104,786 1,110 2238,111 173 0,569 137,930 99,119 1,110 2061,556 174 0,634 138,708 97,133 1,099 1879,625 175 0,672 140,063 95,452 1,086 1922,667 176 0,656 141,558 93,258 1,081 2128,500 177 0,804 141,930 92,674 1,074 2317,111 178 0,788 141,108 89,258 1,078 2415,750 179 0,693 143,008 85,508 1,083 2926,500 180 0,685 143,708 85,008 1,081 4208,889 181 0,748 143,708 85,008	168	1,042	139,019	109,452	1,064	4415,111	
170 0,911 134,783 109,758 1,096 3104,000 171 0,711 135,308 108,674 1,108 2546,000 172 0,643 136,041 104,786 1,110 2238,111 173 0,569 137,930 99,119 1,110 2061,556 174 0,634 138,708 97,133 1,099 1879,625 175 0,672 140,063 95,452 1,086 1922,667 176 0,656 141,558 93,258 1,081 2128,500 177 0,804 141,930 92,674 1,074 2317,111 178 0,788 141,108 89,258 1,078 2415,750 179 0,693 143,008 85,508 1,083 2926,500 180 0,685 143,708 85,008 1,081 4208,889 181 0,748 143,708 85,008 1,075 5819,625 182 1,037 141,130 85,897	169						
171 0,711 133,308 108,674 1,108 2546,000 172 0,643 136,041 104,786 1,110 2238,111 173 0,569 137,930 99,119 1,110 2061,556 174 0,634 138,708 97,133 1,099 1879,625 175 0,672 140,063 95,452 1,086 1922,667 176 0,656 141,558 93,258 1,081 2128,500 177 0,804 141,930 92,674 1,074 2317,111 178 0,788 141,108 89,258 1,083 2926,500 180 0,685 143,708 85,008 1,081 4208,889 181 0,748 143,708 85,008 1,075 5819,625 182 1,037 141,130 85,897 1,064 7831,111 183 1,322 136,033 87,883 1,064 7831,111 183 1,322 136,03 89,008 <							_
172 0,643 136,041 104,786 1,110 2238,111 173 0,569 137,930 99,119 1,110 2061,556 174 0,634 138,708 97,133 1,099 1879,625 175 0,672 140,063 95,452 1,086 1922,667 176 0,656 141,558 93,258 1,081 2128,500 177 0,804 141,930 92,674 1,074 2317,111 178 0,788 141,108 89,258 1,078 2415,750 179 0,693 143,008 85,508 1,083 2926,500 180 0,685 143,708 85,008 1,081 4208,889 181 0,748 143,708 85,008 1,051 7831,111 183 1,322 136,033 87,883 1,064 7831,111 183 1,322 136,033 87,883 1,066 8666,000 184 1,062 133,663 89,008 <							
173 0,569 137,930 99,119 1,110 2061,556 174 0,634 138,708 97,133 1,099 1879,625 175 0,672 140,063 95,452 1,086 1922,667 176 0,656 141,558 93,258 1,081 2128,500 177 0,804 141,930 92,674 1,074 2317,111 178 0,788 141,108 89,258 1,078 2415,750 179 0,693 143,008 85,508 1,083 2926,500 180 0,685 143,708 85,008 1,081 4208,889 181 0,748 143,708 85,008 1,075 5819,625 182 1,037 141,130 85,897 1,064 7831,111 183 1,322 136,033 87,883 1,066 8666,000 184 1,062 133,663 89,008 1,100 7328,444 185 0,750 134,083 88,258 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
174 0,634 138,708 97,133 1,099 1879,625 175 0,672 140,063 95,452 1,086 1922,667 176 0,656 141,558 93,258 1,081 2128,500 177 0,804 141,930 92,674 1,074 2317,111 178 0,788 141,108 89,258 1,078 2415,750 179 0,693 143,008 85,508 1,083 2926,500 180 0,685 143,708 85,008 1,081 4208,889 181 0,748 143,708 85,008 1,075 5819,625 182 1,037 141,130 85,897 1,064 7831,111 183 1,322 136,033 87,883 1,066 8666,000 184 1,062 133,663 89,008 1,100 7328,444 185 0,750 134,083 88,258 1,123 5338,125 186 0,724 135,208 86,674 <t< td=""><td>172</td><td>0,643</td><td></td><td>104,786</td><td>1,110</td><td>2238,111</td><td></td></t<>	172	0,643		104,786	1,110	2238,111	
175 0,672 140,063 95,452 1,086 1922,667 176 0,656 141,558 93,258 1,081 2128,500 177 0,804 141,930 92,674 1,074 2317,111 178 0,788 141,108 89,258 1,078 2415,750 179 0,693 143,008 85,508 1,083 2926,500 180 0,685 143,708 85,008 1,081 4208,889 181 0,748 143,708 85,008 1,075 5819,625 182 1,037 141,130 85,897 1,064 7831,111 183 1,322 136,033 87,883 1,066 8666,000 184 1,062 133,663 89,008 1,100 7328,444 185 0,750 134,083 88,258 1,123 5338,125 186 0,724 135,208 86,674 1,118 4193,778 187 1,076 135,086 84,008 <t< td=""><td>173</td><td>0,569</td><td>137,930</td><td>99,119</td><td>1,110</td><td>2061,556</td><td></td></t<>	173	0,569	137,930	99,119	1,110	2061,556	
176 0,656 141,558 93,258 1,081 2128,500 177 0,804 141,930 92,674 1,074 2317,111 178 0,788 141,108 89,258 1,078 2415,750 179 0,693 143,008 85,508 1,083 2926,500 180 0,685 143,708 85,008 1,075 5819,625 181 0,748 143,708 85,008 1,075 5819,625 182 1,037 141,130 85,897 1,064 7831,111 183 1,322 136,033 87,883 1,066 8666,000 184 1,062 133,663 89,008 1,100 7328,444 185 0,750 134,083 88,258 1,123 5338,125 186 0,724 135,208 86,674 1,118 4193,778 187 1,076 135,086 84,008 1,092 3750,667 189 0,617 135,363 83,341 <t< td=""><td>174</td><td>0,634</td><td>138,708</td><td>97,133</td><td>1,099</td><td>1879,625</td><td></td></t<>	174	0,634	138,708	97,133	1,099	1879,625	
176 0,656 141,558 93,258 1,081 2128,500 177 0,804 141,930 92,674 1,074 2317,111 178 0,788 141,108 89,258 1,078 2415,750 179 0,693 143,008 85,508 1,083 2926,500 180 0,685 143,708 85,008 1,075 5819,625 181 0,748 143,708 85,008 1,075 5819,625 182 1,037 141,130 85,897 1,064 7831,111 183 1,322 136,033 87,883 1,066 8666,000 184 1,062 133,663 89,008 1,100 7328,444 185 0,750 134,083 88,258 1,123 5338,125 186 0,724 135,208 86,674 1,118 4193,778 187 1,076 135,086 84,008 1,092 3750,667 189 0,617 135,363 83,341 <t< td=""><td>175</td><td>0.672</td><td>140.063</td><td>95.452</td><td>1.086</td><td>1922.667</td><td></td></t<>	175	0.672	140.063	95.452	1.086	1922.667	
177 0,804 141,930 92,674 1,074 2317,111 178 0,788 141,108 89,258 1,078 2415,750 179 0,693 143,008 85,508 1,083 2926,500 180 0,685 143,708 85,008 1,081 4208,889 181 0,748 143,708 85,008 1,075 5819,625 182 1,037 141,130 85,897 1,064 7831,111 183 1,322 136,033 87,883 1,066 8666,000 184 1,062 133,663 89,008 1,100 7328,444 185 0,750 134,083 88,258 1,123 5338,125 186 0,724 135,208 86,674 1,118 4193,778 187 1,076 135,086 84,008 1,096 3517,778 188 1,092 134,441 84,008 1,092 3750,667 189 0,617 135,363 83,341 <t< td=""><td>176</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	176						
178 0,788 141,108 89,258 1,078 2415,750 179 0,693 143,008 85,508 1,083 2926,500 180 0,685 143,708 85,008 1,081 4208,889 181 0,748 143,708 85,008 1,075 5819,625 182 1,037 141,130 85,897 1,064 7831,111 183 1,322 136,033 87,883 1,066 8666,000 184 1,062 133,663 89,008 1,100 7328,444 185 0,750 134,083 88,258 1,123 5338,125 186 0,724 135,208 86,674 1,118 4193,778 187 1,076 135,086 84,008 1,096 3517,778 188 1,092 134,441 84,008 1,092 3750,667 189 0,617 135,363 83,341 1,106 5338,556 190 0,395 138,258 80,133 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
179 0,693 143,008 85,508 1,083 2926,500 180 0,685 143,708 85,008 1,081 4208,889 181 0,748 143,708 85,008 1,075 5819,625 182 1,037 141,130 85,897 1,064 7831,111 183 1,322 136,033 87,883 1,100 7328,444 185 0,750 134,083 88,258 1,123 5338,125 186 0,724 135,208 86,674 1,118 4193,778 187 1,076 135,086 84,008 1,096 3517,778 188 1,092 134,441 84,008 1,092 3750,667 189 0,617 135,363 83,341 1,106 5338,556 190 0,395 138,258 80,133 1,112 7563,625 191 0,547 139,297 78,341 1,107 8533,000 192 1,175 136,963 78,230 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
