

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS ESCUELA DE INGENIERÍA QUÍMICA

"DISEÑO DE UN PROCESO INDUSTRIAL PARA LA OBTENCIÓN DE COMPOTA, A PARTIR DEL ORITO (Musa Acuminata AA), PARA LA ASOCIACIÓN DE PRODUCCIÓN AGROPECUARIA TABLAS DE LA FLORIDA (ASOPROTABF)"

TRABAJO DE TITULACIÓN
TIPO: PROYECTO TÉCNICO

Presentado para optar por el grado académico de:

INGENIERA QUÍMICA

AUTORA: LOURDES JACKELIN MONTERO VARGAS

TUTORA: ING. MABEL MARIELA PARADA RIVERA

Riobamba-Ecuador

©2018, Lourdes Jackelin Montero Vargas

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier medio o procedimiento, incluyendo la cita bibliográfica del documento, siempre y cuando se reconozca el Derecho de Autor.

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS ESCUELA DE INGENIERÍA QUÍMICA

El Tribunal del Trabajo de Titulación certifica que: El proyecto técnico: "DISEÑO DE UN PROCESO INDUSTRIAL PARA LA OBTENCIÓN DE COMPOTA, A PARTIR DEL ORITO (*Musa Acuminata AA*), PARA LA ASOCIACIÓN DE PRODUCCIÓN AGROPECUARIA TABLAS DE LA FLORIDA (ASOPROTABF), de responsabilidad de la señorita Lourdes Jackelin Montero Vargas, ha sido minuciosamente revisado por los Miembros del Tribunal de Titulación, quedando autorizada su presentación.

NOMBRE	FIRMA	FECHA
Ing. Mabel Parada Rivera, M.Sc		
DIRECTOR DEL TRABAJO		
DE TITULACIÓN		
Ing. Valeria Tapia González, Mtr.		
MIEMBRO DEL TRIBUNAL		

Yo, Lourdes Jackelin Montero Vargas soy responsable de las ideas, doctrinas y resultados expuestos en este Trabajo de Titulación y el patrimonio intelectual del Trabajo de Titulación pertenece a la Escuela Superior Politécnica de Chimborazo.

Lourdes Jackelin Montero

DEDICATORIA

Mi Trabajo de Titulación lo dedico en primer lugar a Dios y a mi Virgencita del Valle que jamás me han abandonado en este difícil pero gratificante sueño, por brindarme una familia maravillosa a quien respeto y amo de una forma infinita.

A mis padres Ramón y Angélica quienes se han sacrificado y esforzado por que nunca me falte nada, por su amor incondicional, su entrega y dedicación en nuestro hogar inculcándome valores que ya no existen, sus años de matrimonio y entrega me han demostrado que los consejos se los hace, no se los dice con palabras. Los amos demasiado, siempre seré su chiquita.

A mis hermanos ya que han sabido estar ahí apoyándome y dándome ánimos para que no me dé por vencida, los considero como mis segundos padres, en especial a Hilda, Inés, Bolívar, Miltón y Dina

A mis sobrinos, que son mis bebecitos amados; ellos que me han inspirado a ser mejor. Esta meta deseo que sea una forma de motivación para ustedes, que jamás se rindan ya que los sueños si se hacen realidad.

Lourdes Montero

AGRADECIMIENTO

Mi eterno agradecimiento a Dios y a mi Virgencita del Valle por regalarme esta historia llamada vida y por permitirme caminar en ella de una forma segura y querida.

Agradezco de forma infinita a las personas más importantes de mi vida, mi amado padre Ramón Montero, a quién admiro por su valentía de sacar adelante a sus once hijos y por velar por toda su familia, le pido a Dios que nos alcance la vida para seguirnos disfrutando ya que todo lo que él me ha inculcado y me ha brindado es algo impagable; siempre serás mi fuente de inspiración, mi héroe gracias a ti hoy esta meta se hace realidad, todo por ti, por nuestro sueño tan anhelado, a mi madre Angélica Vargas por ser mi pilar fundamental de apoyo y amor infinito. Es un placer ser su hija, que su bendición jamás me falte.

De forma especial a mi hermana Hilda, que la considero mi segunda mamá, que me aconsejado y me ha animado a seguir adelante a pesar de todo, gracias por creer en mi de una forma que ni yo lo hacía, de igual forma a mis hermanas Inés y Dina que me han acompañado con sus palabras de aliento para que no me rinda; mis tres hermanas son mis ángeles y mejores amigas, me han dado el privilegio de ser tía de unos preciosos y transformados bebés que amo inmensamente!

Agradezco a mis mejores amigos que siempre han estado ahí a pesar de la distancia Joselin, Enma, José, Daysi, Maribel, Stefa, Xavi, Ivan, Tito que siempre serán los mejores, son los hermanos que la vida me regaló, los adoro para siempre.

Quiero agradecer a mi Directora de Trabajo de Titulación Ing. Mabel Parada, por ser una gran profesional, madre, esposa, hija y amiga, gracias por permitirme alcanzar esta meta la quiero mucho, de la misma forma a la Ing. Valeria Tapia por su predisposición a colaborar siempre conmigo y su amistad sincera.

Al Sr. Wilmo Velasco Representante legal de la Asociación de Producción Agropecuaria Tablas de la Florida por la apertura y confianza depositada en mi para realizar el trabajo de titulación. Finalmente, gracias a la Escuela de Ingeniería Química de la Escuela Superior Politécnica de Chimborazo, donde me he educado, a los docentes por los conocimientos brindados y que orgullosamente han forjado mi futuro en el ámbito profesional.

Lourdes Montero

TABLA DE CONTENIDOS

RESUME	N	xvi
ABSTRA	CT	xvii
CAPITUI	LOI	1
1.	DIAGNÓSTICO Y DEFINICIÓN DEL PROBLEMA	1
1.1.	Identificación del problema	1
1.2.	Justificación del proyecto	2
1.3.	Línea base del proyecto	3
1.3.1.	Antecedentes de la Asociación	3
1.3.2.	Marco Conceptual	3
1.3.2.1.	Historia del banano orito	3
1.3.2.2.	Compota	7
1.3.2.3.	Operaciones Unitarias para la obtención de compota de orito.	9
1.4.	Beneficiarios Directos e Indirectos	10
1.4.1.	Beneficiarios directos	10
1.4.2.	Beneficiarios indirectos	10
CAPITUI	LOII	11
2.	OBJETIVOS DEL PROYECTO	11
2.1.	General	11
2.2.	Específicos	11
CAPITUI	LO III	12
3.	ESTUDIO TÉCNICO	12
3.1.	Localización del Proyecto	12
3.2.	Ingeniería del Proyecto	13
3.2.1.	Tipo de estudio	13
3.2.2.	Metodología	13
3.2.3.	Métodos y Técnicas	14
3.2.3.1.	Métodos	14
3.2.3.2.	Técnicas	15
3.2.4.	Procedimiento a nivel de laboratorio	27
3.2.4.1.	Selección de materia prima	27
3.2.4.2.	Descripción del procedimiento	29
3.2.5.	Análisis de discrimación para la fórmula	35

3.2.6.	Variables del proceso	44
2.2.7		4.~
3.2.7.	Balance de masa	45
3.2.8.	Balance de Energía	52
3.2.9.	Dimensionamiento de equipos	56
3.2.9.	Resultados	106
3.2.9.1.	Resultados de caracterización de la materia prima	106
3.2.9.2.	Propuesta de diseño de equipos	107
3.2.10.	Validación del proceso	110
3.2.10.1.	Análisis Físico Químico del puré de orito	111
3.2.10.2.	Prueba de Vida Útil Acelerada	111
3.2.10.3.	Análisis de Vitaminas C y A	112
3.2.10.4.	Análisis Adicionales	113
3.2.11.	Proceso de producción	113
3.2.11.1.	Materia prima, insumos y aditivos	114
3.2.11.2.	Operaciones Unitarias para la obtención de Compota de orito	115
3.2.11.3.	Diagrama del Proceso	117
3.2.11.4.	Descripción del proceso de elaboración de compota	119
3.2.11.5.	Distribución y diseño de la planta	121
3.2.11.5.1.	Descripción de la planta	121
3.2.11.6.	Capacidad de producción	122
3.3.	Requerimientos de equipos y tecnología	122
3.4.	Análisis de costo beneficio del proyecto	122
3.4.1.	Cronograma de actividades	129
ANALISIS	DE RESULTADOS	131
CONCLUS	SIONES	134
RECOME	NDACIONES	136
BIBLIOGI	RAFIA	
ANEXOS		

INDICE DE TABLAS

		Pág.
Tabla 1-1.	Descripción taxonómica del banano orito	5
Tabla 2-1.	Contenido nutritivo en 100 g de porción aprovechable del banano orito	6
Tabla 3-1.	Aditivos Alimentarios – Antioxidantes	8
Tabla 4-1.	Aditivos Alimentarios – Preservantes	9
Tabla 1-3.	Características Geográficas de la Parroquia Telimbela.	12
Tabla 2-3.	Grados de maduración del orito	13
Tabla 3-3.	Requisitos Físicos del Orito	16
Tabla 4-3.	Análisis Físico Químico: Sólidos Totales	17
Tabla 5-3.	Análisis Físico Químico: Sólidos Solubles °Brix	18
Tabla 6-3.	Análisis Físico Químico: pH	19
Tabla 7-3.	Análisis Microbiológico: Hifas de Mohos	20
Tabla 8-3.	Análisis Microbiológico: Aerobios Mesófilos	21
Tabla 9-3.	Análisis Microbiológico: Anaerobios Mesófilos	22
Tabla 10-3.	Aditivos Alimenticios	23
Tabla 11-3.	Tiempo de Vida útil acelerada	24
Tabla 12-3.	Análisis de Vitaminas A y C	25
Tabla 13-3.	Requisitos físicos de la materia prima	28
Tabla 14-3.	Cantidad de materia prima para prueba piloto	28
Tabla 15-3.	Materiales y equipos utilizados en el ensayo de laboratorio	29
Tabla 16-3.	Insumos para las formulaciones	29
Tabla 17-3.	Cantidad en % para cada formulación	29
Tabla 18-3.	Denominación con números al azar para las tres distintas formulaciones	36
	de compota	
Tabla 19-3.	Análisis de la distribución de frecuencias bajo el esquema Kruskall Wallis	37
Tabla 20-3.	Prueba de Kruskall Wallis para el sabor de la compota estudiando	38
	diferentes formulaciones	
Tabla 21-3.	Análisis de las frecuencias obtenidas a la prueba sabor estudiando	39
	diferentes formulaciones	
Tabla 22-3.	Prueba de Kruskall Wallis para la consistencia de la compota estudiando	39
	diferentes formulaciones	
Tabla 23-3.	Análisis de las frecuencias obtenidas a la prueba consistencia estudiando	40
	diferentes formulaciones para obtener compota de orito	

Tabla 24-3.	Prueba de Kruskall Wallis para el color de la compota estudiando	41
	diferentes formulaciones	
Tabla 25-3.	Análisis de las frecuencias obtenidas a la prueba color estudiando	41
	diferentes formulaciones para obtener compota de orito	
Tabla 26-3.	Prueba de Kruskall Wallis para el olor de la compota estudiando	42
	diferentes formulaciones	
Tabla 27-3.	Análisis de las frecuencias obtenidas a la prueba olor estudiando	43
	diferentes formulaciones para obtener compota de orito	
Tabla 28-3.	Variables del Proceso	44
Tabla 29-3.	Registro de orito rechazado por "ASOPROTABF"	45
Tabla 30-3.	Peso promedio oritos como materia prima	45
Tabla 31-3.	Constantes utilizadas para diseño	60
Tabla 32-3.	Selección de rodillo	66
Tabla 33-3.	Características del material	67
Tabla 34-3.	Peso de las partes móviles	68
Tabla 35-3.	Coeficiente de fricción de rodillos	68
Tabla 36-3.	Datos experimentales del agua en simulación	92
Tabla 37-3.	Propiedades del agua saturada	93
Tabla 38-3.	Composición de aire	95
Tabla 39-3.	Valores de entalpias de los productos y reactantes de la combustión.	99
Tabla 40-3.	Reemplazo ecuaciones	101
Tabla 41-3.	Dimensiones de cámara de combustión según ángulo de rocío	102
Tabla 42-3.	Dimensiones de cámara de combustión considerando un ángulo de rocío	103
	de 60°	
Tabla 43-3.	Dimensionamiento de cámara hogar	103
Tabla 44-3.	Parámetros de tubo para caldera	104
Tabla 45-3.	Caracterización Físico-química de la materia prima	106
Tabla 46-3	Dimensionamiento del tanque de lavado	106
Tabla 47-3.	Dimensionamiento de bandas transportadoras	107
Tabla 48-3.	Dimensionamiento de mesas de selección y pelado	107
Tabla 49-3.	Dimensionamiento de la picadora	108
Tabla 50-3.	Diseño de la marmita con agitador	109
Tabla 51-3.	Diseño de la caldera	109
Tabla 52-3	Análisis Físico Químico de la compota de orito	110
Tabla 53-3.	Análisis Microbiológicos de la compota de orito	110

Tabla 54-3.	Resultados Prueba de Vida útil Acelerada	111
Tabla 55-3	Resultados de Vitaminas	111
Tabla 56-3.	Resultados de Análisis Adicionales	112
Tabla 57-3.	Materia Prima	113
Tabla 58-3.	Insumos	113
Tabla 59-3.	Aditivos	113
Tabla 60-3.	Tanque de lavado a implementar en la planta productora de compota de	122
	orito	
Tabla 61-3.	Marmita con agitador a implementar en la planta productora de compota	122
	de orito	
Tabla 62-3.	Caldera a implementar en la planta productora de compota de orito	122
Tabla 63-3.	Presupuesto de los equipos necesarios para la producción de compota de	123
	orito	
Tabla 64-3.	Presupuesto para materia prima, insumos y aditivos necesarios para la	124
	producción de compota de orito	
Tabla 65-3.	Presupuesto para análisis de laboratorio y pruebas de calidad necesarios	125
	para la producción de compota de orito	
Tabla 66-3.	Presupuesto para análisis de laboratorio y pruebas de calidad necesarios	126
	para la producción de compota de orito	
Tabla 67-3.	Presupuesto para gastos administrativos necesarios para la producción de	127
	compota de orito	
Tabla 68-3.	Costos de producción de compota de orito	127
Tabla 69-3.	Ganancias proyectadas para los tres primeros años de producción de	128
	compota de orito	

INDICE DE GRÁFICOS

N°		Pág.
1-3.	Análisis obtenidos a la preferencia de la compota de acuerdo a su formulación	38
2-3.	Frecuencia de la evaluación del sabor de la compota elaborada con tres	39
	diferentes formulaciones.	
3-3.	Frecuencia de la evaluación del sabor de la compota elaborada con tres	40
	diferentes formulaciones.	
4-3.	Frecuencia de la evaluación del color de la compota elaborada con tres diferentes	42
	formulaciones.	
5-3.	Frecuencia de la evaluación del olor de la compota elaborada con tres diferentes	43
	formulaciones.	

INDICE DE FOTOGRAFÍAS

N°		Pág.
1-3.	Recepción de la materia prima	30
2-3.	Lavado de la materia prima	30
3-3.	Remoción de cáscara	31
4-3.	Pesado de materia prima	31
5-3.	Licuado de materia prima	31
6-3.	Aditivos químicos	32
7-3.	Control de temperatura	32
8-3.	Esterilización de envases	33
9-3.	Envasado manual	33
10-3.	Enfriado a temperatura ambiente	34
11-3.	Medición de pH del puré	34
12-3.	Medición de pH del puré	35

INDICE DE FIGURAS

N°		Pág.
1-1.	Principales causas de alteración de los alimentos	8
1-3.	Mapa de recintos de la parroquia Telimbela.	12
2-3.	Altura estándar de mesa según la correcta ergonomía de acuerdo al trabajo	71
3-3.	Marmita con agitador	81
4-3.	Marmita con chaqueta	86
5-3.	Agitador de la marmita	87
6-3.	Placa tubular de la cámara trasera del hogar	104
7-3.	Diagrama de flujo de la elaboración de compota de orito	117
8-3.	Capacidad de producción de compota de orito en la planta.	121

INDICE DE ANEXOS

 N°

- **A.** Lista de Aditivos Alimenticios permitidos por la FAO
- **B.** Fotografías de los diferentes grados de maduración, para los análisis en LACONAL.
- C. Análisis de Grados de maduración del orito
- **D.** Prueba de aceptación (Encuesta)
- E. Fotos de Pruebas Afectivas Estudiantes Facultad de Ciencias ESPOCH
- F. Registro mensual "ASOPROTABF"
- **G.** Tablas de rugosidad relativa según material
- **H.** Diagrama de Moddy
- I. Coeficiente de fricción de accesorios
- J. Carta para el cálculo de la potencia consumida por impulsor de un agitador
- **K.** Análisis Físico-químico, microbiológico, Vitamina A y C, Información Nutricional del producto final
- L. Tiempo de vida útil acelerada
- M. Etiqueta del producto final
- N. Planos de la mesa de selección de materia prima y pelado
- **Ñ.** Planos Tanque de Lavado
- O. Planos Licuadora
- P. Planos Caldera
- Q. Planos Banda Transportadora
- **R.** Planos Chaqueta
- S. Planos Paletas
- T. Planos Marmita
- U. Planos Explosionado
- V. Planos de la Planta

RESUMEN

El objetivo fue diseñar un proceso industrial para la obtención de compota, a partir del Orito (Musa Acuminata AA), para la ASOPROTAB, ubicada en el Recinto Tablas de la Florida, primero se caracterizó el orito, para los tres tipos de maduración, indicando el 34,4% de contenido de sólidos totales, pH de 4,91 y grados Brix 24,8%, además una coloración amarilla de grado 1, se escogió la mejor formulación de tres planteadas, de acuerdo a un panel de jueces no entrenados y una prueba discriminatoria se escogió que la formulación con mayor aceptación fue la realizada con orito más azúcar y pectina, a esta se le realizaron pruebas físico químicas, microbiológicas de acuerdo a la norma técnica NTE INEN 3078, además se realizó pruebas adicionales de calidad nutricional y vitaminas; todas estas pruebas se las realizaron en el Laboratorio LACONAL, el mismo que superaron los valores establecidos y además se realizó una prueba de vida de anaquel, en donde se obtuvo que la compota no cambió sus características después de 15 días de aplicada la prueba. Se realizó el dimensionamiento de los equipos y propuesta tecnológica, para lograr completar la transformación y obtención de compota. Es necesario que se instale en la planta un tanque de lavado, bandas transportadoras, mesas de recepción, licuadora industrial, marmita de homogenizado, caldera, esterilizadores y envasadores, concluyendo que, produciendo 8165 unidades de compota de contenido neto igual a 130 g, se obtendrá una ganancia anual igual a \$27719,11 se podrá recuperar la inversión en el tercer año de producción generando así una dinamización de la economía.

Palabras Claves: <INGENIERÍA Y TECNOLOGÍA QUÍMICA>, <TECNOLOGÍA DE LOS PROCESOS INDUSTRIALES >, <ALIMENTO PROCESADO COMPOTA>, <ORITO (*Musa Acuminata AA*) >, <NORMA NTE INEN 3078>, <VARIABLES DE PROCESO>.

ABSTRACT

The objective was to design an industrial process for obtaining compote, from the Orito banaba (Musa Acuminata AA), for the ASOPROTAB, located in the Tablas de la Florida Enclosure, first the orito banana was characterized, for the three type of maturation, indicating 34.4% of content of total solids, PH of 4,91 and Brix degrees of 24,8%, in addition of a yellow color of grade 1, was chosen the best formulation of three presented formulations, according to a panel of untrained judges and a discriminatory test, it was chosen that the formulation with the most acceptation was made with orito banana plus sugar and pectin, to this formulation physical chemical tests, microbiological were carried out, according to the technical standard NTE INEN 3078, also conducted additional tests of nutritional quality and vitamins; all these tests were performed in the LACONAL laboratory, the same that exceeded the established values and also a shelf life test was performed where it was obtained that the compote did not change its characteristics after 15 days of applied test. It was made the sizing of the equipment and technological proposal, to achieve complete the transformation and obtaining of compote. It is necessary to install in the plant a washing tank, belt conveyors, reception tables, industrial blender, homogenizing kettle, boiler, sterilizers and packers, concluding that, producing 8165 units of net content compote Equal to 130g, an annual profit equal to \$27,719,11 will be obtained to recover the investment in the third year of production thus generating a dynamization of the Economy.

Key words: < ENGINEERING AND TECHNOLOGY CHEMICAL>, < TECHNOLOGIES FOR ADVANCED INDUSTRIAL PROCESSES>, < PROCESSED FOOD COMPOTE>, < ORITO BANANA (*Musa Acuminata AA*), < ECUADORIAN TECHNICAL NORM (NTE) THE NATIONAL INSTITUTE FOR NEOPLASTIC ILLNESSES (INEN) 3078 NORM>

CAPITULO I

1. DIAGNÓSTICO Y DEFINICIÓN DEL PROBLEMA

1.1 Identificación del problema

Existen en el Ecuador la comercialización de compotas para bebés, entre ellas podemos encontrar Gerber, Nestlé, Alpina, San Jorge. Estas marcas son importadas. Gerber es producto americano que es líder en el mercado, compotas Nestlé son importadas de Costa Rica, Alpina y San Jorge son elaboradas en Colombia. Siendo característico del mercado con lo que aumenta la acogida por parte del mercado hacia la industrialización del producto ya que no hay marcas Nacionales (ANGULO, 2018).

El recinto Tablas de la Florida, perteneciente a la Parroquia Telimbela del Cantón Chimbo-Provincia Bolívar, por sus características de clima subtropical y por encontrarse en la zona baja es viable para la explotación agrícola del fruto, como resultado de estas características albergadas de esta parroquia se obtienen aproximadamente 185,07 toneladas anuales (asociados) y 14,91 toneladas anuales sin pertenecer a ninguna asociación, las cuales son dedicadas al consumo nacional como a la exportación. Otra fruta cultivada en el sector es el orito con una producción de 1204 hectáreas.

En épocas que existe bajas en los mercados internacionales debido a los diversos factores, los asociados sufren bajas en su economía y sobreproducción, teniendo que ofertar mayor cantidad en menor precio al momento de exportar su producto (cajas de orito).