180 0,685 143,708 85,008 1,081 4208,889 181 0,748 143,708 85,008 1,075 5819,625 182 1,037 141,130 85,897 1,064 7831,111 183 1,322 136,033 87,883 1,066 8666,000 184 1,062 133,663 89,008 1,100 7328,444 185 0,750 134,083 88,258 1,123 5338,125 186 0,724 135,208 86,674 1,118 4193,778 187 1,076 135,086 84,008 1,096 3517,778 188 1,092 134,441 84,008 1,092 3750,667 189 0,617 135,363 83,341 1,106 5338,556 190 0,395 138,258 80,133 1,112 7563,625 191 0,547 139,297 78,341 1,107 8533,000 192 1,175 136,963 78,230 <t< td=""><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td></t<>				,			
181 0,748 143,708 85,008 1,075 5819,625 182 1,037 141,130 85,897 1,064 7831,111 183 1,322 136,033 87,883 1,066 8666,000 184 1,062 133,663 89,008 1,100 7328,444 185 0,750 134,083 88,258 1,123 5338,125 186 0,724 135,208 86,674 1,118 4193,778 187 1,076 135,086 84,008 1,092 3750,667 189 0,617 135,363 83,341 1,106 5338,556 190 0,395 138,258 80,133 1,112 7563,625 191 0,547 139,297 78,341 1,107 8533,000 192 1,175 136,963 78,230 1,089 9550,111 194 1,160 134,470 80,633 1,100 8341,000 195 1,095 134,508 81,008 <t< td=""><td>179</td><td>0,693</td><td>143,008</td><td>85,508</td><td>1,083</td><td>2926,500</td><td></td></t<>	179	0,693	143,008	85,508	1,083	2926,500	
182 1,037 141,130 85,897 1,064 7831,111 183 1,322 136,033 87,883 1,066 8666,000 184 1,062 133,663 89,008 1,100 7328,444 185 0,750 134,083 88,258 1,123 5338,125 186 0,724 135,208 86,674 1,118 4193,778 187 1,076 135,086 84,008 1,092 3570,667 188 1,092 134,441 84,008 1,092 3750,667 189 0,617 135,363 83,341 1,106 5338,556 190 0,395 138,258 80,133 1,112 7563,625 191 0,547 139,297 78,341 1,107 8533,000 192 1,175 136,963 78,230 1,091 9362,667 193 1,387 134,874 79,230 1,089 9550,111 194 1,160 134,470 80,633 <t< td=""><td>180</td><td>0,685</td><td>143,708</td><td>85,008</td><td>1,081</td><td>4208,889</td><td></td></t<>	180	0,685	143,708	85,008	1,081	4208,889	
182 1,037 141,130 85,897 1,064 7831,111 183 1,322 136,033 87,883 1,066 8666,000 184 1,062 133,663 89,008 1,100 7328,444 185 0,750 134,083 88,258 1,123 5338,125 186 0,724 135,208 86,674 1,118 4193,778 187 1,076 135,086 84,008 1,092 3570,667 188 1,092 134,441 84,008 1,092 3750,667 189 0,617 135,363 83,341 1,106 5338,556 190 0,395 138,258 80,133 1,112 7563,625 191 0,547 139,297 78,341 1,107 8533,000 192 1,175 136,963 78,230 1,091 9362,667 193 1,387 134,874 79,230 1,089 9550,111 194 1,160 134,470 80,633 <t< td=""><td>181</td><td>0,748</td><td>143,708</td><td>85,008</td><td>1,075</td><td>5819,625</td><td></td></t<>	181	0,748	143,708	85,008	1,075	5819,625	
183 1,322 136,033 87,883 1,066 8666,000 184 1,062 133,663 89,008 1,100 7328,444 185 0,750 134,083 88,258 1,123 5338,125 186 0,724 135,208 86,674 1,118 4193,778 187 1,076 135,086 84,008 1,096 3517,778 188 1,092 134,441 84,008 1,092 3750,667 189 0,617 135,363 83,341 1,106 5338,556 190 0,395 138,258 80,133 1,112 7563,625 191 0,547 139,297 78,341 1,107 8533,000 192 1,175 136,963 78,230 1,091 9362,667 193 1,387 134,874 79,230 1,089 9550,111 194 1,160 134,470 80,633 1,100 8341,000 195 1,095 134,508 81,008 <t< td=""><td>182</td><td>1,037</td><td></td><td></td><td>1,064</td><td>7831,111</td><td></td></t<>	182	1,037			1,064	7831,111	
184 1,062 133,663 89,008 1,100 7328,444 185 0,750 134,083 88,258 1,123 5338,125 186 0,724 135,208 86,674 1,118 4193,778 187 1,076 135,086 84,008 1,096 3517,778 188 1,092 134,441 84,008 1,092 3750,667 189 0,617 135,363 83,341 1,106 5338,556 190 0,395 138,258 80,133 1,112 7563,625 191 0,547 139,297 78,341 1,107 8533,000 192 1,175 136,963 78,230 1,091 9362,667 193 1,387 134,874 79,230 1,089 9550,111 194 1,160 134,470 80,633 1,100 8341,000 195 1,095 134,530 80,786 1,092 5898,000 197 0,778 132,319 79,786 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
185 0,750 134,083 88,258 1,123 5338,125 186 0,724 135,208 86,674 1,118 4193,778 187 1,076 135,086 84,008 1,096 3517,778 188 1,092 134,441 84,008 1,092 3750,667 189 0,617 135,363 83,341 1,106 5338,556 190 0,395 138,258 80,133 1,112 7563,625 191 0,547 139,297 78,341 1,107 8533,000 192 1,175 136,963 78,230 1,091 9362,667 193 1,387 134,874 79,230 1,089 9550,111 194 1,160 134,470 80,633 1,100 8341,000 195 1,095 134,508 81,008 1,097 6900,625 196 0,960 134,530 80,786 1,092 5898,000 197 0,778 132,319 79,786 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
186 0,724 135,208 86,674 1,118 4193,778 187 1,076 135,086 84,008 1,096 3517,778 188 1,092 134,441 84,008 1,092 3750,667 189 0,617 135,363 83,341 1,106 5338,556 190 0,395 138,258 80,133 1,112 7563,625 191 0,547 139,297 78,341 1,107 8533,000 192 1,175 136,963 78,230 1,091 9362,667 193 1,387 134,874 79,230 1,089 9550,111 194 1,160 134,470 80,633 1,100 8341,000 195 1,095 134,508 81,008 1,097 6900,625 196 0,960 134,530 80,786 1,092 5898,000 197 0,778 132,319 79,786 1,099 4824,333 198 0,621 131,174 78,119 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
187 1,076 135,086 84,008 1,096 3517,778 188 1,092 134,441 84,008 1,092 3750,667 189 0,617 135,363 83,341 1,106 5338,556 190 0,395 138,258 80,133 1,112 7563,625 191 0,547 139,297 78,341 1,107 8533,000 192 1,175 136,963 78,230 1,091 9362,667 193 1,387 134,874 79,230 1,089 9550,111 194 1,160 134,470 80,633 1,100 8341,000 195 1,095 134,508 81,008 1,097 6900,625 196 0,960 134,530 80,786 1,092 5898,000 197 0,778 132,319 79,786 1,099 4824,333 198 0,621 131,174 78,119 1,128 3915,778 199 0,584 132,597 76,563 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
188 1,092 134,441 84,008 1,092 3750,667 189 0,617 135,363 83,341 1,106 5338,556 190 0,395 138,258 80,133 1,112 7563,625 191 0,547 139,297 78,341 1,107 8533,000 192 1,175 136,963 78,230 1,099 9550,111 194 1,160 134,470 80,633 1,100 8341,000 195 1,095 134,508 81,008 1,097 6900,625 196 0,960 134,530 80,786 1,092 5898,000 197 0,778 132,319 79,786 1,099 4824,333 198 0,621 131,174 78,119 1,128 3915,778 199 0,584 132,597 76,563 1,134 3221,444 200 0,557 133,608 73,230 1,125 2620,889 201 0,485 133,986 67,119 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
189 0,617 135,363 83,341 1,106 5338,556 190 0,395 138,258 80,133 1,112 7563,625 191 0,547 139,297 78,341 1,107 8533,000 192 1,175 136,963 78,230 1,091 9362,667 193 1,387 134,874 79,230 1,089 9550,111 194 1,160 134,470 80,633 1,100 8341,000 195 1,095 134,508 81,008 1,097 6906,625 196 0,960 134,530 80,786 1,092 5898,000 197 0,778 132,319 79,786 1,099 4824,333 198 0,621 131,174 78,119 1,128 3915,778 199 0,584 132,597 76,563 1,134 3221,444 200 0,557 133,608 73,230 1,125 2620,889 201 0,485 133,986 67,119 <t< td=""><td>187</td><td>1,076</td><td>135,086</td><td>84,008</td><td>1,096</td><td>3517,778</td><td></td></t<>	187	1,076	135,086	84,008	1,096	3517,778	
190 0,395 138,258 80,133 1,112 7563,625 191 0,547 139,297 78,341 1,107 8533,000 192 1,175 136,963 78,230 1,091 9362,667 193 1,387 134,874 79,230 1,089 9550,111 194 1,160 134,470 80,633 1,100 8341,000 195 1,095 134,508 81,008 1,097 6900,625 196 0,960 134,530 80,786 1,092 5898,000 197 0,778 132,319 79,786 1,099 4824,333 198 0,621 131,174 78,119 1,128 3915,778 199 0,584 132,597 76,563 1,134 3221,444 200 0,557 133,608 73,230 1,125 2620,889 201 0,485 133,986 67,119 1,123 2215,556 202 0,444 135,063 52,230 <t< td=""><td>188</td><td>1,092</td><td>134,441</td><td>84,008</td><td>1,092</td><td>3750,667</td><td></td></t<>	188	1,092	134,441	84,008	1,092	3750,667	
190 0,395 138,258 80,133 1,112 7563,625 191 0,547 139,297 78,341 1,107 8533,000 192 1,175 136,963 78,230 1,091 9362,667 193 1,387 134,874 79,230 1,089 9550,111 194 1,160 134,470 80,633 1,100 8341,000 195 1,095 134,508 81,008 1,097 6900,625 196 0,960 134,530 80,786 1,092 5898,000 197 0,778 132,319 79,786 1,099 4824,333 198 0,621 131,174 78,119 1,128 3915,778 199 0,584 132,597 76,563 1,134 3221,444 200 0,557 133,608 73,230 1,125 2620,889 201 0,485 133,986 67,119 1,123 2215,556 202 0,444 135,063 52,230 <t< td=""><td>189</td><td>0,617</td><td>135,363</td><td>83,341</td><td>1,106</td><td>5338,556</td><td></td></t<>	189	0,617	135,363	83,341	1,106	5338,556	
191 0,547 139,297 78,341 1,107 8533,000 192 1,175 136,963 78,230 1,091 9362,667 193 1,387 134,874 79,230 1,089 9550,111 194 1,160 134,470 80,633 1,100 8341,000 195 1,095 134,508 81,008 1,097 6900,625 196 0,960 134,530 80,786 1,092 589,000 197 0,778 132,319 79,786 1,099 4824,333 198 0,621 131,174 78,119 1,128 3915,778 199 0,584 132,597 76,563 1,134 3221,444 200 0,557 133,608 73,230 1,125 2620,889 201 0,485 133,986 67,119 1,123 2215,556 202 0,444 135,063 52,230 1,123 1851,333 203 0,425 131,083 57,883 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
192 1,175 136,963 78,230 1,091 9362,667 193 1,387 134,874 79,230 1,089 9550,111 194 1,160 134,470 80,633 1,100 8341,000 195 1,095 134,508 81,008 1,097 6900,625 196 0,960 134,530 80,786 1,092 5898,000 197 0,778 132,319 79,786 1,099 4824,333 198 0,621 131,174 78,119 1,128 3915,778 199 0,584 132,597 76,563 1,134 3221,444 200 0,557 133,608 73,230 1,125 2620,889 201 0,485 133,986 67,119 1,123 2215,556 202 0,444 135,063 52,230 1,123 1851,333 203 0,425 131,083 57,883 1,118 1596,625 204 0,448 125,408 54,883 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
193 1,387 134,874 79,230 1,089 9550,111 194 1,160 134,470 80,633 1,100 8341,000 195 1,095 134,508 81,008 1,097 6900,625 196 0,960 134,530 80,786 1,092 5898,000 197 0,778 132,319 79,786 1,099 4824,333 198 0,621 131,174 78,119 1,128 3915,778 199 0,584 132,597 76,563 1,134 3221,444 200 0,557 133,608 73,230 1,125 2620,889 201 0,485 133,986 67,119 1,123 2215,556 202 0,444 135,063 62,230 1,123 1851,333 203 0,425 131,083 57,883 1,118 1596,625 204 0,448 125,408 54,883 1,147 1406,625							
194 1,160 134,470 80,633 1,100 8341,000 195 1,095 134,508 81,008 1,097 6900,625 196 0,960 134,530 80,786 1,092 5898,000 197 0,778 132,319 79,786 1,099 4824,333 198 0,621 131,174 78,119 1,128 3915,778 199 0,584 132,597 76,563 1,134 3221,444 200 0,557 133,608 73,230 1,125 2620,889 201 0,485 133,986 67,119 1,123 2215,556 202 0,444 135,063 62,230 1,123 1851,333 203 0,425 131,083 57,883 1,118 1596,625 204 0,448 125,408 54,883 1,147 1406,625							
195 1,095 134,508 81,008 1,097 6900,625 196 0,960 134,530 80,786 1,092 5898,000 197 0,778 132,319 79,786 1,099 4824,333 198 0,621 131,174 78,119 1,128 3915,778 199 0,584 132,597 76,563 1,134 3221,444 200 0,557 133,608 73,230 1,125 2620,889 201 0,485 133,986 67,119 1,123 2215,556 202 0,444 135,063 62,230 1,123 1851,333 203 0,425 131,083 57,883 1,118 1596,625 204 0,448 125,408 54,883 1,147 1406,625							
196 0,960 134,530 80,786 1,092 5898,000 197 0,778 132,319 79,786 1,099 4824,333 198 0,621 131,174 78,119 1,128 3915,778 199 0,584 132,597 76,563 1,134 3221,444 200 0,557 133,608 73,230 1,125 2620,889 201 0,485 133,986 67,119 1,123 2215,556 202 0,444 135,063 62,230 1,123 1851,333 203 0,425 131,083 57,883 1,118 1596,625 204 0,448 125,408 54,883 1,147 1406,625	194	1,160		80,633		8341,000	
197 0,778 132,319 79,786 1,099 4824,333 198 0,621 131,174 78,119 1,128 3915,778 199 0,584 132,597 76,563 1,134 3221,444 200 0,557 133,608 73,230 1,125 2620,889 201 0,485 133,986 67,119 1,123 2215,556 202 0,444 135,063 62,230 1,123 1851,333 203 0,425 131,083 57,883 1,118 1596,625 204 0,448 125,408 54,883 1,147 1406,625	195	1,095	134,508	81,008	1,097	6900,625	
197 0,778 132,319 79,786 1,099 4824,333 198 0,621 131,174 78,119 1,128 3915,778 199 0,584 132,597 76,563 1,134 3221,444 200 0,557 133,608 73,230 1,125 2620,889 201 0,485 133,986 67,119 1,123 2215,556 202 0,444 135,063 62,230 1,123 1851,333 203 0,425 131,083 57,883 1,118 1596,625 204 0,448 125,408 54,883 1,147 1406,625	196	0,960	134,530	80,786	1,092	5898,000	
198 0,621 131,174 78,119 1,128 3915,778 199 0,584 132,597 76,563 1,134 3221,444 200 0,557 133,608 73,230 1,125 2620,889 201 0,485 133,986 67,119 1,123 2215,556 202 0,444 135,063 62,230 1,123 1851,333 203 0,425 131,083 57,883 1,118 1596,625 204 0,448 125,408 54,883 1,147 1406,625							
199 0,584 132,597 76,563 1,134 3221,444 200 0,557 133,608 73,230 1,125 2620,889 201 0,485 133,986 67,119 1,123 2215,556 202 0,444 135,063 62,230 1,123 1851,333 203 0,425 131,083 57,883 1,118 1596,625 204 0,448 125,408 54,883 1,147 1406,625							
200 0,557 133,608 73,230 1,125 2620,889 201 0,485 133,986 67,119 1,123 2215,556 202 0,444 135,063 62,230 1,123 1851,333 203 0,425 131,083 57,883 1,118 1596,625 204 0,448 125,408 54,883 1,147 1406,625							
201 0,485 133,986 67,119 1,123 2215,556 202 0,444 135,063 62,230 1,123 1851,333 203 0,425 131,083 57,883 1,118 1596,625 204 0,448 125,408 54,883 1,147 1406,625							
202 0,444 135,063 62,230 1,123 1851,333 203 0,425 131,083 57,883 1,118 1596,625 204 0,448 125,408 54,883 1,147 1406,625							
203 0,425 131,083 57,883 1,118 1596,625 204 0,448 125,408 54,883 1,147 1406,625							
204 0,448 125,408 54,883 1,147 1406,625	202	0,444	135,063	62,230	1,123	1851,333	
204 0,448 125,408 54,883 1,147 1406,625	203	0,425	131,083	57,883	1,118	1596,625	
	204						
200 0,700 110,000 33,371 1,100 1202,222							
	203	5,400	110,000	30,341	2,100		l