El orito antes de ser empacado debe cumplir con normas de calidad, como son: peso, tamaño, tiempo de maduración, calibre, sanidad del banano orito etc. Hay gran cantidad de orito desechado (rechazo), que no cumple con estas exigencias. Lo cual proporciona grandes pérdidas para estos productores; los mismos que sirven como alimento de los porcinos, aves o simplemente tienden a descomponerse.

1.2 Justificación del proyecto

Las compotas con el paso del tiempo han evolucionado en alimentos asociados generalmente a la comida para bebés, empleándose alternativamente con valor nutricional y así complementar la ingesta de leche materna aumentando su calidad de vida y para personas de la tercera edad, es un suplemento muy sano que sirve también para tratar problemas intestinales (OMS, 2018).

En el área de sobrevivencia infantil y materna, la tasa de mortalidad neonatal para el 2011 se ubicó en 6,1 por cada 1000 nacidos vivos. La tasa de mortalidad infantil llegó a 10 por cada 1000 nacidos vivos para el 2011. La mortalidad de la niñez (menores de 5 años) se ubicó en 13,7 por cada 1000 nacidos vivos para el 2011. Las provincias como Cotopaxi, Chimborazo y Bolívar muestran tasas considerablemente superiores al promedio nacional (22,4, 20,7 y 20,4, respectivamente) (UNICEF, 2018). Por el lado de nutrición, la Encuesta Nacional de Salud y Nutrición realizada entre el 2011 y 2013 muestra una desnutrición crónica en menores de 5 años de 25,3%; porcentaje que en los indígenas sube al 42,3%. Esta misma fuente, muestra que en el quintil económico más pobre la desnutrición crónica alcanza el 36,5%, mientras que en el más rico llega al 13,8%. Las provincias de Bolívar y Chimborazo tienen prevalencias mayores al 40%. El problema de la malnutrición, también deriva problemas de obesidad. Casi el 9% de los niños y niñas en edad pre escolar, el 30% de los de edad escolar y el 26% de adolescentes presentan sobrepeso (UNICEF, 2018).

Debido a los altos índices de desnutrición en los bebés y niños en la provincia Bolívar, es necesario reemplazar los productos que son consumidos directamente de la tierra por suplementos que puedan ser metabolizados fácilmente por el organismo, para ello se utilizará el banano orito, que es una fruta en la que actualmente en este sector existe una sobreproducción.

El proyecto se justifica por parte de la Asociación de Producción Agropecuaria "Tablas de la Florida", ya que es necesario implementar productos alternos a industrializar en la presente; mediante el **Diseño de un Proceso Industrial para la Obtención de Compota a Partir del Orito**, agregándole aditivos que mejoren su calidad nutritiva y apariencia, para su venta. EL presente trabajo propone sistemas alternativos de producción del orito que aproveche la sobreproducción, cumpliendo con los requisitos de calidad establecidos en la Norma: NTE INEN 3078:2015 Purés en Conserva. Requisitos; para encontrar que el producto cumpla con los parámetros físico-químicos y microbiológicos establecidos en dicha norma.

1.3 Línea base del proyecto

1.3.1 Antecedentes de la Asociación

La Asociación de Producción Agropecuaria Tablas de la Florida "ASOPROTABF", trabaja hace 2 años en el ámbito de exportación; dedicándose a la exportación de orito, morado; los mismos que cuentan con sello verde basadas en el concepto de producción más limpia. Actualmente esta asociación exporta semanalmente 1505 cajas denominadas Fluxical que pesa 18,5 lb con cartón y 16,5 lb sin cartón.

Cuenta con 17 asociados fundadores, se encuentra ubicada en el Recinto Tablas de la Florida Vía Caluma Montalvo S/N Vía Caluma Montalvo, Parroquia Telimbela, del Cantón Chimbo; Provincia de Bolívar (Velasco, 2018).

Según Iglesias (2012) en el Ecuador se produce aproximadamente una cuarta parte de banano orito que se consume en Estados Unidos, Europa y en el mundo el 60% del banano consumido es ecuatoriano.

Desde entonces la población con la producción del banano orito han diversificado su alimentación realizando compotas para el uso de alternativa nutricionales de bebés, personas de tercera edad, y demás personas en general; puesto que es un suplemento muy sano.

Además de ser suplemento para sus habitantes es un ingreso económico para los agricultores del Recinto Tablas de la Florida, exportando aproximadamente 185 toneladas en todo el sector. Desde entonces se ha ido diversificando la producción de dulcerías como compotas, conservas y entre otros con el banano orito y a partir del 2000 la creación de pequeñas microempresas para un sustento económico. Pero a pesar de contar con alimentos ricos en proteínas gran parte de su población cuenta con desnutrición.

1.3.2. Marco Conceptual

1.3.2.1. Historia del banano orito

Según Sica (2010) la *Musa Acuminata AA* o banano orito tuvo su origen en la península de Malasia o Islas cercanas, posteriormente fue llevada a otros lugares como las Filipinas y la India, donde se mezcló con ejemplares de Musa balbisiana dando origen a grupos híbridos de los cuales se

derivan los plátanos y guineos actuales; esta variedad prácticamente desconocida en América, aún a finales del siglo pasado era considerada fruta exótica.

Para Robinson, J. (2006) su origen se sitúa en el Sudeste de Asia, específicamente en las junglas de Malasia, Filipinas e Indonesia, sitios que hasta la fecha lo producen; existen datos que en la Edad Media los árabes llevaron la fruta al África; por su parte algunos misioneros portugueses se encargarían de llevarla y desarrollar su cultivo en las Islas Canarias, para luego junto a los españoles, al empezar sus travesías por el Nuevo Mundo llevarla consigo y diseminarla por América; se estima que en 1516 empezó la siembra de esta musácea en Santo Domingo, actual República Dominicana, sitio del que pronto se extendería al resto del Caribe y América Latina.

A finales del siglo XIX cuando la modernización en los sistemas de transporte se dio, el banano empezó a consolidarse como uno de los más importantes productos de exportación, permitiendo a los productores encontrar grandes clientes en Estados Unidos y Europa, igual situación se está presentando en las últimas décadas con el guineo orito.

• Producción de orito en Ecuador:

De acuerdo a la CORPEI (2008) Ecuador es líder por más de cuatro décadas en el ámbito internacional bananero, siendo el orito una de sus variedades en el comercio mundial; no sólo es el primer exportador de esta fruta desde 1952, sino también es el segundo mayor productor a nivel mundial, ya que goza de condiciones climáticas excepcionales, las que junto a la riqueza de su suelo, han permitido que el país se convierta en un productor agrícola de excelente calidad, garantizando la disponibilidad de la fruta en los diferentes mercados internacionales durante todo el año.

Según Iglesias, J. (2012) en el Ecuador se produce aproximadamente una cuarta parte de banano orito que se consume en Estados Unidos y Europa; el grueso del mercado está abastecido por las marcas Dole, Chiquita y Del Monte, todas ellas transnacionales, que juntas comercializan el 60% de la Finger banana que se consume en el mundo, el cual se distribuye a través de grandes cadenas de supermercados.

Clasificación botánica del banano orito:

Según Roldán, S et al. (2002) la descripción taxonómica del banano orito es de la siguiente manera:

Tabla 1-1: Descripción taxonómica del banano orito

Nombre Científico:	Musa Acuminata AA
	Banano Enano, Baby Banana,
NOMBRES COMUNES:	Guineo Orito. Orito.
Reino:	Vegetal
Clase:	Angiosperma
Subclase:	Monocotiledónea
Orden:	Zingiberales
Familia:	Musaceae
Género:	Musa
Especie:	Acuminata AA.

Fuente: (Camacho, 2015).

Realizado por: MONTERO, Lourdes. 2018

Prácticas Agronómicas Del Cultivo De Orito:

Ortiz (2016) indica que las prácticas agronómicas de mayor importancia en el cultivo de musáceas, como el caso del orito son:

- Riego: Puede ser por gravedad, aspersión o inundación, dependiendo de la disponibilidad económica, topografía, fertilidad del suelo, y cantidad de agua disponible.
- Control de malezas: Se realiza en forma manual, con la utilización de machetes, y sin aplicar herbicidas, debido a que se cuenta con el sello verde.
- Fertilización: Debe realizarse de acuerdo a análisis químicos de suelos de la zona en la que se desarrolla el cultivo. En los cultivos de banano del Ecuador se ha llegado a determinar que los elementos minerales indispensables y que deben ser aplicados al suelo son el Nitrógeno y el Potasio.
- Deshije: Es una práctica cultural que tiene por objeto mantener la densidad adecuada por unidad de superficie, un espaciamiento uniforme entre plantas, regular el número de hijos por unidad de producción, seleccionar los mejores hijos y eliminar los deficientes.
- Deshoje: Consiste en eliminar las hojas que ya cumplieron su ciclo y las que están

interfiriendo el desarrollo del racimo. El corte debe de ser lo más cerca posible a la base de la hoja; si una parte de una hoja joven y sana interfiere con un racimo, entonces puede eliminarse esa parte rasgándola o cortándola, dejando el resto para que cumpla su función. Esta labor debe ser constante según la frecuencia de la pérdida de hojas por parte de la planta.

- Apuntalado: Es necesario realizar esta labor en toda planta con racimo para evitar la
 caída y pérdida de la fruta. La caña de bambú, caña brava, alambre, piola de yute, piola
 de plástico o nylon, entre otros, pueden ser utilizados en esta práctica.
- Enfunde: Es otra práctica que produce grandes beneficios al productor, consiste en proteger el racimo con una funda de polietileno perforada de dimensiones convenientes. Se ha llegado a comprobar que la fruta enfundada tiene un 10% más de peso y es de mejor calidad porque está libre de daños causados por insectos.
- Desmane: Consiste en la eliminación ocasional de la última mano o las dos siguientes que se estima no llegarán a adquirir el tamaño mínimo requerido, favoreciendo al desarrollo de las manos restantes.

Según la tabla de composición de los alimentos ecuatorianos se presenta en la tabla:

Tabla 2-1: Contenido nutritivo en 100 g de porción aprovechable del banano orito.

Parámetros	Unidad de medida	Valores
Humedad	%	68,9
Calorías	Cal.	111
Proteína	g.	1,2
Extracto etéreo	g.	0,2
Carbohidratos totales	g.	29,2
Fibra	g.	0,6
Ceniza	g.	0,5
Calcio	mg.	6
Fosforo	mg.	21
Hierro	mg.	0,7
Caroteno	mg.	0,3
Tiamina	mg.	0,02
Riboflavina	mg.	0,03
Niacina	mg.	0,57
Ácido ascórbico	mg.	16

Fuente: (Roldán, 2012).

1.3.2.2. Compota

Navas (2009) indica que la compota es el producto preparado con un ingrediente de fruta (fruta entera, trozos de fruta, pulpa o puré de fruta, zumo de fruta o zumo de fruta concentrado), mezclado con un edulcorante, carbohidrato, ácido ascórbico.

• Puré de frutas:

(INEN, 2015, pág. 2) : "Alimento preparado a partir de frutas, cocida o no cocida, y se tritura hasta conseguir una crema o pasta, y se cierra herméticamente en un envase, antes o después de su tratamiento térmico, para asegurar su calidad y evitar su deterioro."

• Antioxidantes y Reguladores de Acidez:

(INEN, 2015, pág. 2) : "Los reguladores de acidez, también llamados de agentes reguladores de pH, son aditivos alimenticios utilizados para modificar o mantener el pH de los alimentos. Pueden ser ácidos orgánicos o minerales, bases, agentes de neutralización o agentes tapón. El control inadecuado del pH puede resultar en surgimiento de bacterias indeseables en el producto que podría ser un peligro potencial a la salud."

Los antioxidantes también pueden ser conservantes, evitando la reacción de las sustancias en presencia del aire, por la oxidación los alimentos pierden sus propiedades nutricionales y organolépticas. Estas sustancias son de uso común en los productos y son considerados como inocuos y no alteran la salud. (EcoAgricultura, 2018, págs. 1-3) **Ver Anexo A**

Tabla 3-1: Aditivos Alimentarios – Antioxidantes

Aditivo	Descripción	Uso	Peligro
Ácido Cítrico E330	Aditivo alimentario utilizado como acidulante natural o sintético y regulador de pH. Se utiliza también como saborizante.	Refrescos, gaseosas, zumos, jugos, batidos, cerveza, conservas enlatadas, mermeladas, yogurt, postres, snacks, productos cárnicos, entre otros.	INOFENSIVO
Ácido Ascórbico E300	Aditivo natural o sintético utilizado como antioxidante.	Galletas, bebidas, zumos, jugos, conservas enlatadas, en panadería, cereales, embutidos, entre otros.	INOFENSIVO

Fuente: (Aditivos Alimentarios ácido cítrico, 2018, pp.2).

• Preservantes:

Son sustancias que inhiben la propagación de microorganismos tales como bacterias y hongos. Estos productos son utilizados para prolongar la vida útil de los productos. Se clasifican en: tratamiento externo de alimentos e incorporación de alimentos. Estos son imperecederos, se inalterados por un limitado tiempo, retardando el crecimiento de microrganismos, más no queda inhibido totalmente. En ocasiones son considerados fundamentales. (Marín, 2018, pág. 273)

Agentes Físicos	Mecánicas	
	Temperatura	
	Humedad	
	Aire	
	Luz	
	Etc.	
Agentes Químicos	Pardeamiento	
	Enranciamiento	
	Etc.	
	Enzimáticos	
Agentes biológicos	Parásitos	
	Microorganismos	Bacterias
		Hongos
		Levaduras

Figura 1-1: Principales causas de alteración de los alimentos **Fuente:** (Juliarena y Gratton, 2017: p.1)

Tabla 4-1: Aditivos Alimentarios – Preservantes

Aditivo	Descripción	Uso	Peligro
Sorbato de Potasio E202	Aditivo alimentario utilizado como conservante natural o sintético, para prevenir hongos y levaduras.	Panadería, pastelería, quesos, mayonesa, salsas, refrescos, mantequilla, dulces, bebidas energéticas, aderezos de ensalada, embutidos, entre otros.	INOFENSIVO

Fuente: (Aditivos Alimentarios, 2018, pp.2-3)

1.3.2.3 Operaciones Unitarias para la obtención de compota de orito.

- Recepción y selección de la materia prima: Se verifica que la fruta cuente con el grado de maduración aceptado, eliminándose las muestras con magulladuras, golpes o putrefacción, eligiendo las mejores muestras de orito.
- Lavado de frutas: Se deposita el orito en un baño de agua clorada, preparada en una concentración de cloro de 2ppm.
- Pelado: Se elimina la cáscara y la semilla del fruto; quedando solamente la parte amarilla.
- Licuado: Triturar uno o más alimentos, en especial fruta o verdura, hasta convertirlos en líquido.
- Homogenización: Es una operación unitaria cuyo objetivo es manipular un sistema físico de carácter heterogéneo haciéndolo homogéneo. La homogenización es la disminución de los gradientes de concentración de las diferentes propiedades físicas del sistema. La operación de mezclado tiene un gran impacto en numerosos procesos químicos. (Dynamix, 2018, pág. 1)
- Escaldado: Es la manipulación térmica de los alimentos, anteriores a los métodos de conservación (enlatado, congelación, deshidratación), persigiendo la inactivación de enzimas. (Bedolla et al., 2004: p.72)

- Envasado: La principal función del envasado de alimentos es protegerlos y preservarlos de la contaminación exterior. Esta función incluye el retardo de su deterioro, la extensión de la vida del producto, y el mantenimiento de la calidad y seguridad del alimento envasado. Para ello, el envasado protege a los alimentos de factores ambientales como el calor, la luz, la humedad, el oxígeno, la presión, los falsos olores, los microorganismos, los insectos, la suciedad, etc. (Sánchez Pineda de las Infantas, 2003, p.161)
- Esterilización: Se define como la destrucción completa o eliminación total de los microorganismos patógenos y saprófitos que se encuentran en el interior o en la superficie de objetos y sustancias. El criterio práctico de la esterilidad es la ausencia de crecimiento microbiano en un medio adecuado. (Alarcón, 2004, pág. 20)

1.4 Beneficiarios Directos e Indirectos

1.4.1 Beneficiarios directos

La Asociación de Producción Agropecuaria Tablas de la Florida (ASOPROTABF), es la beneficiaria principal debido a que avala el proyecto por su necesidad de crear nuevas fuentes de desarrollo para la población, evitar el desperdicio de la materia prima; banano orito y crecer a nivel nacional.

1.4.2 Beneficiarios indirectos

Los beneficiarios indirectos de la investigación son:

- Las personas que poseen como fuente principal de trabajo la agricultura debido a que con la creación de este proyecto se mejorará la calidad de vida al generar nuevos y mejores ingresos a las familias.
- Las familias que presentan casos de desnutrición debido a la incorrecta ingesta o falta de alimentos nutritivos.
- El Recinto Tablas de la Florida, ya que no existe ninguna planta de procesamiento de ningún tipo, siendo la primera que contribuya al desarrollo del mismo.

CAPITULO II

2 OBJETIVOS DEL PROYECTO

2.1 General

Diseñar un proceso industrial para la obtención de compota, a partir del Orito (*Musa Acuminata AA*), para la Asociación de Producción Agropecuaria Tablas de la Florida (ASOPROTABF).

2.2 Específicos:

- Realizar la caracterización físico-química de la materia prima orito (Musa Acuminata
 AA), en diferentes grados de maduración.
- Determinar la mejor formulación para la elaboración de Compota, a partir del Orito (Musa Acuminata AA).
- Identificar las variables de proceso, las operaciones y los parámetros óptimos para la obtención de Compota a escala industrial.
- Realizar los cálculos para el diseño de ingeniería del proceso de obtención de compota de orito (Musa Acuminata AA).
- Validar el proceso mediante una caracterización física-química y microbiológica de la formulación de mayor aprobación, según la Norma NTE INEN 3078:2015 Purés en Conserva. Requisitos.

CAPITULO III

3. ESTUDIO TÉCNICO

3.1 Localización del Proyecto

El presente proyecto se realizará en un predio perteneciente a la Asociación de Producción Agropecuaria Tablas de la Florida, del Recinto Tablas de la Florida, vía Caluma-Montalvo. El recinto está situado en la Parroquia Telimbela del Cantón Chimbo perteneciente a la provincia de Bolívar. Telimbela es una parroquia rural del cantón Chimbo, esta parroquia se encuentra ubicada a 1.464 msnm, con un clima aproximado de 24°C.

Tabla 1-3: Características Geográficas de la Parroquia Telimbela.

Clima	La temperatura media es entre 12 y 22 °C.
	de Samama del Cantón Caluma.
	Al Oeste: Las Cordilleras de Cumbilli y Caluma la vuelta de Telimbela y El Cerro
	Tiandiagote y Cantón San Miguel
	Camino del Tronador hasta tocar con la Altura Cerro Grande Cabeceras de
Límites Parroquiales	Al Este: El Cerro de Llamaquincha Gualazay Palmas y Tamboloma Seguido el
	Al Sur: La Parroquia de Balzapamba
	Magdalena.
	Al Norte: El Cerro de Ashcohaca, Aminchulli y Tundaloma y La Parroquia

Fuente: (GAD PARROQUIAL DE TELIMBELA, 2018).

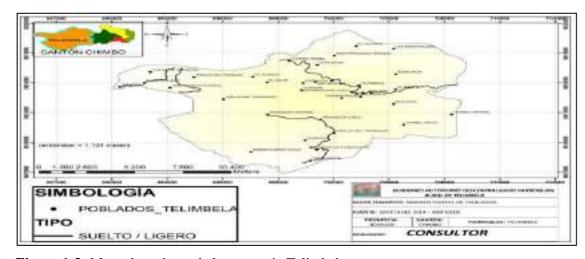


Figura 1-3: Mapa de recintos de la parroquia Telimbela.

Fuente: (Senplades, 2014)

3.2 Ingeniería del Proyecto

3.2.1. Tipo de estudio

El proyecto para el diseño de un proceso Industrial para la obtención de compota a partir del orito es un proyecto de tipo técnico, se ha elaborado aplicando métodos deductivos, inductivos y experimentales, para proponer su implementación en ASOPROTABF del Recinto Tablas de la Florida, Parroquia Telimbela, Cantón Chimbo-Bolívar.

3.2.2. Metodología

Se realizó una investigación bibliográfica acerca de los métodos generalmente utilizados para la elaboración de compota a escala industrial. Posterior se realizó la caracterización físico-química de la materia prima orito, en sus diferentes grados de maduración en LACONAL (**Ver Anexo C**).

Tabla 2-3: Grados de maduración del orito

COLOR	ASPECTO EXTERNO DEL FRUTO
Cero	Fruto fisiológicamente desarrollado,
(Verde)	color verde oscuro.
Uno	Fruto de color amarillo claro con
(Maduro)	visos verdes hacia la zona de cáliz.
Dos	
(Muy Maduro)	Fruto de color amarillo intenso.

Fuente: JAIME HUMBERTO MENDOZA, 2012

Se realizaron varias pruebas piloto en los Laboratorios de Operaciones Unitarias y el de Investigación de la ESPOCH, para la obtención de la mejor formulación mediante los ensayos de laboratorio.

Para escoger la mejor formulación se evaluó parámetros físico-químicos como: pH, Grados Brix (sólidos solubles) y mediante análisis de tipo sensorial, este se realizó mediante encuestas (**Ver Anexo D**), aplicando métodos asertivos de "aceptación" como vía el uso de la degustación del producto a jueces no entrenados (**Ver Anexo E**), los cuales pertenecen a un grupo de estudiantes de la Facultad de Ciencias de la ESPOCH.

Una vez realizadas las encuestas por medio del método afectivo de aceptación, se evidenció que tanto la muestra 1608 y 1607 tenían la diferencia de 1%, lo cual no nos permitió discrimar; a estas dos muestras se las sometió a la Prueba de cajón o tiempo de Vida útil acelerada por 15 días que semejan seis meses en percha; a condiciones de tiempo y temperatura dadas; midiendo el pH y Grados Brix.

Como resultado del párrafo anterior se seleccionó la mejor formulación, planteado realiza su escala a nivel industrial en la Estación Experimental de la ESPOCH en Tunshi, luego se realizó los análisis físico-químicos y microbiológicos evaluando la norma preestablecida para este producto en LACONAL, los cuales deben estar dentro de los parámetros indicados en la Norma NTE INEN 3078:2015 Purés en Conserva. Requisitos.

Como métodos adicionales se realizaron las siguientes pruebas; un análisis para conocer su información nutricional de vitaminas A y C. Como último paso realizó el etiquetado de acuerdo a la normativa ecuatoriana de rotulado de productos alimenticios "semáforo alimenticio". Concluyendo se propuso el dimensionamiento de cada equipo que forma parte en la producción de compota a partir del orito.

3.2.3 Métodos y Técnicas

3.2.3.1. Métodos

Método deductivo

Este método se justifica con la aplicación del orito logrando a través de las diversas operaciones unitarias obtener compota, se le realizan análisis físico químicos y organolépticos para determinar su calidad. Además, se obtienen las variables del proceso, diversas condiciones para el diseño técnico.

Método inductivo

Este proyecto utilizó esta metodología debido a que para su desarrollo fue necesario la recopilación de información sobre el proceso desarrollado, la materia prima, formulación, aditivos, variables, entre otros; estos datos han sido debidamente tomados de fuentes bibliográficas físicas, digitales y entrevistas.

• Método experimental

El método experimental ayuda a seleccionar los ensayos de laboratorio correspondiente al proceso de producción de la compota de orito. También se obtiene la caracterización físico química y microbiológica de la compota, mejorando su calidad permitiendo validar el proceso diseñado.

3.2.3.2. Técnicas

Para este producto se utilizaron las técnicas basadas en la NTE INEN 3078:2015 *Purés en Conserva. Requisitos*. Adicionalmente para el producto se realizaron los siguientes análisis: prueba de vida útil y para su información nutricional los análisis de vitaminas A y C.

Otra norma empleada fue la RTE INEN 022 (2R) *Rotulado de Productos Alimenticios Procesados, Envasados y Empaquetados* denominado "Semáforo"; para el etiquetado proporcionando información de la cantidad de azúcar, grasa y sal que este posea y los clasifica por bajo, medio y alto

• Técnicas para revisar la materia prima

Tabla 3-3: Requisitos Físicos del Orito

FUNDAMENTO	NORMA	ACCIÓN
La necesidad de inspeccionar y controlar la materia	NTE INEN 3078:2015	Revisar minuciosamente cada uno de los dedos de orito
prima (orito) antes de que ingresen al proceso.		verificando que se encuentren maduras, sanas y que
		posean un buen aspecto físico; es decir que tengan olor
		y color característico de la fruta; además que no
		contengan parásitos o microorganismos; y que en su
		totalidad se encuentren libre de contaminación.

Fuente: (NTE INEN 3078, 2015, p.3)
Realizado por: MONTERO, Lourdes. 2018

• Técnicas para realizar los análisis Físico-químicos para el producto:

Tabla 4-3: Análisis Físico Químico: Sólidos Totales

FUNDAMENTO	NORMA	MATERIALES	TÉCNICA
Consiste en medir la cantidad de sólidos	NTE INEN 382	✓ Balanza analítica	✓ En la estufa, secar a 70°C la
totales presentes en el producto terminado		✓ Desecador	cápsula de metal con 10-20 g
(compota), al ser este una combinación de		✓ Estufa	de arena.
frutos se hará uso de la norma para purees		✓ Capsula de porcelana	✓ Una hora después retirar la
en conserva; en donde nos dice que la		✓ Varilla de Vidrio	cápsula y colocar en el
cantidad de °Brix mínima es de 15 y la		✓ Papel Filtro	desecador para que se enfrie.
máxima es 21,5		✓ Arena	✓ Pesar 3 g de muestra y colocar
			en la cápsula con arena,
			mezclando la muestra con la
			varilla de vidrio.
			✓ Poner la cápsula a 70 °C en la
			estufa, durante 4 horas.
			✓ Continuar secando hasta que en una hora su peso no difiera de 0,0002 g.
Conforme al Reglamento Técnico	RTE INEN 022	✓ Refractómetro	✓ Poner 1-2 gotas de muestra
Ecuatoriano de Rotulado denominado			en el refractómetro.
"Semáforo" establece identificar el			✓ Esperar unos minutos
nivel de azúcar que contienen todos los			mientras se expande
productos alimenticios; clasificándolos			totalmente la muestra.
por bajo, medio y alto.			✓ Realizar cuidadosamente la lectura de los °Brix.

Fuente: (NTE INEN 382, 2013, pp.2-3)
Realizado por: MONTERO, Lourdes. 2018

Tabla 5-3: Análisis Físico Químico: Sólidos Solubles °Brix

FUNDAMENTO	NORMA	MATERIALES	TÉCNICA
Determina el contenido de sólidos	Norma NTE INEN 380:2008.	Refractómetro	Calibrar el equipo.
solubles, mide la cantidad de azúcar (%) en		Gotero.	Colocar una gota de muestra en el
la conserva vegetal de orito,		 Vaso de precipitación de 250 cm³ 	lente de medición.
mediante lectura refractométrica a 20°C			Leer los datos obtenidos con el
			equipo.

Fuente: Norma NTE INEN 380:2008.
Realizado por: MONTERO, Lourdes. 2018

Tabla 6-3: Análisis Físico Químico: pH

FUNDAMENTO	NORMA	MATERIALES	TÉCNICA
Norma nacional para medir el potencial	NTE INEN-ISO 1842	✓ pH-metro	✓ Colocar un poco de muestra en
de Hidrógeno (pH) en alimentos como		 ✓ Vaso de Precipitación 	un vaso de precipitación.
frutas y vegetales.			✓ Introducir el electrodo del pH-
			metro y esperar.
			✓ Leer los datos que muestra el pH- metro.

Fuente: (NTE INEN-ISO 1842, 2013, p.3)
Realizado por: MONTERO, Lourdes. 2018

• Técnicas para realizar los análisis microbiológicos para el producto:

Tabla 7-3 Análisis Microbiológico: Hifas de Mohos

FUNDAMENTO	NORMA	MATERIALES	TÉCNICA
Esta norma detalla métodos para	NTE INEN 1529-12	✓ Tubos de centrífuga graduada de	✓ De la muestra diluida 1:1 con
cuantificar el porcentaje de hifas de mohos		40 cm3.	agua, 40 cm³ transvasar a un tubo
(Geotrichum) y trazas de podredumbre.		✓ Pipetas.	centrífuga.
		✓ Celda de Howard	✓ Centrifugar a 2200 rpm, por 10
		para recuento de mohos	minutos sin parar.
		✓ Microscopio compuesto.	✓ Retirar los tubos, y decantar el
		✓ Centrífuga.	sobrenadante evitando mover el
			sedimento.
			✓ Realizar el recuento de mohos por
			el método de Howard.

Fuente: (NTE INEN 1 529-12, 2000, pp.4-8) Realizado por: MONTERO, Lourdes. 2018

Tabla 8-3: Análisis Microbiológico: Aerobios Mesófilos

FUNDAMENTO	NORMA	MATERIALES	TÉCNICA
Esta norma se basa en la exactitud que	NTE INEN 1529-5	✓ Pipetas serológicas	✓ Verter 20 cm³ de agar 2 en
un microorganismo presente en una		✓ Cajas Petri	placas inoculadas.
muestra alimenticia, al ser inoculado en		✓ Erlenmeyer	 ✓ Homogenizar en movimientos de
un cultivo nutritivo se reproducirá y		✓ Tubos	vaivén el medio de cultivo con el
formará una colonia visible.		✓ Gradillas	inoculo.
		✓ Contador de colonias	✓ Dejar reposar las placas.
		✓ Balanza.	✓ Incubar de 48-75 h con las cajas
		✓ Incubadora.	invertidas.
		✓ Autoclave.	✓ No apilar más de 6 placas.
		✓ Refrigeradora.	✓ Contar todas las colonias que
		✓ Centrífuga.	hayan crecido en el medio.

Fuente: (NTE INEN 1529-5, 2006, pp.3-6) Realizado por: MONTERO, Lourdes. 2018

Tabla 9-3: Análisis Microbiológico: Anaerobios Mesófilos

FUNDAMENTO	NORMA	MATERIALES	TÉCNICA
Este método se basa en que las bacterias	NTE INEN 1529-17	✓ Pipetas.	✓ En tubos que contengan agar
anaerobias, para su mejor desarrollo,		✓ Tubos de ensayo.	pipetear por duplicado 1 cm3.
necesitan de las llamadas "condiciones		✓ Frascos con tapa de rosca.	✓ Poner los tubos en pie en un baño
reductoras".		✓ Incubadora.	de agua fría para que el agar se
		✓ Cuenta colonias.	solidifique.
			✓ Cubrir la siembra con una capa
			de vaselina líquida.
			✓ Incubar a 30-35°C por 24 a 72 h.
			✓ Elegir los dos tubos de la
			dilución que contengan 30 ±10
			colonias, contarlas y calcular las
			UFC.

Fuente: (NTE INEN 1 529-17, 1998, pp.2-5) Realizado por: MONTERO, Lourdes. 2018

Tabla 10-3: Aditivos Alimenticios

FUNDAMENTO	NORMA	ADITIVOS	MATERIALES	TÉCNICA
Esta norma establece las limitaciones	NORMA CODEX	√ Ácido Cítrico	✓ Espátula	✓ Por cada Kg/L de muestra se pesa
para utilizar los aditivos para todos los	STAN 79:1981	 ✓ Ácido Ascórbico 	✓ Balanza analítica	1g de aditivo.
alimentos, haya o no para ellos normas				
Codex.		✓ Sorbato de Potasio		✓ Se adiciona mitad y mitad de cada uno; colocando en total el 0,001% en
		✓ Pectina		peso de la muestra.

Fuente: (CODEX STAN 79, 1981, pp.6-7) Realizado por: MONTERO, Lourdes. 2018

• Análisis adicionales para el producto:

Tabla 11-3: Tiempo de Vida útil acelerada

FUNDAMENTO	METODO	MATERIALES	TECNICA
Es el lapso de tiempo que corresponde	PRUEBA DE VIDA ÚTIL	✓ Cámara de vida útil acelerada en	✓ Se realiza por duplicado.
desde la elaboración en la fábrica hasta	ACELERADA	percha.	✓ Preparar muestras: unas que se han
que el producto pierde sus cualidades		✓ pH-metro	abierto y entrado corriente de aire y
físico- químico y organolépticas.		✓ Refractómetro	otras cerradas.
			✓ Colocar en la cámara a 45°C.
			✓ Tomar datos de control como pH,
			°Brix, actividad fúngica y bacteriana
			(visual).
			✓ Por cada hora en la cámara se
			considerada 12 horas en percha.

Fuente: (Carrillo Inungaray et al., 2013: pp.4-7)
Realizado por: MONTERO, Lourdes. 2018

• Análisis de Vitaminas:

Tabla 12-3: Análisis de Vitaminas A y C

FUNDAMENTO	NORMA	MATERIALES	TECNICA
Vitamina A Con la finalidad de controlar la calidad de alimentos infantiles instantáneos se efectuó la validación de la metodología para la determinación de la vitamina A por cromatografía líquida de alto rendimiento (HPLC)		 ✓ Equipo de cromatografía líquida de alto rendimiento (HPLC) ✓ balón de base plana ✓ Filtro al vacío ✓ Balón de 250 mL ✓ matraz volumétrico de 10 mL ✓ filtro de 0,2 μm ✓ viales ámbar de 2 mL 	

Vitamina C	METODO AOAC	✓ Matraz Erlenmeyer	✓ Se prepara una solución de ácido ascórbico (1 mg/ml)
Vitamina C o ácido L-ascórbico está	967.21	✓ Pipetas	✓ Transferir alícuota de 2 mL a Matraz Erlenmeyer, agregando
presente en tejidos vivos como		✓ Bureta 50mL	5 mL de solución ácido metafosfórico -ácido acético
Compuesto redox para el metabolismo		✓ Filtro tipo cesta modelo PAB-	✓ Titular rápidamente con 2,6-dicloroindofenol en una Bureta
celular. Lo encontramos en frutas frescas y vegetales.		100P	de 50 mL, hasta que se observe la aparición de un tono rosa
El método HPLC se considera una		✓ Embudo	ligero
alternativa confiable al utilizar las			✓ Titular un blanco compuesto por 7 mL de la solución extractor
debidas condiciones de extracción para			más el volumen gastado en la titulación del estándar en agua,
determinar el ácido L-ascórbico total.			y titular con 2,6-dicloroindofenol
			✓ Todo esto se hace por triplicado
			✓ El valor obtenido estándar se resta del blanco, y la
			concentración de indofenol se expresa como mg de ácido
			ascórbico equivalentes a 1 mL de indofenol
			✓ Para determiner el contenido de ácido ascórbico en la
			muestra se adiciona a la muestra su misma cantidad en
			solución extractor y mezclar bien
			✓ Se filtra con el embudo y papel filtro
			✓ Se toma una alícuota de 2 mL del filtrado más de 5 mL de
			ácido metafosfórico- acético en un Matraz Erlenmeyer, y se
			titula con el indofenol hasta el vire a rosa
			✓ Realizar por triplicado
			✓ El volumen registrado de titulación se le resta el gastado en
			blanco.

Fuentes: (AOAC OFFICIAL METHOD 992.06, 2016, pp.2-3) (AOAC OFFICIAL METHOD 976.21, 2016, pp.3-4) Realizado por: MONTERO, Lourdes. 2018

3.2.4. Procedimiento a nivel de laboratorio

3.2.4.1. Selección de materia prima

La fruta seleccionada para el diseño del proceso industrial para la obtención de compota, investigaciones previas demostraron la sobreproducción del orito en el Recinto Tablas de la Florida genera pérdidas, dada la gran oferta de la fruta su precio disminuye generando ganancias mínimas a los socios.

La fruta utilizada en los ensayos de laboratorio para el diseño del proceso industrial para la obtención de compota proviene de los terrenos productores de orito del Cantón Chimbo ubicado a las afueras del mismo.

El muestreo aplicado es un muestreo simple para la elaboración de la prueba piloto, pues se escogió fruta fresca, en un punto óptimo de maduración, estudiando sus características organolépticas como forma, olor, color, ausencia de golpes y daños.

En la realización de la prueba piloto se cuantifico los flujos de entrada y salida para el cálculo de rendimiento en cada operación. Al obtener el producto final se realizó un estudio de las características con una muestra para determinar parámetros como: pH, viscosidad, densidad y °Brix, para corroborar las características estándar del puré obtenido.

Para verificar las variables que afectan al diseño del proceso industrial para la obtención de compota, a partir del orito se debe identificar todas las variables involucradas, desde la recepción de materia prima hasta el almacenamiento y transporte del producto.

El dimensionamiento de la planta y la obtención de las variables se simulo en el laboratorio de La Estación Experimental Tunshi de la ESPOCH, en donde se cuenta con un evaporador con capacidad de 5 Kg. El ensayo de laboratorio simulando las condiciones reales de la planta a una escala industrial, en donde se debió obtener como base 1061,66 kg de producto final.

De acuerdo a los requisitos físicos establecidos en la Norma NTE INEN 3078:2015 y a la clasificación según Jaime Humberto Mendoza (2012), la materia prima (orito) debe estar en un estado óptimo, fresco y aceptable grado de maduración. (**Ver Anexo B**).

Tabla 13-3: Requisitos físicos de la materia prima

	REQUISITOS FÍSICOS DE LA MATERIA PRIMA			
VEGETAL	Grado de madurez	Color	Olor	Microorganismos
Orito	1	Aceptable	Aceptable	No contiene

Fuente: Laboratorio Experimental Tunshi, ESPOCH. Realizado por: MONTERO, Lourdes. 2018

Materia prima

Se trabajó en el Laboratorio de Investigación y de Operaciones Unitarias de la Facultad de Ciencias de la ESPOCH, con cantidades pequeñas hasta conseguir las diferentes formulaciones para escalar a nivel industrial. A nivel escala industrial se trabajó en el Laboratorio Experimental de Tunshi con una cantidad establecida de materia prima como se muestra a continuación:

Tabla 14-3: Cantidad de materia prima para prueba piloto

SIMULACION	MATERIA PRIMA	CANTIDAD
Formulación 1	Orito	5000 g
Formulación 2	Orito	5000 g
Formulación 3	Orito	5000 g

Fuente: Laboratorio Experimental Tunshi, ESPOCH. Realizado por: MONTERO, Lourdes. 2018

Para elaborar 5000 gramos en cada una de las 3 formulaciones propuestas, a nivel de laboratorio.

Materiales de laboratorio

Los equipos y materiales de laboratorio utilizados en las pruebas se detallan en la siguiente tabla:

Tabla 15-3: Materiales y equipos utilizados en el ensayo de laboratorio

Materiales Principales	Materiales Auxiliares
Marmita	Recipientes para mezcla y pesar
Balanza analítica	Envases de vidrio con tapa twist off
Balanza mecánica	Espátula
Licuadora manual	Varilla de agitación
Refractómetro	Vasos de precipitación
pH-metro	Cepillo para el lavado
Viscosímetro	Piceta
Picnómetro	Cuchillo

Fuente: Laboratorio Experimental Tunshi, ESPOCH. Realizado por: MONTERO, Lourdes. 2018

> Insumos

Tabla 16-3: Insumos para las formulaciones

Insumo	Cantidad
Ácido Ascórbico	20 g
Ácido cítrico	20 g
Sorbato de potasio	3 g

Fuente: Laboratorio Experimental Tunshi, ESPOCH. **Realizado por:** MONTERO, Lourdes. 2018

3.2.4.2. Descripción del procedimiento

> Inicialmente se determinó la cantidad con la que la fruta y los aditivos aportarán a la compota de orito para obtener la mejor formulación y estas fueron las siguientes:

Tabla 17-3: Cantidad en % para cada formulación

FORMULACIÓN 1	%	FORMULACION 2	%	FORMULACION 3	%
Puré de orito	51,5	Puré de orito	51,5	Puré de orito	51,5
Pectina	0,5	Almidón modificado	0,5	X	0
Agua	38	Agua	38	Agua	38,5
Azúcar	10	Azúcar	10	Azúcar	10

Fuente: Laboratorio Experimental Tunshi, ESPOCH.

Realizado por: MONTERO, Lourdes. 2018

Para la obtención de compota de orito se realizó la selección de materia prima, los oritos que no cumplen con las especificaciones de la norma NTE INEN 3078:2015 y el grado de maduración según la clasificación de Jaime Humberto Mendoza (2012). Se controla de manera visual que la fruta no presente golpes, insectos o parásitos, que tenga un color y un olor acorde a la fruta y que encuentren en un punto de maduración óptimo.

Fotografía 1-3: Recepción de la materia prima Realizado por: MONTERO, Lourdes. 2018

> Se lavó el orito con una solución de 0,3 ppm de hipoclorito de sodio al 10% y abundante agua para quitar el exceso de polvo e impurezas.

Fotografía 2-3: Lavado de la materia prima Realizado por: MONTERO, Lourdes. 2018

➤ A las frutas previamente lavadas se procede a quitar de forma manual la cáscara que recubre a la pulpa, evitando dañarla.

Fotografía 3-3: Remoción de cáscara Realizado por: MONTERO, Lourdes. 2018

Con la ayuda de una balanza analítica y mecánica se pesa 5000 g de orito pelado para cada formulación.

Fotografía 4-3: Pesado de materia prima **Realizado por:** MONTERO, Lourdes. 2018

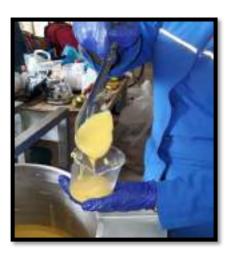
➤ Inmediatamente se procede al licuado para cada ensayo con la ayuda de una licuadora, hasta obtener una mezcla homogénea, sin trozos ni grumos.

Fotografía 5-3: Licuado de materia prima Realizado por: MONTERO, Lourdes. 2018

➤ El puré obtenido se coloca rápidamente en la marmita con agitador y se adiciona: azúcar (500 g), agua (1900 g). Espesantes: pectina (20 g), almidón modificado (20 g) respectivamente, reguladores de pH (ácido cítrico 20 g, ácido ascórbico 20 g) y los preservantes (3 g de sorbato de potasio).

Fotografía 6-3: Aditivos químicos Realizado por: MONTERO, Lourdes. 2018

➤ Se deja por 15 minutos, controlando la temperatura 55°C - 65°C y evitando evaporación del puré de orito.


Fotografía 7-3: Control de temperatura **Realizado por:** MONTERO, Lourdes. 2018

Se realizó la esterilización de los envases por medios físicos calor húmedo; vapor de agua a 120°C.

Fotografía 8-3: Esterilización de envases **Realizado por:** MONTERO, Lourdes. 2018

Envasándose la compota de orito de forma manual sin exceder el 90% de la totalidad, en recipientes herméticos de vidrio con su respectiva tapa twist off.

Fotografía 9-3: Envasado manual Realizado por: MONTERO, Lourdes. 2018

> Se dejó enfriar el producto final hasta temperatura ambiente.

Fotografía 10-3: Enfriado a temperatura ambiente **Realizado por:** MONTERO, Lourdes. 2018

Se realizaron las pruebas física-químicas de los purés obtenidos estableciéndose que las propiedades cumplen con los parámetros recopilados en la norma en la que se basa el producto.

Fotografía 11-3: Medición de pH del puré Realizado por: MONTERO, Lourdes. 2018

Fotografía 12-3: Medición de pH del puré Realizado por: MONTERO, Lourdes. 2018

3.2.5 Análisis de discrimación para la fórmula

La prueba de discriminación permitió al investigador determinar cuál de las formulaciones detalladas anteriormente fue la que mejor características organolépticas presentó, por lo que es importante realizar estas pruebas para determinar que sensaciones causará la compota de orito al ser consumida y que es una emulación de los resultados que tendrá cuando sea consumida en los distintos mercados donde se puede vender el producto final.

La técnica comúnmente aceptada para realizar este tipo de catas son las pruebas asertivas, donde se escoge un panel al azar que no tenga ningún entrenamiento, lo cual hace más fácil de realizar y los datos se asemejan mayormente al comportamiento del mercado potencial que consumirá el producto, luego de seleccionar el panel también se debe seleccionar el modelo de encuesta procurando que sea de fácil lectura y comprensión así como de tamaño no sea extenso para evitar que los jueces pierdan el interés.