1100,667

1067,111

991,667

875,444

755,333

704,286

635,222

571,444

520,714

477,000

426,875

424,571

353,333

388,750

334,667

318,429

282,556

304,750

253,750

275,000

245,857

266,500

210,778

233,444 188,111

207,000

207,000

173,000

173,000

173,000

173,000

81,000

5,000

0,000

1,233

1,272

1,264

1,241

1,221

1,204

1,195

1,189

1,183

1,179

1,176

1,173

1,169

1,165

1,161

1,158

1,154

1,153

1,150

1,145

1,144

1,144

1,147

1,149

1,150

1,143

1,150

1,149

1,149

1,149

1.149

1,140

1,149

1,151

1,152

206

207

208

209

210

211

212

213

214 215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238 239

240

0,274

0,207

0,192

0,170

0,154

0,145

0,126

0,098

0,084

0,081

0,076

0,072

0,070

0,068

0,090

0,106

0,130

0,142

0,170

0,234

0,268

0,357

0,376

0,363

0,362

0,514

0,362

0,376

0,376

0,376

0,376

0,583

0,337

0,323

0,292

111,845

120,352

128,597

130,674

130.941

132,863

133,465

133,141

133,097

133,408

133,419

133,908

133,865

134,463

135,858

136,197

137,708

137,708

137,708

137,395

136,608

135,822

135,058

134,708

133,219

133,152

133,108

133,108

133,108

133,108

133,108

133,208

134,008

132,908

132,808

50,883

47,897

46.897

46,008

45,897

45,008

45,008

44,008

43,452

42,436

41,897

40,383

39,436

38,452

38,008

38,008

38,008

38,008

38,008

38,508

39,008

40,436

42,383

45,452

46,008

50,008

46,008

47,008

47,008

47,008

47,008

51,008

50,508

53,008

Anexo T: Resultados Tabulados de cada toma IM-240. (Prueba #3: A1S).