El objetivo de las pruebas asertivas discriminatorias es poder excluir dos o más formulaciones, logrando así determinar cuál es la de mejor calidad entre varias muestras, con los análisis organolépticos se evalúa la calidad del producto únicamente con los sentidos de los órganos lo que hace que sea de fácil obtención y de fácil interpretación y que sin aplicar técnicas complejas se pueden obtener resultados reales y prácticos.

Por lo que, en la investigación en curso, es fundamental determinar cuál es la mejor formulación, ya que eso es parte de los objetivos fundamentales del trabajo, para lograr así lograr replicar la mejor formulación y con eso poder realizar las pruebas de calidad físico-químicas y

microbiológicas con lo que la propuesta tecnológica quedaría completa y puede ser aplicada a nivel industrial si existe la materia prima necesaria para la producción.

Generalmente en este tipo de pruebas se prefieren paneles de cata extensos, para que logre eliminarse el error asociado a los gustos individuales de cada persona que realiza el juzgamiento, con esto también se evita que si un juez presenta enfermedades o está en estado de gestación pueda emitir un criterio erróneo con lo cual se obtendría datos erróneos , el uso de extensos paneles de cata también viene asociado al nulo entrenamiento de los jueces, tomada las respuestas se podrá evidenciar la preferencia de una formulación sobre otra. (Shelton, 2004, pp. 214-216).

Procedimiento:

Para obtener los resultados a las pruebas afectivas, se debe proceder como indican algunas referencias bibliográficas, para lo cual el primer paso es denominar a las formulaciones con números aleatorios para poderlas distinguir, en la tabla 18-3, se muestra el nombre que se escogió para cada formulación, números que fueron escogidos aleatoriamente por el investigador.

Tabla 18-3: Denominación con números al azar para las tres distintas formulaciones de compota

Formulación	Composición	Numero Aleatorio de
		Formulación
Fórmula 1	Puré + Almidón Modificado + Azúcar	1607
Fórmula 2	Puré + Pectina + Azúcar	1608
Fórmula 3	Puré + Azúcar	1609

Realizado por: MONTERO, Lourdes. 2018

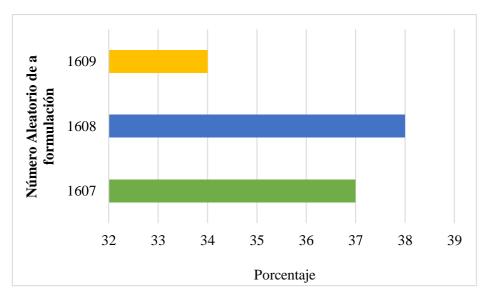
Escogido los números aleatorios, posteriormente se escogió el lugar y fecha donde se realizaron las pruebas asertivas, el lugar escogido fue la Facultad de Ciencias de la ESPOCH y los jueces no entrenados fueron estudiantes universitarios, ya que son los que más se adaptaron al mercado potencial que tendrá la compota de orito en un futuro, las pruebas fueron realizadas el día miércoles 18 de julio de 09:00 a 12:00 am y en la tarde de 15:00 a 18:00 pm.

Después de seleccionar los jueces, se les entregó cada una de las tres muestras con su respectiva rotulación (**Ver Anexo E**), acompañando a la muestra una cuchara plástica para que pueda realizar la degustación, una vez terminada la degustación de cada muestra se le entregó un limpiador de sabor para que deguste la siguiente muestra, el limpiador de sabor que se utilizó fue un pedazo de galleta integral.

Una vez realizada la degustación de cada muestra, se le explicó al juez no entrenado, como debe llenar las encuestas (**Ver Anexo D**) y como se procederá para seleccionar la muestra más idónea. Con estos pasos realizados se obtuvo los datos característicos de la degustación, como último punto se evaluó estadísticamente los resultados para seleccionar la mejor formulación.

> Análisis Estadístico:

Dado que se necesitó resultados que puedan reflejar el comportamiento de los consumidores de la compota de orito, los jueces fueron tomados mediante una selección completamente al azar simple, por lo que cualquier juez que quisiera participar en la degustación fue capaz de hacerlo, respetando el número máximo de encuestas que para cumplir con la proyección de mercado que se espera para el consumo de compota.


Al tener varias repeticiones y diferentes criterios las distintas variables son no paramétricas, conociendo la naturaleza de las variables fue necesario emplear un análisis estadístico Kruskall Wallis el cual se realizó en el paquete estadístico INFOSTAT estudiantil: esta prueba estadística permite estudiar la variación de los datos conforme a los distintos criterios de cada juez.

Al estudiar la distribución de los datos bajo la campana de Gauss permite estudiar la relación que existe entre las diferentes características organolépticas y la formulación empleada en cada muestra, con esto se construyeron tablas de contingencia que recogieron los parámetros estudiados con sus respectivas frecuencias y con lo cual se pudo establecer la mejor formulación para realizar los análisis respectivos a la formulación ganadora.

Tabla 19-3: Análisis de la distribución de frecuencias bajo el esquema Kruskall Wallis

				Porcentaje
Códigos	Frecuencia	Porcentaje	Porcentaje Válido	Acumulado
1607	37	33,9	33,9	33,9
1608	38	34,9	34,9	68,8
1609	34	31,2	31,2	100,0
Total	109	100,0		

Elaborado por: MONTERO, Lourdes. 2018

Gráfico 1-3: Análisis obtenidos a la preferencia de la compota de acuerdo a su formulación **Fuente:** MONTERO, Lourdes. 2018

Analizando la tabla 19-3, se puede observar que la compota de formulación 1607 tuvo una preferencia de 33,9%, la compota 1608 tuvo una preferencia de 34,9% y la compota de formulación 1609 tuvo una preferencia de 31,2%, lo que a simple vista indica que la formulación con mayor aceptación fue la 1608; pero se tendrá que analizar las diferentes pruebas organolépticas para fundamentar estas respuestas.

Para poder obtener una relación de los resultados obtenidos fue necesario evaluar las características organolépticas: sabor, consistencia, color, olor; lo que se indicará a continuación.

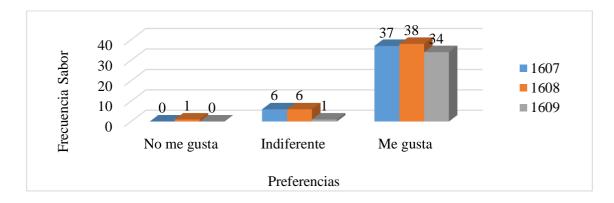
• Sabor:

Tabla 20-3: Prueba de Kruskall Wallis para el sabor de la compota estudiando diferentes formulaciones

F.V.	SC	gl	CM	F	p-valor
Modelo.	2,3	2	1,15	2,67	0,0742
Tratamiento	2,3	2	1,15	2,67	0,0742
Error	45,22	105	0,43		
Total	47,52	107			

Elaborado por: MONTERO, Lourdes. 2018.

En la evaluación de la prueba sabor se reportaron diferencias altamente significativas tomando en cuenta una aceptación del 95% (P<0.01), obteniéndose que la compota que mayor preferencia en cuanto al sabor fue la formulación 1608 con un porcentaje igual a 30,89%, seguido de la compota


con formulación 1607 con una aceptación del 30,08% y la que menor aceptación obtuvo fue la formulación 1609 con una aceptación de 30,89%.

En el análisis de la compota con formulación 1608, el 4,88% de los jueces dijeron que el sabor no les agrado ni desagrado, mientras que no hubo ningún juez al cual le disgustara el sabor de la compota, al obtener diferencias estadísticas se interpreta que el para la prueba sabor si tuvo relación directa la formulación establecida, obteniendo así que la compota 1608 para la presente prueba fue la mejor formulación.

Tabla 21-3: Análisis de las frecuencias obtenidas a la prueba sabor estudiando diferentes formulaciones

Código	No me gusta	Indiferente	Me gusta	Total
1607	0	6	37	43
1608	1	6	38	45
1609	0	1	34	35

Elaborado por: MONTERO, Lourdes.2018

Gráfico 2-3: Frecuencia de la evaluación del sabor de la compota elaborada con tres diferentes formulaciones.

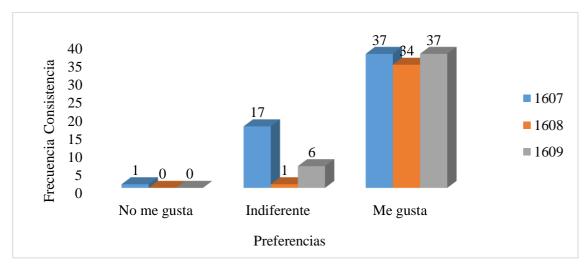
Realizado por: MONTERO, Lourdes. 2018

Consistencia:

Tabla 22-3: Prueba de Kruskall Wallis para la consistencia de la compota estudiando diferentes formulaciones

F.V.	SC	gl	CM	F	p-valor
Modelo.	3,19	2	1,59	1,34	0,2672
Tratamiento	3,19	2	1,59	1,34	0,2672
Error	125,11	105	1,19		
Total	128,3	107			

Elaborado por: Montero, Lourdes.2018


En la evaluación de la prueba consistencia no se reportaron diferencias estadísticas (P>0.05), obteniéndose que la compota que mayor preferencia en cuanto a la consistencia fue la formulación 1607 con un porcentaje igual a 41,35%, seguido de la compota con formulación 1609 con una aceptación del 32,33% y la que menor aceptación obtuvo fue la formulación 1608 con una aceptación de 26,32%.

En el análisis de la compota con formulación 1607, el 12.78% de los jueces dijeron que la consistencia no les agrado ni desagrado, mientras que el 0,75% de los jueces le disgusto la consistencia de la compota, al no obtener diferencias estadísticas se interpreta que para la prueba consistencia no tuvo relación directa la formulación establecida y que las tres formulaciones de compota de orito son aceptadas en cuanto a la consistencia se refiere.

Tabla 23-3: Análisis de las frecuencias obtenidas a la prueba consistencia estudiando diferentes formulaciones para obtener compota de orito

Código	No me gusta	Indiferente	Me gusta	Total
1607	1	17	37	55
1608	0	1	34	35
1609	0	6	37	43

Elaborado por: MONTERO, Lourdes.2018

Gráfico 3-3: Frecuencia de la evaluación de la consistencia de la compota elaborada con tres diferentes formulaciones.

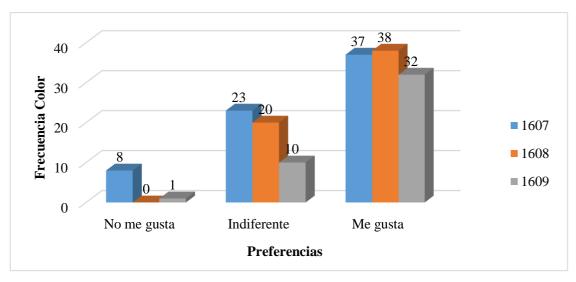
Realizado por: MONTERO, Lourdes. 2018

Color:

Tabla 24-3: Prueba de Kruskall Wallis para el color de la compota estudiando diferentes formulaciones

F.V.	SC	Gl	CM	F	p-valor
Modelo.	24,52	2	12,26	8,06	0,0006
Tratamiento	24,52	2	12,26	8,06	0,0006
Error	159,78	105	1,52		
Total	184,3	107			

Elaborado por: MONTERO, Lourdes.2018


En la evaluación de la prueba color se reportaron diferencias altamente significativas (P<0.01), obteniéndose que la compota que mayor preferencia en cuanto al color fue la formulación 1608 con un porcentaje de aceptación igual a 22,49%, seguido de la compota con formulación 1607 con una aceptación del 22,49% y la que menor aceptación obtuvo fue la formulación 1609 con una aceptación de 18,93%.

En el análisis de la compota con formulación 1608, el 13,71% de los jueces dijeron que el color no les agradó ni desagradó, mientras que el 4,73% de los jueces le disgusto el color de la compota, al existir diferencias estadísticas se interpreta que para la prueba color, tuvo relación directa la formulación establecida y que entre las tres formulaciones de compota de orito la mejor fue la 1608.

Tabla 25-3: Análisis de las frecuencias obtenidas a la prueba color estudiando diferentes formulaciones para obtener compota de orito

Código	No me gusta	Indiferente	Me gusta	Total
1607	8	23	37	68
1608	0	20	38	58
1609	1	10	32	43

Elaborado por: MONTERO, Lourdes.2018.

Gráfico 4-3: Frecuencia de la evaluación del color de la compota elaborada con tres diferentes formulaciones.

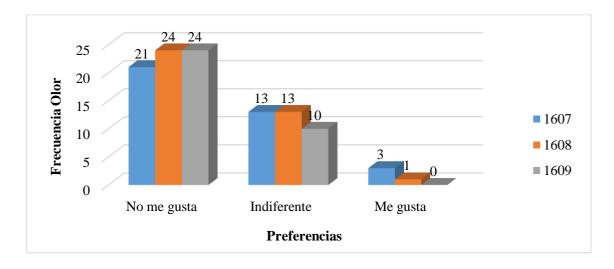
Realizado por: MONTERO, Lourdes.2018

• Olor:

Tabla 26-3: Prueba de Kruskall Wallis para el olor de la compota estudiando diferentes formulaciones

F.V.	SC	Gl	CM	F	p-valor
Modelo.	24,52	2	12,26	8,06	0,0006
Tratamiento	24,52	2	12,26	8,06	0,0006
Error	159,78	105	1,52		
Total	184,3	107			

Elaborado por: MONTERO, Lourdes.2018


En la evaluación de la prueba olor se reportaron diferencias altamente significativas (P<0.01), obteniéndose que la compota que mayor preferencia en cuanto al olor fue la formulación 1608 con un porcentaje de aceptación igual a 2,75%, seguido de la compota con formulación 1608 con una aceptación del 0.92% y la que menor aceptación obtuvo fue la formulación 1607 con una aceptación de 0%.

En el análisis de la compota con formulación 1608, el 11.93% de los jueces dijeron que el olor no les agrado ni desagrado, mientras que el 219.27% de los jueces le disgusto el olor de la compota, al existir diferencias estadísticas se interpreta que para la prueba olor, hubo relación directa la formulación establecida y que entre las tres formulaciones de compota de orito la mejor fue la 1608.

Tabla 27-3: Análisis de las frecuencias obtenidas a la prueba olor estudiando diferentes formulaciones para obtener compota de orito

Código	No me gusta	Indiferente	Me gusta	Total
1607	21	13	3	37
1608	24	13	1	38
1609	24	10	0	34

Elaborado por: MONTERO, Lourdes.2018.

Gráfico 5-3: Frecuencia de la evaluación del olor de la compota elaborada con tres diferentes formulaciones.

Realizado por: Montero, Lourdes.2018.

• Análisis de componentes principales:

Los resultados de las pruebas asertivas la que mayor aceptación tiene entre los jueces es la formulación 1608 que está hecha a partir de Orito, pectina, azúcar. La misma que al ser llevada a la prueba de cajón o tiempo de vida útil acelerada para la discriminación con la formulación 1607 a partir de Orito, almidón, azúcar; se pudo concluir que la formulación 1608 fue preferida por los jueces no entrenados y la que mejor responde a la prueba de cajón, ya que no sufre cambios en su aspecto tanto visual como en sus características físico-químico. Esta fórmula es la que debe ser aplicada a nivel industrial dadas las características de nutrientes y aceptación en el mercado.

3.2.6. Variables del proceso

Tabla 28-3: Variables del Proceso

VARIABLE	TIPO DE VARIABLE	SUB-VARIABLE	CONCEPTO	MÉTODO DE MEDICIÓN	EFECTO EN EL PROCESO	PARÁMETRO
ORITO	Dependiente	Maduración	Características deseables de la fruta para el consumo	Visual	°Brix o cantidad de azúcar presentes en la fruta	
		Tiempo	Magnitud de que muestra el tiempo	Cronometro	Tiempo de homogeneizado óptimo del puré	15 minutos
	Dependientes	Temperatura	Energía térmica medida en una escala graduada	Termómetro	Temperatura óptima para la eliminación de los microorganismos	121 °C
СОМРОТА	Dependientes	Dependientes Cantidad de preservante y estabilizante	Inhiben, retardan o detienen procesos de fermentación, putrefacción, mohos y otras alteraciones biológicas de alimentos como el puré de orito	Balanza	Se debe medir exactamente cuánto poner para que sea un producto adecuado al consumo humano	Antioxidante= 1 g/Kg Preservante= 0,0005%
	Independiente	Peso neto de producto	Contenido neto en masa exacta en el envasado	Envases de vidrio	Es la cantidad exacta de la presentación del producto para la venta	130 g

Realizado por: MONTERO, Lourdes. 2018

> Cantidad de orito desechado por "ASOPROTABF"

La Asociación de Producción Agropecuaria Tablas de la Florida, semanalmente tienen un desperdicio de orito, los mismos que no son aceptados en el control de calidad del mismo para exportación, como se puede ver a continuación en la **Tabla 29-3** del registro otorgado por la asociación (**Ver Anexo F**).

Tabla 29-3: Registro de orito rechazado por "ASOPROTABF"

Registro mensual "ASOPROTABF"		
Día/mes	Total, cantidad de	Total, cantidad de
	orito rechazado	orito rechazado
	(lb)	(Kg)
15/Mayo	2941.275	1336.38
22/Mayo	2941.275	1336.38
29/Mayo	2941.275	1336.38
5/Junio	2941.275	1336.38
12/Junio	2941.275	1336.38
Promedio	2941.275	1336.38

Fuente: Registro mensual "ASOPROTABF"

> Promedio peso oritos

Tabla 30-3: Peso promedio oritos como materia prima

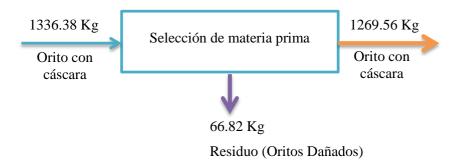
N^0	Peso orito (g)	
1	101	
2	70	
3	70	
4	72	
5	70	
6	85	
7	92	
8	65	
9	89	
10	95	
Promedio	80.9	

Realizado por: MONTERO, Lourdes. 2018.

Para obtener el número de oritos que entrarán al proceso se realiza la siguiente relación:

$$80.9 g \rightarrow 1 \text{ orito}$$

$$1.33X10^{6}g \rightarrow X$$


$$X = \frac{1.33X10^{6}g(1 \text{ orito})}{80.9}$$

$$X = 16622.39 \ oritos \cong 16623 \ oritos$$

Balances de materia por operación

El fin establecido de los balances de masa en las operaciones del proceso de obtención de compota a partir del orito, es obtener el rendimiento de cada una de las etapas según el diseño a escala industrial, tomando como base de cálculo la masa que ingresa y se elimina.

> Recepción y Selección Materia Prima

% Rendimiento =
$$\frac{M.P.sale}{M.P.entra}$$
 (100 %)

Dónde:

% Rendimiento: Porcentaje de rendimiento en la selección de materia prima

M. P. sale: Orito con cáscara después de la selección de materia prima; 1269.56 Kg

M. P. entra: Orito con cáscara que entra al proceso;1336.38 Kg

% Rendimiento =
$$\frac{1269.56 \text{ Kg}}{1336.38 \text{ Kg}} (100 \text{ %})$$

$$%$$
 Rendimiento = 95 $%$

Se da una pérdida del 5% debido a que en la selección de materia prima se retira los oritos que no cumplan con el control de calidad impuesta.

> Lavado.

% Rendimiento =
$$\frac{\text{M.P.sale}}{\text{M.P.entra}}$$
 (100 %)

Dónde:

% rendimiento: Porcentaje de rendimiento en el lavado

M. P. sale: Orito con cáscara después del lavado; 1268.29 Kg

M.P. entra: Orito con cáscara al lavado; 1269.56 Kg

% Rendimiento =
$$\frac{1268.29 \text{ Kg}}{1269.56 \text{ Kg}} (100 \text{ \%})$$

$$% Rendimiento = 99.9 \%$$

Se da una pérdida del 1% debido que en el lavado se retiras las impurezas que se encuentren en la cáscara del orito.

Pelado

✓ Relación entre el ensayo de laboratorio y el valor a implementar en la planta

En la simulación se obtuvo 1.8 Kg de cáscara a partir de 5 Kg de orito con cáscara. Haciendo relación con la cantidad real de producción tenemos:

$$X = \frac{(1,8 \ Kg \ de \ c\'ascara)(1268.29 \ Kg \ orito \ con \ c\'ascara)}{5 \ Kg \ de \ orito \ con \ c\'ascara}$$

 $X = 456.58 \, Kg \, de \, c\'ascara$

% Rendimiento =
$$\frac{\text{M.P.sale}}{\text{M.P.entra}}$$
 (100 %)

Dónde:

% Rendimiento: Porcentaje de rendimiento en el lavado

M. P. sale: Orito sin cáscara después del pelado; 811.71 Kg

M. P. entra: Orito con cáscara del lavado; 1268.29 Kg

% Rendimiento =
$$\frac{811.71 \text{ Kg}}{1268.29 \text{ Kg}} (100 \text{ \%})$$

$$% Rendimiento = 64 \%$$

Se da una disminución del 36% debido que se retira la cáscara del orito.

≻Licuado

% Rendimiento =
$$\frac{M.P.sale}{M.P.entra}$$
 (100 %)

Dónde:

% Rendimiento: Porcentaje de rendimiento en el pelado

M. P. sale: Puré de orito; 807.65 Kg

M.P. entra: Orito sin cáscara antes del licuado; 811.71 Kg

% Rendimiento =
$$\frac{807.65 \text{ Kg}}{811.71 \text{ Kg}} (100 \text{ %})$$

% Rendimiento = 99.5 %

Se pierde un 0.5% debido a que se queda en las paredes del tanque contenedor al momento de obtener el licuado del orito.

> Marmita con agitación

✓ Formulación:

51.5%: Puré de orito

38%: Agua

10%: Azúcar

0.5%: Pectina

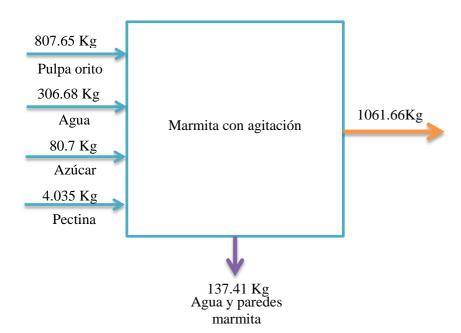
Insumos: Ácido cítrico, ácido ascórbico, sorbato de potasio.

Cantidades en masa de las materias e insumos a implementar para la compota de orito.

Puré de orito: 807.65 Kg

Agua: 306.68 Kg Azúcar: 80.7 Kg Pectina: 4.035 Kg

Insumos: Ácido cítrico: 3.87 Kg, Ácido ascórbico: 3.87 Kg y Sorbato de potasio: 0.48 Kg


✓ Relación entre el ensayo de laboratorio y el valor a implementar en la planta

En el ensayo de laboratorio de 4.8 Kg de la mezcla de puré de orito, agua pectina, ácido cítrico, ácido ascórbico y sorbato de potasio se obtuvo 4.25 Kg de compota de orito. La misma que se le hará relación con el puré obtenido anteriormente en cálculos para el diseño de la planta.

49

$$X = \frac{(4.25 \ Kg \ compota \ de \ orito \)(1203.13 \ Kg \ Mezcla \)}{4.8 \ Kg \ mezcla \ simulacion}$$

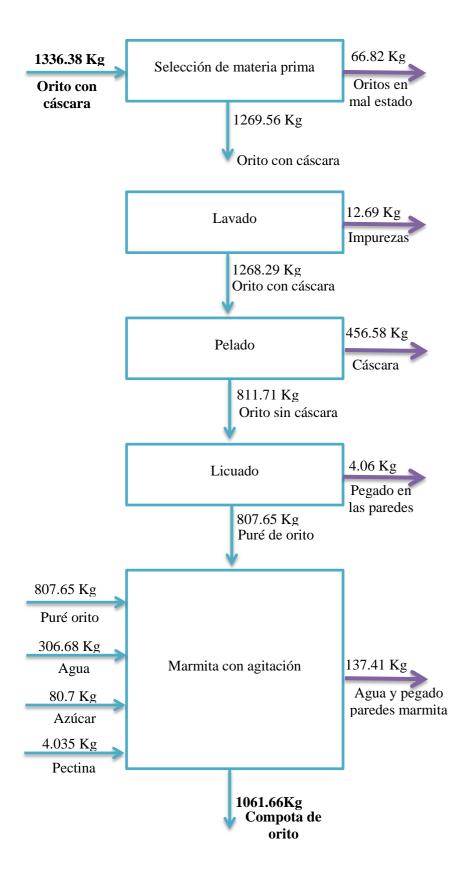
 $X = 1065.27 \ Kg \ compota \ de \ orito$

% Rendimiento =
$$\frac{M.P.sale}{M.P.entra}$$
 (100 %)

Dónde:

% Rendimiento: Porcentaje de rendimiento en la obtención de compota

M. P. sale: Compota de orito; 1061.66 Kg


M.P. entra: Mezcla de materia prima; 1203.13 Kg

% Rendimiento =
$$\frac{1061.66 \text{ Kg}}{1203.13 \text{ Kg}} (100 \text{ \%})$$

$$% Rendimiento = 88.24 \%$$

Se da una disminución del 11.46 % debido que parte de la compota tiende a quedarse en las paredes de la marmita, así como se da la evaporación del agua durante el proceso de cocción.

> Balance de masa general

% Rendimiento =
$$\frac{M.P.sale}{M.P.entra}$$
 (100 %)

Dónde:

% Rendimiento: Porcentaje general de rendimiento en la obtención de compota

M. P. sale: Compota de orito; 1061.66 Kg

M. P. entra: Mezcla de materia prima; 1336.38 Kg.

% Rendimiento =
$$\frac{1061.66 \text{ Kg}}{1336.38 \text{ Kg}} (100 \text{ \%})$$

3.2.8. Balances de Energía

> Marmita

Datos obtenidos en el ensayo de laboratorio:

- ✓ Presión: 15 Psi
- ✓ Temperatura del vapor a la entrada de la marmita; $T_{ve} = 72^{\circ}C$
- \checkmark Temperatura del vapor a la salida de la marmita; $T_{vs} = 32^{\circ}C$
- ✓ Entalpia del vapor del agua a 72°C; $H_w = 2630.2 \frac{KJ}{Kg}$
- ✓ Entalpia del agua a 32°C; $h_w = 134,146 \frac{KJ}{Kg}$

Calor latente de vaporización

$$\lambda_w = H_w - h_w \,$$

Dónde:

λ_w: Calor latente de vaporización de la marmita

 H_w ; Entalpia del vapor del agua a 72°C; 2630.2 $\frac{KJ}{Kg}$

 h_w : Entalpia del agua a 32°C; 134,146 $\frac{KJ}{Kg}$

$$\lambda_{\rm w} = (2630, 2 - 134, 146) \frac{\rm KJ}{\rm Kg}$$

$$\lambda_{w} = 2496,05 \frac{\text{KJ}}{\text{Kg}} \rightarrow 596,56 \frac{\text{Kcal}}{\text{Kg}}$$

✓ Calor latente de la marmita

$$\lambda_e = H_e - h_e$$

 $T_s = 60^{\circ}C$

 $T_e = 20^{\circ}C$

$$H_{agua} = (60^{\circ}C); 251,40 \frac{KJ}{Kg}$$

$$h_{agua} = (20^{\circ}C)$$
; 83,96 $\frac{KJ}{Ka}$

$$\lambda_{\rm e} = (251,40 - 83,96) \frac{\rm KJ}{\rm Kg}$$

$$\lambda_{e} = 167.44 \frac{KJ}{Kg} \left(\frac{0.239 \, Kcal}{1 \, KJ} \right) = 40.02 \frac{Kcal}{Kg}$$

✓ Corriente de vapor en cámara de calefacción

$$W = \frac{(F-C) \; \lambda_e + FCp_F \; (t_f - t_s)}{\lambda_w} \label{eq:weight}$$

Dónde:

F: Corriente de alimentación (Kg/h) 1570,29 Kg/h

W: Corriente de vapor en cámara de calefacción Kg/h

E: Corriente de evaporado

C: Corriente de concentrado (559,97 Kg/h)

Cp_F: Capacidad calorífica de alimentación (kcal/°C Kg)

λ_e: Calor latente de evaporización (Kcal/Kg)

λ_w: Calor latente vaporización (Kcal/Kg)

t_s: Temperatura inicial; 20 °C

t_f: Temperatura final; 60 °C

 $W = \frac{(1203.13 \text{ Kg/h} - 1061.66 \text{ Kg/h}) (40,02 \text{ Kcal/Kg}) + (1203,13 \text{ Kg/h}) (0,40 \text{ Kg/h}) (60 - 20)^{\circ}C}{596,56 \text{ Kcal/h}}$

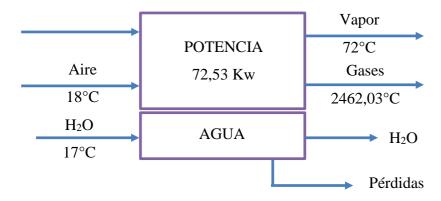
$$W = 41,80 \; \frac{Kg}{h}$$

✓ Flujo de calor en la marmita

$$Q = W * \lambda_w$$

Dónde:

Q: Flujo de calor en la marmita $(\frac{Kcal}{h})$


W: Corriente de vapor en cámara de calefacción; 41.80 Kg/h

λ_w: Calor latente vaporización; 596,56 Kcal/h

$$Q = 41.80 \frac{\text{Kg}}{\text{h}} \left(596,56 \frac{\text{Kcal}}{\text{Kg}} \right)$$

$$Q = 24936,21 \frac{Kcal}{h}$$

> Caldera

$$P = 72,53Kw = 97,26 BHP$$

✓ Cálculo del calor del sistema

$$BHP = \frac{m_v(h_g - h_f)}{Q}$$

Dónde:

BHP: Potencia del caldero

m_v: Masa de vapor

 h_g : Entalpia del vapor a 72°C; 2630,2 $\frac{KJ}{Kg}$

 h_f : Entalpia del agua de entrada a 17°C; 71,38 $\frac{KJ}{Kg}$

Q: Calor del sistema

masa de agua = 0,3119
$$\frac{Kg}{s}$$
 * 3600 s

masa de agua = 1122,84 Kg

$$X = \frac{(1122.84 \, Kg)(72\%)}{100\%}$$

$$X = 808.44 \ Kg$$

La cual es la masa de vapor que se genera en la caldera.

$$Q = \frac{m_v(h_g - h_f)}{\text{RHP}}$$

$$Q = \frac{808,44 \text{Kg} (2630,2 - 71,38) \frac{KJ}{Kg}}{97,26 \text{ BHP}}$$

$$Q = 21269,30 \text{ KJ}$$

✓ Potencia Quemada

Potencia quemada = $P_c * C$

$$P_c$$
: Poder calorífico (Diesel); 40201 $\frac{KJ}{Kg}$

C: Consumo;
$$2,30x10^{-3} \frac{Kg}{s} * \frac{1 \text{ m}^3}{805 \text{ Kg}} * \frac{3600 \text{ s}}{1 \text{ h}} = 0,010 \frac{m^3}{h}$$

$$\rho_{diesel} = 805 \, \frac{\text{Kg}}{\text{m}^3}$$

$$P_c = 40201 \frac{KJ}{Kg} * 805 \frac{Kg}{m^3} * \frac{0,2390 \text{ Kcal}}{1 \text{ KJ}} = 7734471,39 \frac{Kcal}{m^3}$$

Potencia quemada = 7734471,39
$$\frac{\text{Kcal}}{\text{m}^3} * 0,010 \frac{\text{m}^3}{\text{h}}$$

Potencia quemada = 77344,71
$$\frac{\text{Kcal}}{\text{h}} \rightarrow 89,952 \text{ Kw}$$

> Rendimiento caldera

$$Rendimiento = \frac{Potencia \, \acute{u}til}{Potencia \, quemada} * 100$$

$$Rendimiento = \frac{72,53 \text{ Kw}}{89,952 \text{ Kw}} * 100$$

3.2.9. Dimensionamiento de equipos

Diseño del tanque de lavado

Volumen del Tanque

✓ Factor de seguridad para volumen del tanque

$$X = V \times F_{s}$$

Dónde:

X: Volumen adicional

V: Volumen propuesto; 560 L

 F_s : Factor de seguridad; 0.15

$$X = 560 L \times 0.15$$

$$X = 84 L$$

✓ Volumen total del Tanque.

$$\mathbf{V_{Total}} = \mathbf{V} + \mathbf{X}$$
 $\mathbf{V_{Total}} = (560 + 84) \, \mathbf{L}$
 $\mathbf{V_{Total}} = 644 \, \mathbf{L}$

$$V_{Total} = 644 L x \frac{1 m^3}{1000 L} = 0.644 m^3$$

Dónde:

V_{Total}: Volumen total del tanque

X: Volumen adicional; 84L

V: Volumen propuesto; 560 L

> Cálculo del radio y altura del Tanque (cilindro)

✓ Radio del Tanque

$$r=rac{\emptyset}{2}$$

Dónde:

r: radio (m)

 \emptyset : Diámetro asumido 120 $cm \rightarrow 1.2 m$

$$r = \frac{1.2 \text{ m}}{2}$$

$$r = 0.6 \text{ m}$$

✓ Altura del tanque

$$V = h\pi r^2$$

$$h=\frac{V_{Total}}{\pi r^2}$$

Dónde:

h: Altura del tanque (m)

 V_{Total} : Volumen total del tanque: 0,644 m³

r: Radio del tanque; 0,6m

$$h = \frac{0.644 \text{ m}^3}{\pi (0.6\text{m})^2}$$

$$h = 0.569 \text{ m}$$

√ Cálculo del caudal del agua para lavado

La toma de caudal se realizó mediante el método volumétrico.

$$Q = \frac{V}{t}$$

$$Q = \frac{10 L}{20 s}$$

$$Q = 0.5 \frac{L}{s}$$

$$Q = 0.5 \frac{L}{s} x \frac{1 \text{ m}^3}{1000 \text{ L}}$$

$$Q = 5X10^{-4} \text{m}^3/\text{s}$$

√ Cálculo de la velocidad promedio del flujo

$$\vartheta_s = \frac{4 \, Q}{\pi \emptyset^2}$$

Dónde:

θ_s: Velocidad promedio del flujo (m/s)

 \emptyset : Diametro asumido de la tuberia 1 pulg $\rightarrow 0.0254$ m

Q: Caudal del agua; $5X10^{-4}$ m³/s

$$\vartheta_{s} = \frac{4 (5X10^{-4} \text{m}^{3}/\text{s})}{\pi (0.0254 \text{m})^{2}}$$

$$\vartheta_{\rm s} = 0.78 \, {\rm m/s}$$

> Cálculo del NRe

$$NRe = \frac{\rho \vartheta s \emptyset}{\mu}$$

 $\mu\text{:}$ Viscosidad del agua a 20° C ; 1.003 X $\frac{10^{-3} \text{Kg}}{\text{ms}}$

ρ: Densidad del agua a 20° C; 998.29 Kg/ms

θ_s: Velocidad promedio del flujo; 0.78 m/s

Ø: Diámetro de la tubería asumido; 0.0254 m

NRe =
$$\frac{998.29 \frac{\text{kg}}{\text{m}^3} \times 0.78 \frac{\text{m}}{\text{s}} \times 0.0254 \text{ m}}{1.003 \times 10^{-3} \text{ Kg/ms}}$$

NRe = 19718.96 → flujo Turbulento

Determinamos el régimen del flujo tomando en cuenta que si:

NRe $< 2100 \rightarrow R.$ laminar

 $2100 > NRe > 2400 \rightarrow R$ de transición

NRe $> 2400 \rightarrow R$. Turbulento

> Cálculo de la Rugosidad Relativa.

$$RR = \frac{\varepsilon}{\emptyset}$$

Dónde:

RR: Rugosidad relativa

ε: Coeficiente de rugosidad absoluta para tuberias PVC; 0.0015 mm (Ver Anexo G).

Ø: Diámetro de la tubería asumido; 0.0254 m

$$\varepsilon = 0.0015 \text{ mm} \left(\frac{1m}{1000mm} \right) = 1.5X10^{-6}m$$

$$RR = \frac{1.5X10^{-6}m \text{ mm}}{0.0254 \text{ m}} = 5.9X10^{-5}$$

> Cálculo de Pérdidas por Fricción

Las perdidas primarias se calculan en referencia a la rugosidad del material de la tubería utilizada, mediante la ecuación de Darcy-Weisbach.

$$\mathbf{hf_L} = \mathbf{f} \mathbf{x} \frac{\mathbf{L} \vartheta^2}{\emptyset 2\mathbf{g}}$$

Dónde:

hf_L: Pérdidas primarias

L: 8m (Valor considero por la longitud existente de terreno)

f: Factor de fricción fanning; 0.065 (Ver Anexo H).

θ: Velocidad del flujo; 0.78 m/s

g: Gravedad; 9.8 m/s²

hf_L =
$$0.065 \times \frac{8m (0.78 \frac{m}{s})^2}{0.0254 \text{ m}(2) 9.8 \frac{m}{s^2}}$$

$$hf_{L} = 0.64 \text{ m}$$

> Cálculo de pérdidas por accesorios.

Para este cálculo los accesorios tienen una constante definida tabulada en tablas (Ver Anexo I).

Tabla 31-3: Constantes utilizadas para diseño

Accesorios	N°	Constante (k)	Pérdida Total
Codo 90°	4	0.90	3.6
Válvulas de bolas	2	0.05	0.1
		Total	3,7

Realizado por: MONTERO, Lourdes. 2018

$$hfm=(K)\frac{\vartheta^2}{2g}$$

Dónde:

hfm: Pérdidas secundarias

K: Constante de accesorios; 3.7

θ: Velocidad del flujo; 0.78 m/s

g: Gravedad; 9.8 m/s²

hfm =
$$(3.7) \frac{(0.78\text{m})^2}{2 \times 9.8\text{m/s}^2}$$

$$hfm = 0.11 m$$

> Cálculo de pérdidas totales

$$hf = hf_L + hfm$$

Dónde:

hf: Pérdidas totales

hf_L: Pérdidas primarias; 0,64 m

hfm: Pérdidas secundarias; 0.11 m

$$hf = (0.64 + 0.11)m$$

$$hf = 0.76 \text{ m}$$

> Cálculo de la carga de la Bomba

Ecuación de Bernoulli tomando en cuenta dos puntos de referencia, desde la succión hasta la descarga del fluido.

$$\frac{{\vartheta_2}^2}{2g} + Z_2 + \frac{P_2}{\rho} + hf = \frac{{\vartheta_1}^2}{2g} + Z_1 + \frac{P_1}{\rho} = \pm H$$

Dónde:

Z: Altura de carga y descarga (m)

P: Presión

hf: Pérdidas totales por fricción (m)

 ρ : Densidad del fluido

θ: Velocidad del fluido (m/s)

g: Gravedad (9.8 m/s²)

±H: Carga de la bomba (m)

La altura de carga y descarga se desprecia debido a que su diferencia no es tan grande por lo que las presiones son iguales ($P_1 = P_2$) por lo que su valor es 0. La velocidad inicial de succión es 0, por lo tanto, también se desprecia, quedando la ecuación de esta manera y reemplazando:

$$\frac{{\vartheta_2}^2}{2g} + hf = \pm H$$

Dónde:

±H: Carga de la bomba

θ: Velocidad del flujo; 0.78 m/s

g: Gravedad; 9.8 m/s²

hf: Pérdidas totales; 0.76 m

$$\pm H = \frac{(0.78 \text{ m/s})^2}{2(9.8 \text{ m/s}^2)} + 0.76 \text{ m}$$

$$\pm H = 0.79 \text{ m}$$

> Cálculo del flujo másico del agua para lavado

$$W = Q x \rho$$

Dónde:

W: Flujo másico

Q= Caudal del fluido; 5X10⁻⁴m³/s

 ρ = Densidad del fluido; 998.29 $\frac{Kg}{m^3}$

$$W = 5X10^{-4} \frac{m^3}{s} \left(998.29 \frac{Kg}{m^3} \right)$$

$$W = 0.49 \, \text{Kg/s}$$

> Cálculo de la Potencia de la Bomba

$$Hp=\frac{WH}{75n}$$

n: es la eficiencia mínima requerida por la bomba 75%

±H: Carga de la bomba; 0.79 m

W: Flujo másico; 0.49 kg/s

$$Hp = \frac{0.49 \frac{Kg}{s} (0.79 \text{ m})}{75 (0.75)}$$

$$Hp = 0.0068$$

Al no existir en el mercado una bomba con la potencia requerida, se considera una bomba de ¼ Hp cuando se implemente la planta de producción de compota.

> Diseño de bandas transportadoras

Para determinar los valores adecuados en el diseño de las bandas transportadoras se usan métodos estándar existentes en la industria.

Para el diseño de las bandas transportadoras en base a los anchos normalizados que van desde 400 mm hasta 2200 mm según KAUMAN SA, se asumirá el valor de 400 mm para el ancho de la banda transportadora.

$$400 \text{ mm} \rightarrow 0.4 \text{ m}$$

> Flujo másico de producto

Tomando en cuenta que se va a producir un total 1336.38 Kg de fruta que es rechazada semanalmente, y tomando en cuenta que se produciría solo cada fin de semana se tiene el siguiente flujo másico:

$$1336.38 \frac{\text{Kg}}{dia} \left(\frac{1 dia}{24h} \right) \left(\frac{1h}{60 \text{ min}} \right)$$

$$Q = 0.93 \frac{Kg}{min}$$

> Cálculo del área del producto a transportar.

$$A = 2\pi rh + 2\pi r^2$$

Dónde:

A: Área de cada orito

r: radio; 0.01137 m

h: Altura o largo del orito; 0.0912 m

$$A = 2\pi (0.01137 \text{ m})(0.0912 \text{ m}) + 2\pi (0.01137 \text{ m})^2$$

$$A = 9.03x10^{-3}m^2$$

> Cálculo número de oritos que pasarán en la banda transportadora por cada minuto.

$$\#oritos = Q\left(\frac{1\ orito}{0.0809\ Kg}\right)$$

Dónde:

Q: Flujo másico de oritos

#oritos = 0.93
$$\frac{\text{Kg}}{\text{min}} \times \frac{10 \text{rito}}{0.0809 \text{ Kg}}$$

$$\#oritos = 11.49 \frac{oritos}{min} \cong 12 \frac{oritos}{min}$$

> Área total que ocupará la cantidad de oritos

$$A_0 = A(\#oritos)$$

Dónde:

A₀: Area total

A: Área de cada orito; $9.03x10^{-3}m^2$

$$A_0 = (9.03x10^{-3}m^2)12 \frac{oritos}{min}$$

$$A_0 = 0.11 m^2 / min$$

> Cálculo de la longitud de banda

$$A_0 = A_b = \frac{L_{Banda} \, x \, B_b}{2}$$

$$L_{Banda} = \frac{A_b(2)}{B_b}$$

Dónde:

L_{Banda}: Longitud de la banda transportadora (m)

B_b: Ancho de la banda; 0.4m (Valor considerado en los criterios de diseño)

A_b: Área del producto a transportar; 0.11m²/min

$$L_{Banda} = \frac{0.11 \frac{m^2}{min}(2)}{0.4 \ m}$$

$$L_{Banda} = 0.55 \; m/min$$

> Factor de seguridad para la longitud de banda

Según el método de diseño de Kauman SA. con el que se está diseñando la banda transportadora establece que debe contar con un factor de seguridad se debe añadir 0.1m.

$$L_c = L_{Banda} + 0.10$$

Dónde:

L_c: Largo de banda corregido

L_{Banda}: 0.55 m/min

$$L_c = 0.55 \text{ m} + 0.10$$

$$L_c = 0.65 \text{ m}$$

\triangleright Cálculo de la velocidad de la banda (V_b)

Con la longitud de la banda se determina la velocidad a la que se debe mover o transportar la materia prima y/o producto ya que el cálculo se basa en 1 min de tiempo.

$$V_b = 0.65 \frac{m}{min} \times \frac{1 min}{60 s} = 0.011 m/s$$

> Peso de producto que soporta la banda.

$$m_n = \#oritos(m_i)$$

Dónde:

m_n: Peso máximo que soporta la banda (Kg)

m_i: Peso individual promedio de orito; 0.0809Kg

#oritos: 12 oritos.

$$m_n = 12 \ oritos \ (0.0809 Kg)$$

$$m_n = 0.97 \text{ Kg}$$

> Selección de rodillos

Se selecciona con recomendación de una tabla de valores estandarizados

Tabla 32-3: Selección de rodillo

BANDA					
DIAMETRO (mm)	400	500	650	800	1000
63,5	X	X	X		
70		X	X	X	
76		X	X	X	X
89		X	X	X	X
102			X	X	X
108			X	X	X

Fuente: Santacruz & Suarez, 2007.