TIEMPO (s)	CO (MET6)	CO2 (MET6)	HC (MET6)	Lambda (MET6)	NO (MET6)	TIEMPO (s)	CO (MET6)	CO2 (MET6)	HC (MET6)	Lambda (MET6)	NO (MET6)
1	0,000	0,000	0,000	1,995	0,000	68	0,562	130,519	197,363	1,182	7727,556
2	0,001	0,086	0,000	1,995	32,444	69	0,672	131,705	191,280	1,161	6404,500
3	0,001	0,130	3,000	1,995	66,222	70	0,662	132,563	181,141	1,151	5359,222
5	0,031 0,031	0,193 0,455	3,030 3,030	1,995 1,995	82,750 82,750	71 72	0,975 1,705	132,519 129,980	175,252 181,530	1,133 1,104	4777,222 4538,125
6	0,031	12,308	3,030	1,995	66,222	73	2,499	122,805	208,030	1,104	4077,875
7	0,045	48,174	6,141	2,159	73,778	74	3,218	119,405	239,780	1,050	3473,625
8	0,237	72,050	36,030	2,504	90,400	75	3,585	115,630	264,780	1,038	2992,500
9	0,686	74,918	64,530	2,043	196,625	76	3,684	112,355	279,780	1,034	2604,000
10	1,326	74,830	93,474	1,818	362,889	77	3,475	112,530	283,808	1,041	2292,444
11	1,790	76,830	114,905	1,692	487,750	78	2,952	113,667	285,780	1,060	2055,000
12	1,859	78,563	126,141	1,610	512,778	79	2,244	118,830	281,586	1,083	1849,444
13	1,762	83,174	137,808	1,548	490,333	80	1,489	124,317	242,155	1,108	1776,000
14 15	1,531 1,324	87,230 92,330	145,530 150,030	1,515 1,484	487,750 619,000	81 82	1,340 2,113	125,318 123,180	222,030 222,405	1,112 1,084	1822,750 1889,875
16	1,085	106,886	162,030	1,434	843,556	83	2,866	120,074	241,474	1,057	1793,000
17	0,767	114,930	175,141	1,341	1387,667	84	3,030	117,416	267,601	1,051	1624,000
18	0,603	116,730	188,530	1,291	4107,250	85	2,948	117,580	273,405	1,055	1459,375
19	0,586	122,430	191,530	1,251	8701,875	86	2,304	120,193	274,905	1,076	1341,375
20	0,542	121,830	192,030	1,235	11362,500	87	1,653	124,716	257,316	1,097	1228,714
21	0,637	120,720	192,730	1,228	13076,600	88	1,207	128,041	225,808	1,113	1181,222
22	1,100	120,105	197,780	1,208	14352,250	89	1,197	127,980	218,030	1,113	1117,125
23	1,614	65,140	215,919	1,183	14630,778	90	1,434	126,468	222,655	1,103	1096,375
24 25	1,610 1,356	109,597 112,486	219,141 221,697	1,193	13531,000 12997,889	91 92	1,466 1,082	126,480	232,280 228,919	1,102 1,116	1020,250 1000,889
26	1,337	112,486	232,744	1,235 1,221	16851,143	93	0,811	126,908 128,480	204,780	1,116	923,250
27	1,178	124,067	237,155	1,184	22536,500	94	0,811	129,742	197,780	1,127	990,500
28	1,275	125,630	241,030	1,149	26342,444	95	0,718	130,074	196,919	1,128	922,333
29	1,680	125,530	242,030	1,119	28674,900	96	0,530	133,508	191,252	1,134	911,222
30	1,496	126,963	242,030	1,115	27235,778	97	0,409	135,505	178,280	1,138	868,250
31	1,178	128,030	242,030	1,122	26455,125	98	0,398	136,087	172,030	1,137	915,000
32	0,973	127,720	240,430	1,136	26840,500	99	0,390	136,030	171,697	1,138	862,111
33	0,842	126,930	233,530	1,155	26763,500	100	0,302	136,030	166,655	1,143	855,500
34	0,671	126,830	229,586	1,175	25437,889	101	0,285	136,173	156,459	1,144	881,000
35 36	0,597 0,532	126,830 126,830	227,530 225,530	1,184 1,189	23901,000 22701,125	102 103	0,256 0,223	135,819 125,880	148,586 141,030	1,145 1,161	881,000 852,667
37	0,532	126,580	224,030	1,109	21982,200	103	0,223	112,310	131,030	1,101	833,700
38	0,564	126,330	224,030	1,192	21464,571	105	0,194	114,443	127,905	1,320	767,250
39	0,632	126,452	223,697	1,184	21391,333	106	0,161	116,067	123,405	1,318	746,000
40	0,672	128,241	223,030	1,172	21320,111	107	0,116	114,363	116,141	1,310	881,111
41	0,685	131,330	223,030	1,158	21496,444	108	0,102	114,652	106,919	1,336	2348,778
42	0,685	130,852	223,030	1,151	21766,667	109	0,229	123,541	106,030	1,297	5272,778
43	0,685	130,730	223,030	1,151	21879,333	110	0,278	129,063	105,474	1,242	6237,333
44	0,685	130,686	223,030	1,151	21676,889	111	0,291	132,686	104,474	1,201	5329,000
45	0,678	129,830	223,030	1,153	21400,125	112	0,600	135,930	104,030	1,162	4405,667
46 47	0,678 0.673	128,563 128.330	222,141 220.697	1,160 1.170	20873,444	113 114	0,800 0,740	135,867 135,608	109,780 116.919	1,141 1.135	3575,000 2802.778
48	0,625	128,380	220,037	1,175	19276,125	115	0,740	135,380	120,530	1,137	2249,125
49	0,575	128,330	219,155	1,176	18773,625	116	0,495	132,719	122,586	1,146	1826,556
50	0,524	128,330	219,030	1,180	18533,000	117	0,378	122,986	122,474	1,181	1533,889
51	0,524	130,141	218,697	1,180	18478,222	118	0,713	122,230	122,030	1,223	1308,667
52	0,556	130,652	218,030	1,176	18485,778	119	2,402	122,330	141,252	1,150	1563,889
53	0,571	128,119	218,030	1,176	18197,000	120	2,218	129,563	155,030	1,102	2063,222
54	0,765	125,267	218,030	1,186	17257,625	121	1,402	132,530	153,155	1,100	2452,000
55	1,050	120,470	218,030	1,191	15232,000	122	1,281	126,410	140,030	1,102	2637,800
56 57	1,149 1,214	120,416	218,459	1,185	12772,857	123	1,605	121,505	129,030	1,130	2515,125
58	1,214	121,718 122,242	220,780 223,655	1,173 1,167	10973,625 10205,250	124 125	1,853 1,703	121,563 122,630	128,363 126,530	1,154 1,146	2142,111 1907,125
59	0,918	123,430	224,030	1,174	10205,230	125	1,703	125,319	116,141	1,146	1628,000
60	0,701	125,652	224,030	1,181	11278,778	127	0,891	129,230	106,030	1,144	1421,375
61	0,500	119,305	223,280	1,201	13292,375	128	0,647	131,663	95,586	1,144	1181,000
62	0,472	109,601	216,030	1,264	14524,714	129	0,467	132,430	87,030	1,147	1033,100
63	0,519	108,705	217,030	1,330	14157,875	130	0,381	133,380	86,530	1,148	838,500
64	0,536	111,130	233,530	1,340	13313,000	131	0,288	134,430	81,474	1,150	760,889
65	0,536	119,555	237,780	1,304	12371,500	132	0,236	135,552	75,586	1,152	640,556
66	0,530	125,752	236,697	1,258	11004,667	133	0,177	137,080	73,030	1,152	602,250
67	0,466	130,005	218,780	1,215	9343,625	134	0,151	132,386	67,697	1,160	516,556