Realizado por: MONTERO, Lourdes. 2018

Se consideran los rodillos con diámetro de 63.5 mm.

\triangleright Masa de la banda. (M_b)

Se obtiene de la tabla de características del material de banda estandar según FDA (Food Departament Administration):

Tabla 33-3: Características del material

CARACTERÍSTICA	DETALLE
Referencia	E2/IU0/U2
Material de tejido	Uretano
Espesor	0,7 mm
Peso de la banda	0,7 kg/m^2

Fuente: Santacruz & Suarez, 2007.
Realizado por: MONTERO, Lourdes. 2018

$$M_b = A_0 \times P_b$$

Dónde:

M_b: Masa de la banda

A₀: Área que ocupa el producto; 0.11m²

P_b: Peso de la banda; $0.7 \frac{Kg}{m^2}$

$$M_b = 0.11m^2 \times 0.7 \text{ kg/}m^2$$

$$M_b = 0.077 \text{ Kg}$$

> Masa del producto por unidad de área

$$m/a \, = \, \frac{capacidad \; hora}{3.6 V_b}$$

Dónde:

m/a: Masa del producto sobre área

 V_b : Velocidad de la banda; $0.0092 \frac{m}{s} = 33.12 \frac{m}{h}$

Capacidad por hora; 55.7 Kg/h

$$m/a = \frac{55.7 \text{ Kg/h}}{3.6 (33.12 \frac{m}{h})}$$

$$m/a = 0.47 \text{ Kg/m}$$

> Cálculo de la tensión necesaria para mover la banda

Tabla 34-3: Peso de las partes móviles

Belt Width (mm)	Mass of Moving Parts (Kg/m)			
Dete (viden (mm))	Light Duty 102 mm Idlers Ligth Belt	Medium Duty 127 mm Idlers Moderate Betl	Heavy Duty 152 mm Idlers Heavy Belt	Extra Heavi Duty 152 mm Idlers Steel Cord Belt
300	23	22	30	
450	25	25	33	
600	29	36	45	49
750	37	46	57	63
900	45	55	70	79
1050	52	64	82	94

Fuente: Santacruz & Suarez, 2007.
Realizado por: MONTERO, Lourdes. 2018

Tabla 35-3: Coeficiente de fricción de rodillos

TIPO DE COJINETE	ESTADO	VALOR DE f
	Favorable	0,018
Rodamiento	Normal	0,020
	Desfavorable	0,023-0,030
Fricción		0,05

Fuente: Santacruz & Suarez, 2007.

Se considera que la masa de las partes móviles es para un trabajo moderado y el coeficiente de fricción es para un cojinete de rodamiento normal (0.020). Se aplica y reemplaza la siguiente formula:

$$T_x = 9.86 * G * f_x * L_c$$

Dónde:

T_x: Tensión banda

G: Masa de las partes móviles; 24 Kg/m (Valor considerado en la tabla)

 f_x : Coeficiente de fricción de rodillos = 0.020 para un estado de rodamiento normal (Valor considerado en la tabla)

L_c: Longitud de la banda corregida; 0.65 m

$$T_x = (9.86 \text{ m/s})(24\text{Kg/m})(0.020)(0.65\text{m})$$

$$T_{x} = 3.08 \text{ N}$$

- > Cálculo de la tensión efectiva.
 - ✓ Fuerza ejercida por la fruta

$$F_{fruta} = m_{fruta} \times g$$

F_{fruta}: Fuerza ejercida por la fruta

m_{fruta}: Masa de la fruta; 1336.97 Kg

g: Gravedad; 9.8 m/s²

$$F_{\text{fruta}} = 1336.97 \text{ Kg} \left(9.8 \frac{\text{m}}{\text{s}^2} \right)$$

$$F_{fruta} = 13102.3 \text{ N}$$

$$T_y = (g) \Big(\frac{m}{a}\Big) (fr)(Lc) + F_{\textit{fruta}}$$

Dónde:

T_v: Tensión efectiva para vencer las resistencias

m/a: Masa del producto sobre área; 0.47 Kg/m

g: Gravedad: $9.8 \frac{m}{s^2}$

f_r: Coeficiente de fricción de banda con carga; 0.027

Lc: Longitu de banda corregida; 0.65m

 F_{fruta} : Peso de la fruta canalizada; 13102.3 N

$$T_y = \left(9.8 \frac{m}{s^2}\right) \left(0.47 \frac{\text{Kg}}{\text{m}}\right) (0.027)(0.65\text{m}) + 13102.3 \text{ N}$$

$$T_y = 13102.38 \text{ N}$$

✓ Tensión efectiva T_e.

$$T_e = T_x + T_v$$

T_v: Tensión efectiva para vencer las resistencias; 13102.38N

T_x: Tensión banda; 3.08N

$$T_e = 3.08 N + 13102.38 N$$

$$T_e = 13105.46 \text{ N}$$

√ Cálculo de la potencia de accionamiento del motor de la banda.

$$P = T_e \times V_b$$

Dónde:

P: Potencia

T_e: Tensión efectiva; 13105.46 N

 V_b : Velocidad de la banda; $0.0092 \frac{m}{s}$

$$P = 13105.46 \text{ N } \left(0.0092 \frac{\text{m}}{\text{s}}\right)$$

$$P = 120.57W$$

$$P = 120.57 \text{ W x } \frac{1 \text{ Hp}}{746 \text{ W}} = 0.16 \text{ Hp}$$

> Potencia corregida

$$P_{corregida} = P_{calculada} + 0.15 (P_{calculada})$$

Dónde:

P_{corregida}: Potencia corregida

P_{calculada}: Potencia calculada; 0.16Hp

$$P_{corregida} = 0.16Hp + 0.15(0.16)$$

$$P_{corregida} = 0.184 \text{ Hp}$$

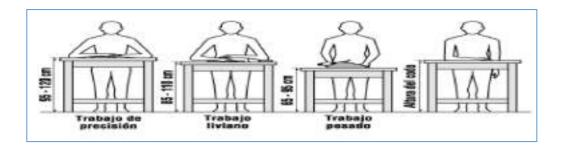
Para el sistema de transporte de producto y/o materia prima se necesita un motor con una potencia mínima de 0.184 Hp, pero al no existir en el mercado se considera un motor con una potencia de ½ Hp.

> Diseño de mesas de selección y pelado

El diseño de las mesas de selección y pelado son fundamentales para la correcta ergonomía de los operarios en la planta y se diseñan tomando en cuenta la capacidad de materia prima que debe ingresar en las mismas. Se calcula su volumen mediante la siguiente formula:

> Cálculo del volumen de la mesa de selección y pelado

$$V_{ms} = L_{ms} x a_{ms} x h_{ms}$$


Donde:

 L_{ms} = Longitud de mesa (1.5 m)

a_{ms}= ancho de mesa (0.70 m)

h = altura de cajas de selección (0.2 m)

La longitud y ancho de las mesas de selección y pelado son asumidos de acuerdo a la disponibilidad del espacio en la planta y la altura se basa en la determinación de la altura correcta dentro de la ergonomía del operario para trabajo liviano, valor que esta entre 0.85 y 1.10 m de alto como se observa en la figura:

Figura 2-3: Altura estándar de mesa según la correcta ergonomía de acuerdo al trabajo **Fuente:** Santacruz & Suarez, 2007.

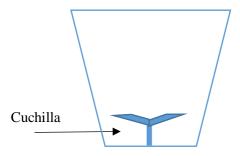
Reemplazando valores en la fórmula:

$$V_{ms} = 1.50 \text{ m x } 0.7 \text{ m x } 0.2 \text{ m}$$

$$V_{ms} = 0.21 \text{ m}^3 \text{ c/u}$$

La capacidad en Kg es:

$$1.52 \frac{\text{gr}}{\text{cm}^3} \times \frac{1 \text{ Kg}}{1000 \text{ gr}} \times \frac{(100)^3 \text{cm}^3}{1 \text{ m}^3} = 1520 \text{ Kg/m}^3$$


$$\delta_{fruta} = \frac{m}{v}$$

$$m = \, \delta_{fruta} \,\, x \,\, V$$

$$m = 850 \text{Kg} / \text{m}^3 \times 0.21 \text{ m}^3$$

 $m=178.50\;\text{Kg}\;\to\;\text{capacidad aproximada}$

Diseño Picadora

> Volumen de fruta a procesar

$$V_{orito} = m_{orito}(\rho_{orito})$$

Dónde:

 V_{orito} : Volumen del orito a procesar (m^3)

morito: Masa de orito a procesar; 811.71 Kg

 ρ_{orito} : Densidad del orito: $850 \frac{Kg}{m^3}$

$$V_{orito} = 811.71 \text{ Kg} \left(\frac{1 m^3}{850 \text{ Kg}} \right)$$

$$V_{orito} = 0.95m^3$$

Debido a que el volumen es muy alto se le divide para 4 lotes lo que nos queda con un volumen de diseño de:

$$V_{or.dise\~no} = \frac{0.95m^3}{4}$$

$$V_{or.dise\tilde{n}o} = 0.237m^3$$

> Área del tanque contenedor

✓ Radio inferior del tanque para el diseño

Asumiendo un valor de diámetro interno del tanque contenedor en su parte inferior de 0.4m tenemos:

$$r=\frac{\emptyset_i}{2}$$

Dónde:

r: Radio parte inferior tanque contenedor (m)

Ø: Diametro interno tanque contenedor; 0,4 m

$$r = \frac{0.4 \ m}{2}$$

$$r = 0.2 m$$

✓ Radio superior del tanque para el diseño

Asumiendo un valor de diámetro interno del tanque contenedor en su parte superior de 0.8m tenemos:

$$R=\frac{\emptyset_i}{2}$$

Dónde:

R: Radio parte inferior tanque contenedor (m)

Ø: Diametro interno tanque contenedor; 0,4 m

$$R = \frac{0.8m}{2}$$

$$R = 0.4m$$

✓ Generatriz del tanque contenedor para el diseño

$$g = \sqrt{h^2 + (R - r)^2}$$

Dónde:

g: Generatriz del tanque contenedor (m)

R: Radio parte inferior tanque contenedor; 0,2 m

r: Radio parte inferior tanque contenedor; 0,4 m

h: Altura tanque contenedor: 0.8 m (valor asumido para el diseño)

$$g = \sqrt{(0.8m)^2 + (0.4m - 0.2m)^2}$$

$$g = 0.83 m$$

✓ Área tanque contenedor

$$A = \pi \big[g(R+r) + R^2 + r^2 \big]$$

Dónde:

A: Área tanque contenedor

g: Generatriz del tanque contenedor; 0.83 m

R: Radio parte inferior tanque contenedor; 0,2 m

r: Radio parte inferior tanque contenedor; 0,4 m

$$A = \pi [0.83 \text{ m} (0.4 m + 0.2 m) + (0.4 m)^2 + (0.2 m)^2]$$

$$A = 2.19 m^2$$

√ Volumen del tanque contenedor

$$V = \frac{1}{3}\pi h[R^2 + r^2 + (R)(r)]$$

V: Volumen del tanque contenedor

R: Radio parte inferior tanque contenedor; 0,2 m

r: Radio parte inferior tanque contenedor; 0,4 m

h: Altura tanque contenedor: 0.8 m (valor asumido para el diseño)

$$V = \frac{1}{3}\pi (0.8 \text{ m})[(0.4m)^2 + (0.2m)^2 + (0.4m)(0.2m)]$$
$$V = 0.235m^3$$

√ Velocidad angular

$$W = rpm * \frac{2 \pi rad}{1 rev} * \frac{1 min}{60 s}$$

Dónde:

W: Velocidad angular (rad/s)

rpm: Revoluciones por minuto: 3600 (Valor considerado mediante simulación del proceso)

$$W = 3600 \text{ rpm} * \frac{2 \pi \text{ rad}}{1 \text{ rev}} * \frac{1 \text{ min}}{60 \text{ s}}$$

$$W = 376,99 \frac{\text{rad}}{\text{s}}$$

✓ Longitud de cuchilla

$$L_c = \frac{5 \text{ r}}{7}$$

Dónde:

 L_c : Longitud de cuchilla (m)

r: Radio inferior tanque contenedor: 0.2m

$$L_c = \frac{5 (0.2 \text{m})}{7}$$

$$L_c = 0.14 \text{ m}$$

✓ Radio interno inferior del tanque contenedor

$$r_i = \frac{5(r)}{3}$$

Dónde:

 r_i : Radio interno inferior real de diseño

r: Radio inferior tanque contenedor: 0.2m

$$r_i = \frac{5\,(0,14)}{3}$$

$$r_i = 0.23 \ m$$

✓ Radio del rodete de cuchillas

$$a=\frac{2*L_c}{5}$$

Dónde:

α: Radio del rodete de cuchillas (m)

 L_c : Longitud de cuchilla; 0.14m

$$a = \frac{2(0,14m)}{5}$$

$$a = 0.056 m$$

> Diseño de las cuchillas

✓ Energía de ruptura

$$E_{ruptura} = m_{orito} * g * h$$

Dónde:

 $E_{ruptura}$: Energía de ruptura (J)

morito: Masa de orito a procesar; 811.71 Kg

h: Altura tanque contenedor: 0.8 m

g: Gravedad; 9.8 $\frac{m}{s^2}$

$$E_{\text{ruptura}} = 811,71 \text{ Kg} \left(9,8 \frac{\text{m}}{\text{s}^2}\right) (0,8 \text{ m})$$

$$E_{\text{ruptura}} = 6363,8 \text{ J}$$

✓ Energía cinética de cuchilla

$$\mathbf{E}_{\mathrm{cinetica}} = \frac{1}{2} * m_{orito} * v^2$$

$$E_{cinetica} = E_{ruptura}$$

$$\frac{1}{2}*m_{orito}*v^2 = \mathbf{E}_{ruptura}$$

$$v = \sqrt{\frac{\mathrm{E_{ruptura}}}{\frac{1}{2} * m_{orito}}}$$

Dónde:

v = Es la velocidad de la cuchilla (m/s)

 $E_{ruptura}$: Energía ruptura de la cuchilla (J)

*m*_{orito}: Masa de orito a procesar; 811.71 Kg

$$v = \sqrt{\frac{2 (6363,80) \, Kg \, \frac{m^2}{s^2}}{811.71 \, \text{Kg}}}$$

$$v = 15.68 \, \frac{m}{s}$$

✓ Aceleración angular

$$a = \frac{W^2}{2 * 2\pi}$$

Dónde:

a: Aceleración angular $\frac{rad}{s^2}$

W: Velocidad angular; 376,99 $\frac{\text{rad}}{\text{s}}$

$$a = \frac{\left(376,99 \, \frac{rad}{s}\right)^2}{(2)2\pi \, rad}$$

$$\alpha = 11309,6 \frac{rad}{s^2}$$

✓ Masa de cuchillo móvil

$$m_c = \frac{F_c * 3}{\alpha * L}$$

Dónde:

 m_c : Masa de cuchilla móvil

 F_c : Fuerza de corte; 12.42N

a: Aceleración angular; 11309,6 $\frac{rad}{s^2}$

l: Longitud de cuchilla; 0.14 m.

$$m_c = \frac{(12.42 N)(3)}{11309.6 \frac{rad}{s^2} (0.14 m)}$$

$$m_c = 0.02 \text{ Kg}$$

✓ Volumen de un cuerpo rectangular

$$V = L * a_c * e$$

$$V = \frac{m_c}{\rho_{acero}}$$

$$\frac{m_c}{\rho_{acero}} = l * a_c * e$$

$$a_c: \frac{m_c}{\rho_{acero} * 1 * e}$$

 a_c : Ancho cuchillo (cm)

 m_c : Masa cuchilla; 0,095 Kg; 95 g

 ρ_{acero} : Densidad acero; 7,85 $\frac{g}{cm^3}$

l: Longitud de cuchilla; 0.14 m; 14cm

e: Espesor de la cuchilla; 8 mm; 8 cm

$$a_c = \frac{95 \ g}{7,85 \ \frac{g}{cm^3} * 14 \ cm * 0,8 \ cm}$$

$$a_c = 1,08 \ cm$$

√ Fuerza centrífuga de cuchilla

$$F_c = m * W^2 * \mathbf{r_i}$$

Dónde:

F_c: Fuerza centrífuga (N)

 $\boldsymbol{m_c}$: Masa cuchilla;0,095 Kg ; 95 g

W: Velocidad angular; 376,99 $\frac{\text{rad}}{\text{s}}$

 r_i : Radio interno inferior real de diseño

$$F_c = 0.095 \, Kg * \left(184.31 \, \frac{rad}{s}\right)^2 * 0.42 \, m$$

$$F_c = 1355,41 \text{ N} * \text{rad}^2 \frac{1 \text{ rev}^2}{(2 \pi \text{ rad})^2} = 34,33 \text{ N}$$

✓ Área cuchilla

$$\mathbf{A} = \mathbf{e} * \mathbf{l}$$
79

A: Área cuchilla (m^2)

l: Longitud de cuchilla; 0.14 m

e: Espesor de la cuchilla; 8 mm; 0.008m

$$A = 0.008 m * 0.14 m$$

$$A = 1.12x10^{-3}m^2$$

✓ Fuerza cortante

$$\tau = \frac{F_c}{A}$$

Dónde:

τ: Fuerza cortante (Pa)

A: Área cuchilla; $1.12x10^{-3}m^2$

F_c: Fuerza centrífuga; 34,33 N

$$\tau = \frac{34,33 \text{ N}}{1.12x10^{-3}m^2}$$

$$\tau = 30651.76 \ Pa$$

✓ Torque

$$\mathbf{T} = \mathbf{F_c} * \mathbf{l}$$

Dónde:

T: Torque

 F_c : Fuerza centrífuga; 34,33 N

l: Longitud de cuchilla; 0.14 m.

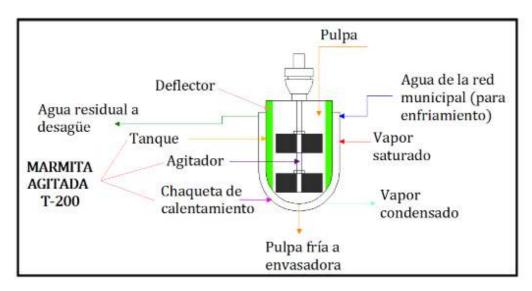
$$T = 34.33 N * 0.14 m$$

$$T = 4.8 \text{ Nm}$$

✓ Cálculo de la potencia del motor

$$P = \frac{T * W}{9550}$$

P: Potencia (Kw)


W: Velocidad angular; 3600 rpm

 F_C = fuerza de corte; 34,33N

$$P = \frac{4.8 \text{ Nm} * 3600 \text{ rpm}}{9550}$$

$$P = 1.8 \text{ Kw} \frac{1 hp}{1,34 Kw} = 1,35 hp \approx 1.5 hp$$

> Diseño de la marmita con agitador

Figura 3-3: Marmita con agitador **Fuente:** Montes Ortega, 2009.

Geometría de la marmita

✓ Cálculo densidad del puré de orito

$$ho_{pur\acute{ ext{e}}} =
ho_{relativa}(
ho_{agua})$$

Dónde:

 ρ_{pulpa} : Densidad del puré de orito $\left(\frac{Kg}{m^3}\right)$

 $\rho_{relativa}$: Densidad relativa: 1.0083 adimensional

 ρ_{agua} : Densidad del agua a 20 °C; 998.4 $\frac{Kg}{m^3}$

$$\rho_{pur\acute{\mathrm{e}}} = 1.0083 \left(998.4 \; \frac{Kg}{m^3}\right)$$

$$\rho_{pur\acute{\rm e}} = 1081.16 \; \frac{Kg}{m^3}$$

> Cálculo volumen de diseño de la marmita

✓ Volumen de puré de orito

$$V_{pur\acute{
m e}} = rac{m_{pur\acute{
m e}}}{
ho_{pur\acute{
m e}}}$$

Dónde:

 V_{pulpa} : Volumen de la azúcar (m^3)

m_{pulpa}: Masa de azúcar; 80.7 Kg

 ρ_{pulpa} : Densidad de la azúcar; 1587 $\frac{\mathit{Kg}}{\mathit{m}^3}$

$$V_{pur\'e} = \frac{807.65 \text{ Kg}}{1081.16 \frac{Kg}{m^3}}$$

$$V_{pur\acute{\rm e}}=0.75~m^3$$

✓ Volumen de la azúcar

$$V_{az\acute{\mathbf{u}}car} = \frac{m_{az\acute{\mathbf{u}}car}}{\rho_{az\acute{\mathbf{u}}car}}$$

Dónde:

 V_{azucar} : Volumen de la azúcar (m^3)

mazucar: Masa de azúcar; 80.7 Kg

 $\rho_{az\acute{u}car}$: Densidad de la azúcar; 1587 $\frac{Kg}{m^3}$

$$V_{az\acute{u}car} = \frac{80.7 \text{ Kg}}{1587 \frac{Kg}{m^3}}$$

$$V_{az\acute{u}car}=0.051\,m^3$$

√ Volumen del agua

$$V_{agua} = \frac{m_{agua}}{\rho_{agua}}$$

Dónde:

 V_{agua} : Volumen de agua (m^3)

magua: Masa del agua; 306.8 Kg

 ρ_{agua} : Densidad del agua; 998.2 $\frac{Kg}{m^3}$

$$V_{agua} = \frac{306.8 \text{ Kg}}{998.2 \frac{Kg}{m^3}}$$

$$V_{agua} = 0.31 m^3$$

✓ Volumen de pectina

$$V_{pectina} = \frac{m_{pectina}}{\rho_{pectina}}$$

Dónde:

 $V_{pectina}$: Volumen de la pectina (m^3)

mpectina: Masa de la pectina; 4.035 Kg

 $\rho_{pectina}$: Densidad de la pectina; $700 \frac{Kg}{m^3}$

$$V_{pectina} = \frac{4.035 \text{ Kg}}{700 \frac{Kg}{m^3}}$$

$$V_{pectina} = 5X10^{.3} m^3$$

✓ Volumen total de diseño de la marmita

$$V_T = V_{pur\acute{e}} + V_{az\acute{u}car} + V_{agua} + V_{pectina}$$

 V_T : Volumen total de diseño (L)

 $V_{pur\acute{e}}$: Volumen del puré por lote; 0.75 m^3

 $V_{az\acute{u}car}$: Volumen de la azúcar por lote; 0.051 m^3

 V_{agua} : Volumen de agua por lote; $0.31\ m^3$

 $V_{pectina}$: Volumen de la pectina por lote; $5X10^{.3} m^3$

$$V_T = (0.75 + 0.051 + 0.31 + 5X10^{.3})m^3$$

$$V_T = 1.117 \ m^3$$

$$V_T = 1117 L$$

Así como en el picado/troceado de la fruta, se divide el volumen total para 4, debido a que se a realizar en 4 lotes por disponibilidad de terreno.

$$V_{T \ dise \|o} = \frac{1117 \ L}{4}$$

$$V_{T \, dise \tilde{n}o} = 279.25 \, L$$

√ Volumen del tanque de la marmita con agitador

$$V_{Tanque} = V_{T dise\tilde{n}o}(1+f)$$

Dónde:

 V_{Tanque} : Volumen de tanque de la marmita (L)

 $V_{T \text{ dise}\tilde{n}o}$: Volumen total de la mezcla; 279.25 L

f: Factor seguridad; 0.15 adimensional.

$$V_{Tanque} = 279.25 L (1 + 0.15)$$

$$V_{Tanque} = 321.14L$$

✓ Diámetro del tanque de la marmita

$$V_{tanque} = V_{cilindro} + V_{semiesfera} \\$$

$$V_{tanque} = \frac{\pi}{4} (\emptyset_T)^2 (h_T) + \frac{\pi}{12} (\emptyset_T)^3$$

 $h_T = 1.2(\emptyset_T)$, reemplazando esta ecuación en la anterior se tiene que:

$$\phi_T = \sqrt[3]{\frac{12(V_{tanque})}{\pi(4.8)}}$$

Dónde:

 \emptyset_T : Diámetro interno del tanque de la marmita (m)

*V*_{tanque}: Volumen de tanque de la marmita; 321.14 L

$$\emptyset_T = \sqrt[3]{\frac{12(0.32 \, m^3)}{\pi(4.8)}}$$

$$\emptyset_T = 0.64m$$

✓ Altura del tanque de la marmita

$$h_T = 1.2(\emptyset_T)$$

Dónde:

 h_T : Altura del tanque de la marmita (m)

 \emptyset_T : Diametro interno del tanque de la marmita; 0.64 m

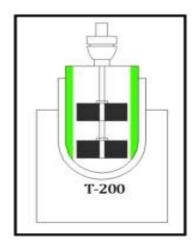
$$h_T = 1.2(0.64 \text{ m})$$

$$h_T = 0.77 \text{ m}$$

✓ Altura de chaqueta de calentamiento de la marmita

$$H_{chaqueta} = \frac{h_T}{(1+f)}$$

Dónde:


 $H_{chaqueta}$: Altura de la chaqueta de la marmita (m)

 h_T : Altura del tanque de la marmita; 0.77m

f: Factor seguridad; 0.2 adimensional

$$H_{chaqueta} = \frac{0.77 \text{ m}}{(1+0.2)}$$

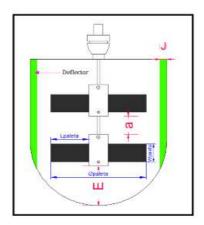

$$H_{chaqueta} = 0.64 m$$

Figura 4-3: Marmita con chaqueta **Fuente:** Amaya Vásquez, 2014.

> Cálculo del agitador de la marmita

Cuyo fin es mantener homogénea toda la compota, por lo cual es conveniente un agitador mecánico, se escogió una turbina con seis hojas planas con impulsores montados en el eje, cuyo objetivo es cubrir el 70% aproximadamente del diámetro del tanque de la marmita.

Figura 5-3: Agitador de la marmita **Fuente:** Amaya Vásquez, 2014.

✓ Longitud de la paleta de la turbina

$$\emptyset_{paleta} = 0.70(\emptyset_T)$$

Dónde:

 \emptyset_{paleta} : Longitud de la paleta de extremo a extremo (m)

 \emptyset_T : Diametro interno del tanque de la marmita; 0.64 m

$$\emptyset_{paleta} = 0.70(0.64m)$$

$$\emptyset_{paleta} = 0.45m$$

✓ Ancho de cada paleta de la turbina

$$W_{paleta} = 0.28(\emptyset_T)$$

Dónde:

 W_{paleta} : Ancho de cada paleta (m)

 \emptyset_T : Diametro interno del tanque de la marmita; 0.64 m

$$W_{paleta} = 0.28(0.64m)$$

$$W_{paleta} = 0.18m$$

✓ Largo de cada paleta de la turbina

$$L_{valeta} = 0.30(\emptyset_T)$$

Dónde:

 L_{paleta} : Largo de cada paleta (m)

 \emptyset_T : Diámetro interno del tanque de la marmita; 0.64 m

$$L_{paleta} = 0.30(0.64 \text{ m})$$

$$L_{paleta} = 0.19m$$

✓ Altura del primer impulsor sobre el fondo del tanque de la marmita

El mismo no se encontrará tan separado del fondo, con el fin de evitar que la compota se pegue a las paredes y tener mayor efectividad en el agitado.

$$E = 0.33(\emptyset_{naleta})$$

Dónde:

E: Altura del primer impulsor sobre el fondo del tanque de la marmita (m)

 \emptyset_{paleta} : Longitud de la paleta de extremo a extremo; 0.45 m

$$E = 0.33(0.45 \text{ m})$$

$$E = 0.15 \text{ m}$$

✓ Distancia entre impulsores montados en el mismo eje

$$a = L_{paleta}$$

Dónde:

a: Distancia entre impulsores (m)

 L_{paleta} : Largo de cada paleta; 0.19 m

$$a = 0.19m$$

✓ Ancho de las placas reflectoras

Según bibliografía (Mc Cabe y Smith), para el mejoramiento de la eficiencia de agitación se coloca placas reflectoras disminuyendo los vórtices. De tal manera que se optado por colocar 4 placas reflectoras.

$$J = 0.10(\emptyset_T)$$

Dónde:

J: Ancho de la placa reflectora (m)

 \emptyset_T : Diametro interno del tanque de la marmita; 0.64 m

$$J = 0.10(0.64 \text{ m})$$

$$I = 0.064 \text{ m}$$

✓ Número de Reynolds para agitación

$$Re_{agitacion} = \frac{\left(\emptyset_{paleta}\right)^{2}(n)(\rho_{pulpa})}{\mu_{pulpa}}$$

Dónde:

Reagitación: Número de Reynolds para agitación (adimensional)

 \emptyset_{paleta} : Longitud de la paleta de extremo a extremo; 0.45 m

n: Velocidad con la que gira el agitador; 33rpm: 0.55rps (Valor considerado en el ensayo de laboratorio)

 $\rho_{pur\acute{e}}$: Densidad del pur\'e; 1081.16 $\frac{Kg}{m^3}$

 $\mu_{pur\acute{e}}$: Viscosidad del pur\'e; $0.040 \frac{Kg}{m.s}$

$$Re_{agitacion} = \frac{(0.45 \text{ m})^2 (0.55 \text{rps}) (1081.16 \frac{Kg}{m^3})}{0.040 \frac{Kg}{m.s}}$$

$$Re_{agitacion} = 3010.35$$

> Potencia consumida por el motor

Mediante la carta para agitadores sumergidos en fluidos de una sola fase, mediante el número de Reynolds, haciendo uso de la curva (b) correspondiente a turbinas de hoja plana. Como se puede observar en el (**Anexo J**).

Dónde:

P_o: Número de potencia

$$Re_{agitacion} = 3010.35$$
$$curva (b)$$
$$P_o = 4.00$$

✓ Potencia corregida

$$P_{0 \ corregido} = P_{o} \left\{ rac{W_{paleta}}{rac{\emptyset_{paleta}}{5}}
ight\}$$

Dónde:

*P*_{0 corregido}: Potencia corregida (adimensional)

 P_o : Número de potencia; 4 adimensional

W_{paleta}: Ancho de cada paleta; 0.18m

Øpaleta: Longitud de la paleta de extremo a extremo; 0.45 m

$$P_{0 \ corregido} = 4 \left\{ \frac{\frac{0.18 \text{m}}{0.45 \text{ m}}}{\frac{1}{5}} \right\}$$

$$P_{0 \ corregion} = 8$$

✓ Potencia impartida a la compota por cada impulsor

$$P_o = \frac{P}{\rho_{pulpa}(n)^3 (\emptyset_T)^5}$$

$$P = \rho_{pulpa}(n)^3 (\emptyset_T)^5 P_o$$

Dónde:

P: Potencia impartida al líquido por cada impulsor (Watts)

 P_o : Número de potencia; 4 adimensional

n: Velocidad con la que gira el agitador; 33rpm: 0.55rps (Valor considerado en el ensayo de laboratorio)

 ρ_{pulpa} : Densidad del puré; 1081.16 $\frac{Kg}{m^3}$

 \emptyset_T : Diámetro interno del tanque de la marmita; 0.64 m

$$P = 1081.16 \frac{Kg}{m^3} (0.55rps)^3 (0.64 \text{ m})^5 (4)$$

$$P = 77.26$$
 Watts

Según bibliografía (Treybal,1994) menciona que la potencia **P** solo está dirigida para un impulsor, no la que otorga el motor, ocasionando pérdidas del 30 al 40 % de ahí que cada impulsor consumiría la siguiente potencia.

$$P_{motor} = \frac{P}{0.30}$$

Dónde:

 P_{motor} : Potencia consumida por el motor de cada impulsor (Watts)

P: Potencia impartida al líquido por cada impulsor; 77.26 Watts

$$P_{motor} = \frac{77.26 \text{ Watts}}{0.30}$$

$$P_{motor} = 257.5 \text{ Watts}$$

✓ Potencia total del motor

$$P_{motor\ total} = P_{motor}(N.imp)$$

Dónde:

P_{motor total}: Potencia total requerida del motor

P_{motor}: Potencia consumida por el motor de cada impulsor; 257.5 Watts

N. imp: Número de impulsores; 2 adimensional

$$P_{motor\ total} = (257.5\ Watts)(2)$$

$$P_{motor\ total} = 515 \text{ Watts}$$

$$P_{motor\ total} = 515\ \frac{\text{N.\,m}}{s} \bigg(\frac{0.2248 lb_f}{1N}\bigg) \bigg(\frac{3.28 ft}{1m}\bigg) \Bigg(\frac{1\ Hp}{550 \frac{lb_f * ft}{s}}\Bigg)$$

$$P_{motor\ total} = 0.69\ \text{Hp}$$

Como en el mercado no existe la potencia de 0.69 Hp es necesario que se incluya uno existente de ³/₄ Hp.

Diseño de la caldera

✓ Diseño térmico.

Tabla 36-3: Datos experimentales del agua en simulación

Datos del agua		
Temperatura de entrada	17°C	
(T _e)		
Temperatura de salida	72°C	
(T_s)		
Temperatura promedio	44,5°C	

Realizado por: MONTERO, Lourdes. 2018

Tabla 37-3: Propiedades del agua saturada

T_b	ρ	C_p (J/Kg°C)	K	μ	ν	P_r
(°C)	(Kg/m^3)		w(m*K)	(Kg/m*s)	(m^2/s)	
35	994,0	4178	0,623	$0,720x10^{-3}$	$0,724 \times 10^{-6}$	4,83
40	992,1	4179	0,631	$0,653x10^{-3}$	$0,658 \times 10^{-6}$	4,32
45	990,1	4180	0,637	$0,596x10^{-3}$	0,601x10 ⁻⁶	3,91

Fuente: Cengel y Boles, 2012.

✓ Gasto volumétrico del agua

$$\dot{V} = 5 \frac{gal}{min}$$

$$\dot{V} = 0.315 \times 10^{-3} \frac{m^3}{s}$$

✓ Gasto de la masa de agua que queda

$$\dot{\mathbf{m}}_{agua} = \boldsymbol{\rho} * \dot{\mathbf{v}}$$

Dónde:

magua: Flujo másico del agua (Kg/s)

 ρ : Densidad del agua a 44,5°C; 990,3 Kg/ m^3)

 \dot{V} : Gasto volumétrico del agua; $0.315 \times 10^{-3} \ m^3/s$

$$\dot{m}_{agua} = (990,3 \text{Kg/m}^3) \ 0,315 \text{x} 10^{-3} \text{m}^3/\text{s}$$

$$\dot{m}_{agua} = 0.3119 \text{ Kg/s}$$

✓ Cálculo del calor subministrado al agua

$$\dot{\mathbf{Q}} = \dot{\mathbf{m}}_{\mathbf{agua}} * \mathbf{C}_{\mathbf{p}} * \Delta \mathbf{T}$$

Dónde:

Q: Calor subministrado (KW)

 C_p : Calor especifico del agua a 44,5°C; 4179,9 $\frac{J}{Kg^{\circ}C}$

ΔT: Variacion de temperatura (°T); 55°C

$$\dot{Q} = \left(0.3119 \frac{\text{Kg}}{\text{s}}\right) \left(4179.9 \frac{\text{J}}{\text{Kg}^{\circ}\text{C}}\right) (72 - 17)^{\circ}\text{C}$$

$$\dot{Q} = 71704,09 \frac{J}{s}$$

$$\dot{Q} = 71,704 \text{ KW}$$

Teniendo en cuenta que existe un porcentaje de un 10% de calor perdido en los equipos tenemos:

$$\dot{\mathbf{Q}}_r = \frac{(10\%)(71.704 \ KW)}{100\%}$$

$$\dot{Q}_r = 7.17 \, KW$$

✓ Calor total subministrado

$$\dot{\mathbf{Q}}_T = \dot{\mathbf{Q}} + \dot{\mathbf{Q}}_r$$

Dónde:

 $\dot{\mathbf{Q}}_T$: Calor subministrado total (KW)

Q: Calor subministrado; 71,704 KW

 $\dot{\mathbf{Q}}_r$: Calor subministrado real; 7.17 KW

$$\dot{Q} = (71,704 + 7,17) \text{ KW}$$

$$\dot{Q} = 78,87 \text{ Kw}$$

> Análisis del combustible

El gasto energético necesario para que el proceso de homogenización de la compota de orito, por lo cual es necesario seleccionar el tipo adecuado de combustible que genere la cantidad de calor necesario y que no eleve demasiado los costos de producción, en el mercado actualmente se puede elegir entre combustible fósil (Diésel) y energía eléctrica para el funcionamiento de la caldera.

Primero se establece la comparación entre el poder calorífico de cada combustible, para el diésel se reporta un valor igual a 12000 Kcal/Kg mientras que para la energía eléctrica se reporta un

valor igual a 10938 Kcal/Kg, por lo que se necesitara menor cantidad de diésel con relación a la energía eléctrica para poder producir la misma cantidad de energía.

En comparación a costos de los dos tipos de combustibles en el país, la energía eléctrica para el sector industrial cuesta aproximadamente 0.9 centavos por KW/h mientras que el costo del galón de diésel industrial es de 0.91 centavos, por lo que si la fábrica va a producir de manera continua el costo del diésel es menor al costo de la energía eléctrica permitiendo así si se alimenta la caldera con diésel ocupar menor cantidad de combustible y gastar menos por su adquisición siendo mayormente rentable este combustible que la energía eléctrica.

Por las razones anteriormente mencionadas, en la caldera se utilizará como combustible el diésel $(C_{12}H_{26})$, por la cual se tomará en cuenta la reacción de la misma:

$$C_{12}H_{26} + a_t(O_2 + 3.76 N_2) \rightarrow bCO_2 + cH_2O + a_t(3.76 N_2)$$

Al igualar la misma nos queda:

$$a_t = 18,5$$

 $b = 12$
 $c = 13$

$$C_{12}H_{26} + 18,5O_2 + 69,52 N_2 \rightarrow 12CO_2 + 13H_2O + 69,59 N_2$$

✓ Masa del aire (m_{aire})

El aire seco está compuesto por:

Tabla 38-3: Composición de aire

20,9 %	O_2
78,1 %	N_2
0,9 %	Argón
-	CO_2
-	Не
-	Ne
-	Н ₂

Realizado por: MONTERO, Lourdes. 2018

Las cantidades muy pequeños se descartan.

$$\frac{0,79}{0.21} = 3,76 \ mol \ N_2$$

Por lo tanto

 $1 \ Kmol \ O_2 + 3,76 \ Kmol \ N_2 = 4,76 \ Kmol \ Aire$

$$m_{aire} = N_{aire} * M_{aire}$$

Dónde:

maire: Masa del aire (Kg)

N_{aire}: Número de moles del aire (Kmol)

Maire: Peso molecular del aire; 29 Kg/kmol

$$m_{aire} = (18.5 * 4.76 \text{ Kmol}) \left(29 \frac{\text{Kg}}{\text{Kmol}}\right)$$

$$m_{aire} = 2553,74 \text{ Kg}$$

✓ La masa de combustible

$$m_{comb} = (N_c M_c) + (N_H M_H)$$

Dónde:

 m_{comb} : Masa del combustible

 N_c = número de moles del carbono; 12 Kmol

 M_c = peso molecular del carbono; 12 Kg/kmol

 N_H = número de moles de hidrogeno; 13 Kmol

 M_H = peso molecular del Hidrogeno; 2 Kg/kmol

$$m_{comb} = (12 \ Kmol * 12 \ \frac{Kg}{Kmol}) + (13 \ Kmol * 2 \ \frac{Kg}{Kmol})$$

$$m_{comb} = 170 \, Kg$$

✓ Relación aire combustible

$$AC = \frac{m_{aire}}{m_{comb}}$$

Dónde:

AC: Relación aire combustible

m_{aire}: Masa del aire; 2553,74 Kg

 m_{comb} : Masa del combustible; 170 Kg

$$AC = \frac{2553,74 \text{ Kg de aire}}{170 \text{ Kg de comb}}$$

$$AC = 15,02 \frac{\text{kg de aire}}{\text{Kg de comb}}$$

√ Flujo másico del aire y del combustible

Flujo másico del combustible

$$\dot{\mathbf{m}}_{\mathbf{comb}} = \frac{\dot{\mathbf{Q}}}{n * Pc_{di\acute{e}sel}}$$

Dónde:

mcomb: Flujo másico del combustible

 $\dot{\mathbf{Q}}_T$: Calor subministrado total (KW)

n: Eficiencia de la caldera (85%)

Pc_{diesel}: Poder calorífico del diésel; 40201 KJ/Kg

$$\dot{m}_{comb} = \frac{78.87 \text{ Kw}}{0.85 * 40201 \frac{\text{KJ}}{\text{Kg}}}$$

$$\dot{m}_{comb} = 2,30x10^{-3} \frac{KJ}{S}$$

✓ Caudal del combustible

$$\dot{m}_{comb} = \dot{V}_{di\acute{e}sel} * \rho_{di\acute{e}sel}$$

Dónde:

mcomb: Flujo másico del combustible (Kg/s)

 \dot{V}_{diesel} : Caudal de combustible (m^3/s)

 ρ_{diesel} : Densidad del diésel (805 Kg/ m^3)

Despejando y remplazando

$$\dot{v}_{di\acute{e}sel} = \frac{\dot{m}_{comb}}{\rho_{diesel}}$$

$$\dot{v}_{\text{diésel}} = \frac{2,30 \times 10^{-3} \frac{\text{KJ}}{\text{s}}}{805 \frac{\text{Kg}}{\text{m}^3}}$$

$$\dot{V}_{\text{diésel}} = 2.30 \times 10^{-3} \ \frac{\text{m}^3}{\text{s}}$$

✓ Flujo másico del aire

$$AC = \frac{\dot{m}_{aire}}{\dot{m}_{comb}}$$

$$\dot{m}_{aire} = AC * \dot{m}_{comb}$$

$$\dot{m}_{aire} = 15,02 * (2,30x10^{-3} \frac{m^3}{s})$$

$$\dot{m}_{aire} = 0.035 \frac{Kg}{s}$$

✓ Temperatura de la llama adiabática

Se considera un proceso de combustión de flujo permanente en condiciones normales

$$Q_{sistema} = H_{prod} * H_{react}$$

$$H_{prod} = H_{react}$$

$$\Sigma \, N_p (\overline{h^{\circ}}_f + \overline{h} - \overline{h^{\circ}})_p = \Sigma \, N_r (\overline{h^{\circ}}_f + \overline{h} - \overline{h^{\circ}})_R$$

Dónde:

Q_{sistema}: Calor perdido desde el sistema (KJ)

H_{prod}: Entalpía total de los productos (KJ)

H_{react}: Entalpía total de los reactivos (KJ)

N_p; Número de moles de los productos (Kmol)

N_r: Números de moles de los reactivos (Kmol)

ho f: Entalpía de formación del componente (KJ)

h

c: Entalpia del componente (KJ)

 $T^{\circ} = 25^{\circ}C = 298^{\circ}K$

Tabla 39-3: Valores de entalpias de los productos y reactantes de la combustión.

Sustancia	\overline{h}^c_f KJ/kmol	h ₂₉₈ ∘ _K KJ/kmoi
C12H26	-291010	
02	0	8682
N ₂	o	8669
CO2	-393520	9364
H ₂ O	-241820	9904

Fuente: Paredes Terán, 2012.