135						
	0,288	123,980	64,405	1,196	509,000	
136	1,800	122,567	91,905	1,172	500,500	
137	2,850	122,486	133,363	1,110	592,000	_
			,			_
138	2,313	127,863	141,030	1,089	662,889	
139	1,364	132,419	130,363	1,097	820,778	
140	1,194	134,543	120,405	1,095	918,875	
141	1,323	132,808	120,030	1,103	955,556	
142	1,111	132,330	120,474	1,121	948,000	
143	0,766	132,374	121,030	1,137	869,556	_
						_
144	0,550	132,608	120,586	1,148	723,333	
145	0,459	132,874	118,697	1,158	618,111	
146	0,453	133,367	117,155	1,163	521,750	
147	0,423	133,474	116,141	1,164	490,111	
148	0,352	133,655	113,655	1,165	475,125	
149	0,317	133,763	107,141	1,164	442,000	_
150	0,393	134,480	105,155	1,157	450,250	_
151	0,488	134,986	105,030	1,145	423,111	
152	0,497	135,786	105,030	1,138	408,000	
153	0,439	131,092	103,405	1,150	382,500	
154	0,365	129,641	95,474	1,180	343,889	
155	0,351	129,443	89,030	1,200	307,000	_
	0,360					_
156		128,930	88,155	1,207	319,375	_
157	0,361	128,830	88,030	1,213	314,333	
158	0,357	128,193	87,655	1,213	348,750	
159	0,370	129,650	86,230	1,210	340,000	_
160	0,426	132,916	86,030	1,197	388,571	
161	0,532	133,952	86,030	1,171	400,444	_
162	0,647	135,901		1,148		_
			86,030		514,000	_
163	0,900	136,386	92,030	1,125	866,000	
164	0,923	140,997	105,919	1,107	2547,778	
165	1,005	142,130	109,780	1,092	5496,500	
166	0,963	142,274	110,030	1,082	6447,667	
167	0,817	142,763	110,030	1,082	5328,889	_
168				1,077	4413,111	_
	1,064	139,041	109,474			
169	1,185	134,797	110,030	1,087	3760,000	
170	0,933	134,805	109,780	1,109	3102,000	
171	0,734	135,330	108,697	1,121	2544,000	
172	0,665	136,063	104,808	1,123	2236,111	
173		-				
	0.591	13/952		1 1173	2059 556	
	0,591	137,952	99,141	1,123	2059,556	
174	0,656	138,730	97,155	1,112	1877,625	
174 175	0,656 0,694	138,730 140,086	97,155 95,474	1,112 1,099	1877,625 1920,667	
174	0,656	138,730	97,155	1,112	1877,625	
174 175	0,656 0,694	138,730 140,086	97,155 95,474	1,112 1,099	1877,625 1920,667	
174 175 176	0,656 0,694 0,678 0,826	138,730 140,086 141,580	97,155 95,474 93,280 92,697	1,112 1,099 1,094	1877,625 1920,667 2126,500 2315,111	
174 175 176 177 178	0,656 0,694 0,678 0,826 0,810	138,730 140,086 141,580 141,952 141,130	97,155 95,474 93,280 92,697 89,280	1,112 1,099 1,094 1,087 1,091	1877,625 1920,667 2126,500 2315,111 2413,750	
174 175 176 177 178 179	0,656 0,694 0,678 0,826 0,810 0,716	138,730 140,086 141,580 141,952 141,130 143,030	97,155 95,474 93,280 92,697 89,280 85,530	1,112 1,099 1,094 1,087 1,091 1,096	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500	
174 175 176 177 178 179 180	0,656 0,694 0,678 0,826 0,810 0,716 0,708	138,730 140,086 141,580 141,952 141,130 143,030 143,730	97,155 95,474 93,280 92,697 89,280 85,530 85,030	1,112 1,099 1,094 1,087 1,091 1,096 1,094	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889	
174 175 176 177 178 179 180	0,656 0,694 0,678 0,826 0,810 0,716 0,708	138,730 140,086 141,580 141,952 141,130 143,030 143,730	97,155 95,474 93,280 92,697 89,280 85,530 85,030	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625	
174 175 176 177 178 179 180	0,656 0,694 0,678 0,826 0,810 0,716 0,708	138,730 140,086 141,580 141,952 141,130 143,030 143,730	97,155 95,474 93,280 92,697 89,280 85,530 85,030	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889	
174 175 176 177 178 179 180	0,656 0,694 0,678 0,826 0,810 0,716 0,708	138,730 140,086 141,580 141,952 141,130 143,030 143,730	97,155 95,474 93,280 92,697 89,280 85,530 85,030	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625	
174 175 176 177 178 179 180 181	0,656 0,694 0,678 0,826 0,810 0,716 0,708 0,770	138,730 140,086 141,580 141,952 141,130 143,030 143,730 143,730 141,152	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111	
174 175 176 177 178 179 180 181 182	0,656 0,694 0,678 0,826 0,810 0,716 0,708 0,770 1,059	138,730 140,086 141,580 141,952 141,130 143,030 143,730 143,730 141,152 136,055	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919 87,905 89,030	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077 1,079	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000	
174 175 176 177 178 179 180 181 182 183 184	0,656 0,694 0,678 0,826 0,810 0,716 0,708 0,770 1,059 1,344 1,084	138,730 140,086 141,580 141,952 141,130 143,030 143,730 143,730 141,152 136,055 133,686 134,105	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919 87,905 89,030 88,280	1,112 1,099 1,094 1,087 1,096 1,096 1,094 1,088 1,077 1,079 1,113 1,136	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125	
174 175 176 177 178 179 180 181 182 183 184 185	0,656 0,694 0,678 0,826 0,810 0,716 0,708 0,770 1,059 1,344 1,084 0,772	138,730 140,086 141,580 141,952 141,130 143,030 143,730 141,152 136,055 133,686 134,105 135,230	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919 87,905 89,030 88,280 86,697	1,112 1,099 1,094 1,087 1,096 1,096 1,094 1,088 1,077 1,079 1,113 1,136 1,131	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778	
174 175 176 177 178 179 180 181 181 182 183 184 185	0,656 0,694 0,678 0,826 0,810 0,716 0,770 1,059 1,344 1,084 0,772 0,746 1,099	138,730 140,086 141,580 141,952 141,130 143,030 143,730 143,730 141,152 136,055 133,686 134,105 135,230 135,108	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919 87,905 89,030 88,280 86,697 84,030	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077 1,079 1,113 1,136 1,131	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3515,778	
174 175 176 177 178 179 180 181 182 183 184 185 186 187	0,656 0,694 0,678 0,826 0,810 0,716 0,708 0,770 1,059 1,344 1,084 0,772 0,746 1,099 1,115	138,730 140,086 141,580 141,952 141,130 143,030 143,730 141,152 136,055 133,686 134,105 135,230 135,108	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919 87,905 89,030 88,280 86,697 84,030	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077 1,079 1,113 1,136 1,131 1,109	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3515,778 3748,667	
174 175 176 177 178 179 180 181 182 183 184 185 186 187	0,656 0,694 0,678 0,826 0,810 0,716 0,708 0,770 1,059 1,344 1,084 0,772 0,746 1,099 1,115 0,639	138,730 140,086 141,580 141,952 141,130 143,030 143,730 141,152 136,055 133,686 134,105 135,230 135,108 134,463 135,386	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919 87,905 89,030 88,280 86,697 84,030 84,030 83,363	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077 1,079 1,113 1,136 1,131 1,109 1,105	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3515,778 3748,667 5336,556	
174 175 176 177 178 179 180 181 182 183 184 185 186 187	0,656 0,694 0,678 0,826 0,810 0,716 0,708 0,770 1,059 1,344 1,084 0,772 0,746 1,099 1,115	138,730 140,086 141,580 141,952 141,130 143,030 143,730 141,152 136,055 133,686 134,105 135,230 135,108	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919 87,905 89,030 88,280 86,697 84,030	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077 1,079 1,113 1,136 1,131 1,109	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3515,778 3748,667	
174 175 176 177 178 179 180 181 182 183 184 185 186 187	0,656 0,694 0,678 0,826 0,810 0,716 0,708 0,770 1,059 1,344 1,084 0,772 0,746 1,099 1,115 0,639	138,730 140,086 141,580 141,952 141,130 143,730 143,730 141,152 136,055 133,686 134,105 135,230 135,108 134,463 135,386 138,280	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919 87,905 89,030 88,280 86,697 84,030 84,030 83,363	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077 1,079 1,113 1,136 1,131 1,109 1,105 1,119	1877,625 1920,667 2126,500 2315,111 2413,750 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3515,778 3748,667 5336,556 7561,625	
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189	0,656 0,694 0,678 0,826 0,810 0,716 0,708 0,770 1,059 1,344 1,084 0,772 0,746 1,099 1,115 0,639 0,418	138,730 140,086 141,580 141,952 141,130 143,030 143,730 141,152 136,055 133,686 134,105 135,230 135,108 134,463 135,386 138,280 139,319	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919 87,905 89,030 88,280 86,697 84,030 83,363 80,155 78,363	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077 1,079 1,113 1,136 1,131 1,109 1,105 1,119	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3515,778 3748,667 5336,556 7561,625 8531,000	
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191	0,656 0,694 0,678 0,826 0,810 0,716 0,708 1,059 1,344 1,084 0,772 0,746 1,099 1,115 0,639 0,418 0,570 1,198	138,730 140,086 141,580 141,952 141,130 143,030 143,730 141,152 136,055 133,686 134,105 135,230 135,108 134,463 135,386 138,280 139,319 136,986	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919 87,905 89,030 88,280 86,697 84,030 83,363 80,155 78,363 78,252	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077 1,079 1,113 1,136 1,131 1,109 1,105 1,119 1,125 1,120	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3515,778 3748,667 5336,556 7561,625 8531,000 9360,667	
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 190 191 192 193	0,656 0,694 0,678 0,826 0,810 0,716 0,708 1,059 1,344 1,084 0,772 0,746 1,099 1,115 0,639 0,418 0,570 1,198 1,409	138,730 140,086 141,580 141,952 141,130 143,030 143,730 141,152 136,055 133,686 134,105 135,230 135,108 134,463 135,386 138,280 139,319 136,986 134,897	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919 87,905 89,030 88,280 86,697 84,030 84,030 83,363 80,155 78,363 78,252	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077 1,079 1,113 1,136 1,131 1,109 1,105 1,125 1,120 1,104	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3515,778 3748,667 5336,556 7561,625 8531,000 9360,667 9548,111	
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 190 191 192 193	0,656 0,694 0,678 0,826 0,810 0,716 0,708 1,059 1,344 1,084 0,772 0,746 1,099 1,115 0,639 0,418 0,570 1,198 1,409 1,182	138,730 140,086 141,580 141,952 141,130 143,030 143,730 141,152 136,055 133,686 134,105 135,230 135,108 134,463 135,386 138,280 139,319 136,986 134,897 134,492	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,919 87,905 89,030 88,280 86,697 84,030 84,030 83,363 80,155 78,363 78,252 79,252	1,112 1,099 1,094 1,087 1,096 1,096 1,096 1,077 1,079 1,113 1,136 1,131 1,109 1,105 1,119 1,125 1,120 1,104 1,102	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3515,778 3748,667 5336,556 7561,625 8531,000 9360,667 9548,111 8339,000	
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 190 191 192 193 194	0,656 0,694 0,678 0,826 0,810 0,716 0,708 0,770 1,059 1,344 1,084 0,772 0,746 1,099 1,115 0,639 0,418 0,570 1,198 1,409 1,182 1,117	138,730 140,086 141,580 141,952 141,130 143,030 143,730 141,152 136,055 133,686 134,105 135,230 135,108 134,463 135,386 138,280 139,319 136,986 134,897 134,492 134,530	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919 87,905 89,030 88,280 86,697 84,030 84,030 83,363 80,155 78,252 79,252 80,655 81,030	1,112 1,099 1,094 1,087 1,096 1,096 1,094 1,088 1,077 1,113 1,136 1,131 1,109 1,105 1,119 1,125 1,120 1,104 1,102 1,113	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3748,667 5336,556 7561,625 8531,000 9360,667 9548,111 8339,000 6898,625	
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 190 191 192 193	0,656 0,694 0,678 0,826 0,810 0,716 0,708 1,059 1,344 1,084 0,772 0,746 1,099 1,115 0,639 0,418 0,570 1,198 1,409 1,182	138,730 140,086 141,580 141,952 141,130 143,030 143,730 141,152 136,055 133,686 134,105 135,230 135,108 134,463 135,386 138,280 139,319 136,986 134,897 134,492	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,919 87,905 89,030 88,280 86,697 84,030 84,030 83,363 80,155 78,363 78,252 79,252	1,112 1,099 1,094 1,087 1,096 1,096 1,096 1,077 1,079 1,113 1,136 1,131 1,109 1,105 1,119 1,125 1,120 1,104 1,102	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3515,778 3748,667 5336,556 7561,625 8531,000 9360,667 9548,111 8339,000	
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 190 191 192 193 194	0,656 0,694 0,678 0,826 0,810 0,716 0,708 0,770 1,059 1,344 1,084 0,772 0,746 1,099 1,115 0,639 0,418 0,570 1,198 1,409 1,182 1,117	138,730 140,086 141,580 141,952 141,130 143,030 143,730 141,152 136,055 133,686 134,105 135,230 135,108 134,463 135,386 138,280 139,319 136,986 134,897 134,492 134,530	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919 87,905 89,030 88,280 86,697 84,030 84,030 83,363 80,155 78,252 79,252 80,655 81,030	1,112 1,099 1,094 1,087 1,096 1,096 1,094 1,088 1,077 1,113 1,136 1,131 1,109 1,105 1,119 1,125 1,120 1,104 1,102 1,113	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3748,667 5336,556 7561,625 8531,000 9360,667 9548,111 8339,000 6898,625	
174 175 176 177 178 179 180 181 181 182 183 184 185 186 187 191 191 192 193 194 195 196	0,656 0,694 0,678 0,826 0,810 0,770 1,059 1,344 1,084 0,772 0,746 1,099 1,115 0,639 0,418 0,570 1,198 1,409 1,1182 1,117 0,982 0,801	138,730 140,086 141,580 141,952 141,130 143,730 143,730 141,152 136,055 133,686 134,105 135,230 135,108 134,463 135,386 138,280 139,319 136,986 134,897 134,492 134,530 134,552 134,530	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919 87,905 89,030 88,280 86,697 84,030 83,363 80,155 78,363 78,252 79,252 80,655 81,030 80,808 79,808	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077 1,079 1,113 1,136 1,131 1,109 1,105 1,119 1,125 1,120 1,104 1,102 1,113 1,110 1,105 1,111	1877,625 1920,667 2126,500 2315,111 2413,750 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3515,778 3748,667 5336,556 7561,625 8531,000 9360,667 9548,111 8339,000 6898,625 5896,000 4822,333	
174 175 176 177 178 180 181 182 183 184 185 186 187 188 190 191 192 193 194 195 196 197	0,656 0,694 0,678 0,826 0,810 0,716 0,708 0,770 1,059 1,344 1,084 0,772 0,746 1,099 1,115 0,639 0,418 0,570 1,198 1,409 1,182 1,117 0,982 0,801 0,643	138,730 140,086 141,580 141,952 141,130 143,030 143,730 141,152 136,055 133,686 134,105 135,230 135,108 134,463 135,386 138,280 139,319 136,986 134,492 134,530 134,530 134,552	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919 87,905 89,030 88,280 86,697 84,030 83,363 80,155 78,363 78,252 79,252 80,655 81,030 80,808 79,808 78,141	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077 1,079 1,113 1,136 1,131 1,109 1,105 1,119 1,125 1,120 1,104 1,102 1,113 1,110 1,105 1,111 1,105 1,111	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3748,667 5336,556 7561,625 8531,000 9360,667 9548,111 8339,000 6898,625 5896,000 4822,333 3913,778	
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197	0,656 0,694 0,678 0,826 0,810 0,716 0,708 0,770 1,059 1,344 1,084 0,772 0,746 1,099 1,115 0,639 0,418 0,570 1,198 1,409 1,182 1,117 0,982 0,801 0,643 0,606	138,730 140,086 141,580 141,52 141,130 143,030 143,730 141,152 136,055 133,686 134,105 135,230 135,108 135,386 134,463 135,386 134,897 134,492 134,530 134,530 134,530 134,530 134,552 132,341 131,197 132,619	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919 87,905 89,030 88,280 86,697 84,030 83,363 80,155 78,363 78,252 79,252 80,655 81,030 80,808 79,808 78,141 76,586	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077 1,079 1,113 1,136 1,131 1,109 1,125 1,120 1,104 1,102 1,113 1,110 1,105 1,111 1,110 1,105 1,111 1,110 1,105 1,111 1,110	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3515,778 3748,667 5336,556 7561,625 8531,000 9360,667 9548,111 8339,000 6898,625 5896,000 4822,333 3913,778 3219,444	
174 175 176 177 178 179 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198	0,656 0,694 0,678 0,826 0,810 0,716 0,708 1,059 1,344 1,084 0,772 0,746 1,099 1,115 0,639 0,418 0,570 1,198 1,409 1,182 1,117 0,982 0,801 0,643 0,606 0,579	138,730 140,086 141,580 141,952 141,130 143,030 143,730 141,152 136,055 133,686 134,105 135,230 135,108 134,463 135,386 134,463 139,319 136,986 134,897 134,492 134,530 134,530 134,552 132,341 131,197 132,619 133,630	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919 87,905 89,030 88,280 86,697 84,030 84,030 83,363 80,155 78,363 78,252 79,252 80,655 81,030 80,808 79,808 78,141 76,586 73,252	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077 1,079 1,113 1,136 1,131 1,109 1,125 1,120 1,104 1,102 1,113 1,110 1,102 1,113 1,110 1,110 1,110 1,110 1,110 1,110 1,110 1,110 1,110 1,110 1,111 1,110 1,111 1,110 1,111 1,110 1,111 1,111 1,111 1,114 1,114 1,114 1,114 1,114 1,114 1,114 1,118	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3515,778 3515,778 3748,667 5336,556 7561,625 8531,000 9360,667 9548,111 8339,000 6898,625 5896,000 4822,333 3913,778 3219,444 2618,889	
174 175 176 177 178 179 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 199 200 201	0,656 0,694 0,678 0,826 0,810 0,716 0,708 1,059 1,344 1,084 0,772 0,746 1,099 1,115 0,639 0,418 0,570 1,198 1,409 1,182 1,117 0,982 0,801 0,643 0,606 0,579 0,507	138,730 140,086 141,580 141,952 141,130 143,030 143,730 141,152 136,055 133,686 134,105 135,230 135,108 134,463 139,319 136,986 134,897 134,492 134,530 134,530 134,552 132,341 131,197 132,619 133,630 134,008	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,919 87,905 89,030 88,280 86,697 84,030 84,030 83,363 80,155 78,363 78,252 79,252 80,655 81,030 80,808 79,808 78,141 76,586 73,252 67,141	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077 1,079 1,113 1,136 1,131 1,109 1,105 1,119 1,125 1,120 1,104 1,102 1,113 1,110 1,105 1,111 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,110	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3515,778 3748,667 5336,556 7561,625 8531,000 9360,667 9548,111 8339,000 6898,625 5896,000 4822,333 3913,778 3219,444 2618,889 2213,556	
174 175 176 177 178 179 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198	0,656 0,694 0,678 0,826 0,810 0,716 0,708 1,059 1,344 1,084 0,772 0,746 1,099 1,115 0,639 0,418 0,570 1,198 1,409 1,182 1,117 0,982 0,801 0,643 0,606 0,579	138,730 140,086 141,580 141,952 141,130 143,030 143,730 141,152 136,055 133,686 134,105 135,230 135,108 134,463 135,386 134,463 139,319 136,986 134,897 134,492 134,530 134,530 134,552 132,341 131,197 132,619 133,630	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,030 85,919 87,905 89,030 88,280 86,697 84,030 84,030 83,363 80,155 78,363 78,252 79,252 80,655 81,030 80,808 79,808 78,141 76,586 73,252	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077 1,079 1,113 1,136 1,131 1,109 1,125 1,120 1,104 1,102 1,113 1,110 1,102 1,113 1,110 1,110 1,110 1,110 1,110 1,110 1,110 1,110 1,110 1,110 1,111 1,110 1,111 1,110 1,111 1,110 1,111 1,111 1,111 1,114 1,114 1,114 1,114 1,114 1,114 1,114 1,118	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3515,778 3515,778 3748,667 5336,556 7561,625 8531,000 9360,667 9548,111 8339,000 6898,625 5896,000 4822,333 3913,778 3219,444 2618,889	
174 175 176 177 178 179 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 199 200 201	0,656 0,694 0,678 0,826 0,810 0,716 0,708 1,059 1,344 1,084 0,772 0,746 1,099 1,115 0,639 0,418 0,570 1,198 1,409 1,182 1,117 0,982 0,801 0,643 0,606 0,579 0,507	138,730 140,086 141,580 141,952 141,130 143,030 143,730 141,152 136,055 133,686 134,105 135,230 135,108 134,463 139,319 136,986 134,897 134,492 134,530 134,530 134,552 132,341 131,197 132,619 133,630 134,008	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,919 87,905 89,030 88,280 86,697 84,030 84,030 83,363 80,155 78,363 78,252 79,252 80,655 81,030 80,808 79,808 78,141 76,586 73,252 67,141	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077 1,079 1,113 1,136 1,131 1,109 1,105 1,119 1,125 1,120 1,104 1,102 1,113 1,110 1,105 1,111 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,110	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3515,778 3748,667 5336,556 7561,625 8531,000 9360,667 9548,111 8339,000 6898,625 5896,000 4822,333 3913,778 3219,444 2618,889 2213,556	
174 175 176 177 178 179 180 181 182 183 184 185 186 187 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203	0,656 0,694 0,678 0,826 0,810 0,716 0,708 1,059 1,344 1,084 0,772 0,746 1,099 1,115 0,639 1,409 1,182 1,117 0,982 0,801 0,643 0,606 0,579 0,466 0,448	138,730 140,086 141,580 141,52 141,130 143,030 143,730 141,152 136,055 133,686 134,105 135,230 135,108 134,463 135,386 138,280 139,319 136,986 134,897 134,530 134,552 132,341 131,197 132,619 133,630 134,008 134,008 135,086 131,105	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,919 87,905 89,030 88,280 86,697 84,030 84,030 84,030 83,363 80,155 78,363 79,252 80,655 81,030 80,808 79,808 79,808 78,141 76,586 73,252 67,141 62,252 57,905	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077 1,079 1,113 1,136 1,131 1,109 1,105 1,119 1,125 1,120 1,104 1,105 1,111 1,105 1,112 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,136 1,136 1,131	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3515,778 3748,667 5336,556 7561,625 8531,000 9360,667 9548,111 8339,000 6898,625 5896,000 4822,333 3913,778 3219,444 2618,889 2213,556 1849,333 1594,625	
174 175 176 177 178 179 180 181 182 183 184 185 186 187 189 190 191 192 193 194 195 196 197 197 198 199 200 201 202	0,656 0,694 0,678 0,826 0,810 0,716 0,708 1,059 1,344 1,084 0,772 0,746 1,099 1,115 0,639 0,418 0,570 1,182 1,117 0,982 0,801 0,643 0,606 0,579 0,507	138,730 140,086 141,580 141,952 141,130 143,030 143,730 141,152 136,055 135,230 135,230 135,108 134,463 135,386 138,280 139,319 136,986 134,897 134,492 134,530 134,530 134,530 134,552 132,341 131,197 132,619 133,630 134,008 134,008	97,155 95,474 93,280 92,697 89,280 85,530 85,030 85,919 87,905 89,030 88,280 86,697 84,030 84,030 83,363 80,155 78,363 78,252 79,252 80,655 81,030 80,808 79,808 79,808 78,141 76,586 73,252 67,141 62,252	1,112 1,099 1,094 1,087 1,091 1,096 1,094 1,088 1,077 1,079 1,113 1,136 1,131 1,109 1,105 1,119 1,125 1,120 1,104 1,102 1,113 1,110 1,105 1,111 1,110 1,105 1,111 1,110 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,110 1,105 1,113 1,136 1,136	1877,625 1920,667 2126,500 2315,111 2413,750 2924,500 4206,889 5817,625 7829,111 8664,000 7326,444 5336,125 4191,778 3515,778 3748,667 5336,556 7561,625 8531,000 9360,667 9548,111 8339,000 6898,625 5896,000 4822,333 3913,778 3219,444 2618,889 2213,556 1849,333	

1098,667

1065,111 989,667

873,444

753,333

702,286

633,222

569,444

518,714

475,000

424,875

422,571

351,333

386,750

332,667

316,429

280,556 302,750

251,750

273,000

243,857

264,500

208,778

231,444

186,111

205,000

205,000

171,000

171,000

171,000

171,000

79,000

3,000

0,000

1,246

1,285

1,277

1,254 1,234

1,217

1,208

1,202

1,196

1,192

1,189

1,186

1,182

1,178

1,174

1,171

1,167

1,166

1,163

1,158

1,157

1,157

1,160

1,162

1,163

1,156

1,163

1,162

1,162

1,162

1,162

1,153

1,162

1,164

1,165

206

207

208

209

210

211

212

213

214 215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

0,296

0,229

0,214

0,192

0,176

0,167

0,148

0,121

0,106

0,103

0,098

0,094

0,092

0,090

0,112

0,128

0,153

0,164

0,193

0,256

0,290

0,379

0,398

0,386

0,385

0,536

0,384

0,398

0,398

0,398

0,398

0,605

0,359

0,345

0,314

111,868

120,374

128,619

130,697

130,963

132,886

133,487

133,163

133,119

133,430

133,441

133,930

133,887

134,486

135,880

136,219

137,730

137,730

137,730

137,417

136,630

135,844

135,080

134,730

133,241

133,174

133,130

133,130

133,130

133,130

133,130

133,230

134,030

132,930

132,830

50,905

47,919

46.919

46,030

45,919

45,030

45,030

44,030

43,474

42,459

41,919

40,405

39,459

38,474

38,030

38,030

38,030

38,030

38,030

38,530

39,030

40,459

42,405

45,474

46,030

50,030

46,030

47,030

47,030

47,030

47,030

51,030

50,530

53,030