Sustituyendo

$$(12 \, Kmol \, CO_2) \left[\left(-393520 + \bar{h}_{CO_2} - 9364 \right) \frac{KJ}{Kmol \, CO_2} \right] + (13 \, Kmol \, H_2O)$$

$$\left[-241820 + \bar{h}_{H_2O} - 9904 \right) \frac{KJ}{Kmol \, H_2O} \right] + (69,56 \, Kmol \, N_2 \left[0 + \bar{h}_{N_2} - 8669 \right) \frac{KJ}{Kmol \, N_2} \right]$$

$$= (2 \, Kmol \, C_{12}H_{26})(-291010 \frac{KJ}{Kmol \, C_{12}H_{26}})$$

$$\begin{split} \left[-4722240\ KJCO_2 + 12\bar{h}_{CO_2} - 112368\ KJ\ CO_2 \right] \\ + \left[-3143660\ KJ\ H_2O + 13\ \bar{h}_{H_2O} - 128752\ KJ\ H_2O \right] \\ + \left[0 + 69,56\ \bar{h}_{N_2} - 603015,64\ KJ\ N_2\ \right] = -291010\ KJ\ C_{12}H_{26} \end{split}$$

12
$$\bar{h}_{CO_2} + 13 \ \bar{h}_{H_2O} + 69,56 \ \bar{h}_{N_2} = 8419025,64 \ KJ$$

 $\bar{h} = h(T)$ para gaseses ideales

> Primera suposición (aplicando el método de ensayo y error)

$$\frac{8419025,64\ KJ}{(12+13+69,56)\ Kmol} = 89033,68\ \frac{KJ}{Kmol}$$

Aproximación de entalpia (89033,68 KJ/Kmol)

✓ Para el CO₂

89033,68
$$\frac{KJ}{Kmol}$$

$$94,56 \text{ mol} \rightarrow 100$$

$$12 \rightarrow x$$

 $x = 12,69 \% CO_2$

$$89033,68 \rightarrow 100$$

 $11298,69 \leftarrow 12,69$

$$\bar{h}$$
 11298,69 = T 348,66 °K

✓ Para el H_2O

89033,68
$$\frac{KJ}{Kmol}$$
 = 94,56 mol \rightarrow 100 13 mol \rightarrow x

$$x = 12240,24$$

$$\bar{h} = 12240,24 \rightarrow 367,32 \, T^{\circ} \, K^{\circ}$$

✓ Para el N₂

89033,68
$$\frac{KJ}{Kmol}$$
 = 94,56 mol \rightarrow 100 69,56 \rightarrow x

$$x = 73,57 \%$$

$$89033,68 \rightarrow 100 \%$$

 $x \leftarrow 73,57 \%$
 $x = 1914,63^{\circ}K T_{comb}$

$$\bar{h} = 65502,07 \rightarrow 2019,20 \, T^{\circ} \, K^{\circ}$$

$$Total = 2735,18$$

ightharpoonup Remplazando $\overline{h} = h(T)$

Tabla 40-3: Reemplazo ecuaciones

Sustancia	\bar{h} KJ/Kmol	T prod °K
CO_2	11298,69	348,66
H ₂ O	11240,24	367,32
N_2	65502,07	2019,20
	Σ =88041	$\Sigma = 2735,18$

Realizado por: MONTERO, Lourdes. 2018

$$T^{\circ}$$
 de productos = 2735,18°K \rightarrow 2462,03°C

> Temperatura real de combustión

Se considera entre el 65 y 80 % de la T° adiabática de la llama como la temperatura real de combustión:

$$2735,18 \rightarrow 100 \%$$

 $x \leftarrow 70 \%$
 $x = 1914,63^{\circ} K T_{comb}$

✓ Caudal másico

$$\dot{m}_{combus} = 2,30 \times 10^{-3} \frac{Kg}{s} * \frac{1 L}{0,805 Kg} * \frac{1 G}{3,785 L} * \frac{3600}{1 h} = 2,7 GPH$$

> Diseño del tubo de hogar

$$D = 0.17 B^{1/3.5}$$

$$L = 0.2 B^{1/2}$$

Dónde:

B: Consumo de combustible (Kg/h)

D: Diámetro de la llama (m)

L: Longitud de llama (m)

B =
$$2.30 \times 10^{-3} \frac{\text{Kg}}{\text{s}} * \frac{3600}{1 \text{ h}} = 8.28 \frac{\text{Kg}}{\text{h}}$$

$$D = 0.17 (8.28 \frac{Kg}{h})^{1/3.5}$$

$$D = 0.31 \text{ m}$$

$$L = 0.2 \left(8,28 \, \frac{\text{Kg}}{\text{h}} \right)^{1/2}$$

$$L = 0.58 \text{ m}$$

Tabla 41-3: Dimensiones de cámara de combustión según ángulo de rocío

	Square or Rectangular Combustion Chamber			J.		
or Rating (GPH) Angle	L Length (In.)	W Width (In.)	H Height (In.)	C Nezzle Height (In.)	Round Chamber (Diameter in Inches)	
0.50 - 0.65	no-	n	- 0	11	4	9
0.75 - 0.85	60°	10	8 9	12	5	10
1.00 - 1.10	45 ° 60 ° 80 °	14 11 10	7 9 10	12 13 14	4 5 6	11
1.25 - 1.35	45° 60° 80°	15 12 11	10 11	11 14 15	5 6 7	12
1.50 - 1.65	45° 60° 80°	16 13 12	10 11 12	12 14 15	6 7 7	13
1.75 - 2.00	45° 60° 80°	18 15 14	11 12 13	14 15 16	6 7 8	15
2.25 - 2.50	45° 60° 80°	18 17 15	12 13 14	14 15 16	7 8	16
3.0	45° 60° 80°	20 19 18	13 14 16	15 17 18	7 8 9	17

Fuente: Paredes Terán, 2012.

Tomando en el diseño la boquilla un ángulo de 60° y 3 GPH según tabla anterior

Tabla 42-3: Dimensiones de cámara de combustión considerando un ángulo de rocío de 60°

Parámetro	Valor	Unidad
Longitud	19	Pulg
Anchura	14	Pulg
Altura	17	Pulg
Altura de boquilla	8	Pulg

Realizado por: MONTERO, Lourdes. 2018

✓ De la cámara trasera del hogar

Según la producción de vapor se obtiene el diámetro y longitud de la cámara de hogar

Producción de vapor de 0,3119
$$\frac{Kg}{s} * \frac{3600 \text{ s}}{1 \text{ h}} = 1122,84 \frac{Kg}{h}$$

Tabla 43-3: Dimensionamiento de cámara hogar

PRODUCCIÓN DE VAPOR $^{Kg}\!/_h$	DIÁMETRO CÁMARA HOGAR mm	LONGITUD DE LA CÁMARA mm
<i>P</i> ≤ 1000	1,58 · D	400
$1000 < P \le 5000$	1,52 · D	500
$5000 < P \le 10000$	1,48 · D	550
P > 10000	1,46 · D	600

Fuente: Paredes Terán, 2012.

Entre $1000 < P \le 5000 \rightarrow diámetro cámara hogar (mm) = 1,52 * D$

$$D_{CH} = 1.52 * (310 min) = 471.2 mm$$

Para este valor se debe considerar una longitud de 500 mm

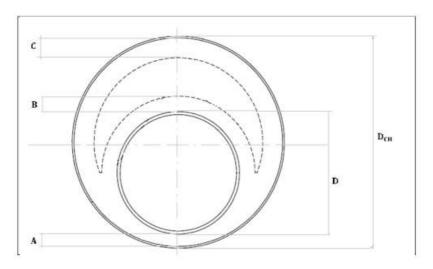

Los tubos de acero para la caldera se proponen hacerlo en material ASTM A-53 6 B, ya que se utilizan para conducción de fluidos y gases en minería, petroquímica, pesca y en general. Según el mercado los parámetros con la que cuentan el tubo son:

Tabla 44-3: Parámetros de tubo para caldera

Diámetro externo	$D_t = 0.0483 \text{ m}$
Espesor del tubo	$e_t = 0.00368 \text{ m}$
Conductividad térmica	$K_{tubo} = 39.2 \text{ W/m K}$
Número de tubos	$N_t = 13$
Longitud	L = 0,40 m
Diámetro exterior de boca de acero	$D_B = 0.20 \text{ m}$

Realizado por: MONTERO, Lourdes. 2018

> Diseño de la estructura

Figura 6-3: Placa tubular de la cámara trasera del hogar **Fuente:** Paredes Terán, 2012.

Se considera para A y C los siguientes valores

$$A = 40 \text{ mm} \rightarrow 0.04 \text{ m}$$

$$C = 40 + \frac{Dt}{2} \text{ mm}$$

$$C = 40 + \frac{48,3}{2}$$

$$C = 64,15 \text{ mm} \rightarrow 0,064 \text{ mm}$$
 104

El valor de B se toma de normas de construcción UNE 9300.3 es de 50 mm - 100 mm tomando en cuenta el valor mínimo (50 mm)

✓ Distribución de tubos

$$d_1 = 0.125 D_t + 12.5$$

 $d_1 = 0.125 (48.3) + 12.5$

$$d_1 = 18,5 \text{ mm}$$

Factor de seguridad 70 mm

$$D_e = D_i + 70 \text{ mm}$$

$$D_e = 0.471 \text{ m} + 0.07 \text{ m}$$

$$D_e = 0.541 \text{ m}$$

> Potencia de la caldera

$$P_{u}(Kw) = 0.001163 * \Delta T * t * Q_{w}$$

Dónde:

 ΔT = Variación de temperatura de vapor de entrada y agua de salida

t =tiempo de operación en minutos

Qw = Caudal del agua que circula por el calentador

$$Q_w = 0.315 \times 10^{-3} \frac{\text{m}^3}{\text{s}} * \frac{1000 \text{ L}}{1 \text{ m}^3} * \frac{60 \text{ s}}{1 \text{ min}} = 18.9 \frac{\text{L}}{\text{min}}$$

$$P_{\rm u}({\rm Kw}) = 0.001163 * (72 - 17)^{\circ}{\rm C} * 60 \min * 18.9 \frac{{\rm L}}{\min}$$

$$P_{u}(Kw) = 72,45 \text{ KW}$$

3.2.9. Resultados

3.2.9.1. Resultados de caracterización de la materia prima

A continuación, en la **Tabla 45-3**, se muestra los resultados de la caracterización Físico-Química de la materia prima orito, obtenida en el laboratorio LACONAL en la ciudad de Ambato, el mismo que permite conocer el correcto grado de maduración que es 1 para elaborar la compota:

Tabla 45-3: Caracterización Físico-química de la materia prima

MUESTRAS	CÓDIGO	PARÁMETRO	VALOR	UNIDADES
Orito	0	Sólitos Totales	33,9	%
		pН	5,52	Unidades de pH
		Sólidos Solubles	8,27	°Brix
Orito	1	Sólitos Totales	43,4	%
		pН	4,91	Unidades de pH
		Sólidos Solubles	24,8	°Brix
Orito	2	Sólitos Totales	30,1	%
		pН	5,26	Unidades de pH
		Sólidos Solubles	26,8	°Brix

FUENTE: Laboratorio LACONAL Realizado por: MONTERO, Lourdes. 2018

3.2.9.2. Propuesta de diseño de equipos

Los resultados obtenidos para cada uno de los equipos diseñados se muestran a continuación, tomando en cuenta la capacidad de producción que se necesita en la planta, por lo tanto, en el tanque de lavado se toma un diámetro de 1,2 m y un volumen total de 0.644m³.

Tabla 46-3: Dimensionamiento del tanque de lavado

DESCRIPCIÓN	VARIABLE	INDICADOR			
]	MEDIDAS DEL TANQUE DE LAVADO				
	Valor Unidades				
Volumen	0.644 ≅ 1	m^3			
Diámetro	1.2	m			
Altura	0.569	m			
Material	Acero inoxidable	-			
	SISTEMA DE TUBERIAS				
Potencia de la bomba	0.0068 ≅ 1/4	Нр			
Material de tuberías	PVC azul (agua potable fría)	-			

Realizado por: MONTERO, Lourdes. 2018

Las bandas transportadoras son una pieza clave en el proceso de obtención de compota, ya que tomando en cuenta la capacidad de producción de puré de orito por cada hora y para optimizar tiempo y recursos se necesita transportar la materia prima y el producto de manera eficiente. Los resultados obtenidos para las bandas transportadoras se muestran a continuación:

Tabla 47-3: Dimensionamiento de bandas transportadoras

DESCRIPCIÓN	VARIABLE	INDICADOR			
MED:	MEDIDAS DE LA BANDA TRANSPORTADORA				
	Valor	Unidades			
Longitud	0.65	m			
Ancho	400	mm			
Material	Uretano	-			
Diámetro de rodillos	63.5	mm			
	SISTEMA DE TRANSPORTE				
Potencia	0.184 ≅ ½	Нр			
Tipo de rodamiento	Normal	-			

Realizado por: MONTERO, Lourdes. 2018

Las mesas de selección y pelado son fundamentales para la correcta ergonomía de los operarios en la planta y se diseñan tomando en cuenta la capacidad de materia prima que debe ingresar en las mismas, los resultados para las mismas se muestran en la siguiente tabla:

Tabla 48-3: Dimensionamiento de mesas de selección y pelado

DESCRIPCIÓN	VARIABLE	INDICADOR			
MEDID	MEDIDAS DE MESAS DE SELECCIÓN Y PELADO				
	Valor Unidades				
Longitud	1.5	m			
Ancho	0.70	m			
Volumen de la caja de selección	0.21	m^3			
y pelado					
Altura desde el piso	1	m			
Material	Acero inoxidable	-			
Capacidad mesa	178.50	Kg			

Realizado por: MONTERO, Lourdes. 2018

El diseño de la picadora es esencial en el proceso de obtención de compota ya que permite que la materia prima sea triturada hasta obtener un puré de consistencia homogénea óptimo para la presentación del producto final. Los resultados de la misma se muestran a continuación en la siguiente tabla:

Tabla 49-3: Dimensionamiento de la picadora

DESCRIPCIÓN	VARIABLE	INDICADOR			
	MEDIDAS DE LA PICADORA				
	Valor Unidades				
Volumen	0.235	m^3			
Área	2.19	m^2			
Velocidad angular	376.99	rad/s			
	DISEÑO DE LAS CUCHILLAS				
Material	Acero inoxidable	-			
Longitud cuchilla	0.14	M			
Energía de Ruptura	6363.8	J			
Velocidad	15.68	m/s			
Aceleración Angular	11309.6	$\frac{rad}{s^2}$			
Masa de cuchillo móvil	0.02	Kg			
Área	1.12^-3	m^2			
Potencia	1.35 ≅ 1.5	Нр			

Realizado por: MONTERO, Lourdes. 2018

Es el equipo más importante de todo el proceso ya que permite la presentación final del producto y es donde se realiza la mezcla de todos los ingredientes para la formulación. Los resultados de la misma se muestran a continuación en la siguiente tabla:

Tabla 50-3: Diseño de la marmita con agitador

DESCRIPCIÓN VARIABLE		INDICADOR			
	MARMITA				
	Valor Unidades				
Altura	0.77	m			
Diámetro	0.64	m			
Volumen	321.14	L			
Material	Acero Inoxidable	-			
	SISTEMA DE AGITACIÓN				
Longitud de la paleta 0.45 m					
Ancho de cada paleta 0.18		m			
Altura	0.15	m			
Distancia entre impulsores	Distancia entre impulsores 0.19				
Ancho placa reflectora	Ancho placa reflectora 0.064 m				
Número de Reynolds	3010.35	-			
Potencia del motor	0.69 ≅ ¾	Нр			

Realizado por: MONTERO, Lourdes. 2018.

Tabla 51-3: Diseño de la caldera

DESCRIPCIÓN	VARIABLE	INDICADOR			
	CALDERA				
	Combustible: Diésel				
	Valor	Unidades			
Volumen de diésel	2.3*10-3	m ³ /s			
Temperatura de Combustión	1914.63	°K			
Diámetro Externo	0.0483	m			
Material	Acero Inoxidable	-			
Numero de tubos	13	unidades			
Longitud de los tubos	0.40	m			
Potencia de la caldera	72.45	Kw			
Diámetro externo de la caldera	0.541	m			
Producción de vapor	1122,84	$\frac{Kg}{h}$			
Diámetro de la cámara hogar	471.2	mm			

Realizado por: MONTERO, Lourdes. 2018

La caldera es de quema de combustible por lo que es más barata que mantener una marmita solo con electricidad, en un futuro se puede implementar otra marmita; así la caldera funcionaría para dos marmitas.

3.2.10. Validación del proceso

Se realizó la caracterización del producto obtenido al final de la prueba piloto ejecutada en los laboratorios de La Estación Experimental en Tunshi de la ESPOCH, para validar el proceso delineado. La validación del proceso se realiza en base a la Norma NTE INEN 3078:2015 Purés en Conserva. Requisitos. Además, se realizaron los siguientes análisis: prueba para conocer el tiempo de vida útil acelerada (Laboratorio de Investigación, ESPOCH), Vitaminas A y C, Sólidos Solubles, Fibra dietética total, proteína, carbohidratos totales, cenizas, azúcares totales, energía, perfil lipídico, colesterol y hierro.

Los análisis respectivos se ejecutaron en el laboratorio de Alimentos LACONAL ubicado en Ambato, los mismos que se muestran a continuación (Ver Anexo K).

3.2.10.1. Análisis Físico Químico del puré de orito

A continuación, se muestra los resultados Físico Químico de la compota, donde los parámetros se encuentran dentro del límite establecido por la Norma NTE INEN 3078:2015 Purés en Conserva. Requisitos.

Tabla 52-3: Análisis Físico Químico de la compota de orito

Parámetro	Resultado	Unidad	Valor limite
pН	3.80	-	4.6
Sólidos Totales	18	%	15-21.5
Sólidos Solubles	27	%	>21

Fuente: Laboratorio LACONAL

Realizado por: MONTERO, Lourdes. 2018

En la siguiente tabla se muestra los resultados de los Análisis Microbiológicos realizados a la compota de orito, donde se muestra que cada resultado se encuentra dentro de los parámetros establecidos por la Norma ecuatoriana a la que se rige.

Tabla 53-3: Análisis Microbiológicos de la compota de orito

Parámetro	Método Referencia	Resultado	Unidad	Valor límite
Aerobios	Stándar Methods 9215 D	<10	UFC/g	Max. 5x10 ³ ufc/g
Totales	Standar Methods 9213 D	<10	UrC/g	o ml
Recuento de	Anaerobic Brewer	No presencia	Presencia/ausencia	Negativo
Anaerobios	Timueroore Brewer	r to presentia	Troponom adomina	1 loguil 1 o
Mohos	Stándar Methods 9610D	<10	UFC/g	Máx. 1x10 ¹
Levaduras	Stándar Methods 9610D	<10	UFC/g	Máx. 1x10 ¹

Fuente: Laboratorio LACONAL

Realizado por: MONTERO, Lourdes. 2018

3.2.10.2 Prueba de Vida Útil Acelerada

Fue realizada en una cámara de vida útil acelerada ubicada en el Laboratorio de Investigación de la Facultad de Ciencias de la ESPOCH. (Flores, 2015, p.12-13): "Esta se realizó tomando muestras por duplicado de la formulación que contiene pectina como la que contiene almidón y dejándolas por 15 días en la cámara incubadora a 45°C, al finalizar este tiempo se tendrá que habrá transcurrido un tiempo de vida útil de 6 meses, dado que por cada hora dentro de la cámara serán 12 horas de su vida útil en perchas".

Comprobando su estabilidad tomando datos iniciales de sus parámetros fisicoquímicos: pH, °Brix y el ensayo visual de patógenos y formación de mohos o levaduras; pasados los 15 días dentro de

la incubadora se abrieron nuevamente los envases y se realizaron las mismas pruebas iniciales y se analizó la formación de patógenos en la muestra 1607 que contiene almidón mientras que en la muestra 1608 que contiene pectina no hubo presencia de patógenos en la misma que hubo una ligera disminución en su valor de pH y grados °Brix (Ver Anexo L), pero siguen cumpliendo con los valores establecidos por la norma.

A la formulación 1608 que contiene pectina, se la sometió a la prueba de tiempo de vida útil acelerada donde se realizó en una estufa por 15 días los mismos que semejaron 6 meses en percha, como se observa en la **Tabla 54-3** existe una pequeña disminución tanto en el pH como en Sólidos Solubles, los mismos sin presencia de patógenos, mohos, levaduras. Los parámetros se encuentran dentro de la norma.

Tabla 54-3: Resultados Prueba de Vida útil Acelerada

	Prueba de Vida útil Acelerada			
A 45 ° C	Tiempo Acelerado	pН	Sólidos Solubles (%)	Ensayo Visual (patógenos, mohos, levaduras)
1 HORA	12 HORAS	3,97	31,17	No existe
15 DIAS	6 MESES	3,82	30,36	No existe

Fuente: Laboratorio de Investigación, ESPOCH

3.2.10.3 Análisis de Vitaminas C y A

Se realizó Análisis de Vitamina A y C, donde la mayor cantidad de vitamina se evidencia la C debido a que se le añadió en el proceso y Vitamina A que es contenida en el orito. Las cantidades resultantes están dentro de los parámetros GERBER con los que fueron comparados.

Tabla 55-3: Resultados de Vitaminas

Vitamina	Método de Referencia	Resultado	Unidad
A	AOAC 002.06	1,5	%IDR
С	AOAC 967 21	45,0	%IDR

Fuente: Laboratorio LACONAL

3.2.10.4 Análisis Adicionales

Se realizaron análisis nutricionales adicionales para asegurar que el producto cumpla con las normas que exige para asegurar su calidad y cumplir con la información nutricional para ser comparados basados en parámetros GERBER.

La compota de la marca comercial Gerber reporto entre sus componentes principales un valor de contenido y carbohidratos igual a 17%, un contenido de azucares totales iguales a 17,2% un contenido de fibra dietética total igual a 0,4% y un valor de contenido de hierro igual a 2% IDR, valores que son similares a los reportados por la compota de orito elaborado en la presente investigación.

La compota de orito reporta un valor mayor en carbohidratos totales, lo cual es indicativo de que proporcionara mayor aporte calórico al ingerirla, logrando así superar a las características de la compota comercial, como factor principal de esto es que la materia prima (orito) tiene un contenido elevado de azucares y de carbohidratos alcanzando un dulzor mayor in la necesidad de adicionar grandes cantidades de azúcar, haciendo una tecnología rentable que supera a las compotas existentes en el mercado. (Ver Anexo K).

Tabla 56-3: Resultados de Análisis Adicionales

Parámetro	Método de Referencia	Resultado compota de orito	Compota Gerber
Fibra Dietética Total	AOAC 985.29. Ed 20,2016	0,50%	0,4%
Proteína	PE07-5.4-FQ. AOAC Ed 20,2016 2001.11	0,30% (N*6.26)	0,4%(N*6,26)
Carbohidratos Totales	Cálculo	41,70%	17%
Azúcares Totales	AOAC 925.26	12,0%	17.2%
Perfil lipídico	HPLC	0,0 g	0 g
Colesterol	Espectrofotometría	0,0 mg	0 mg
Hierro	AOAC 944.02	1,4%IDR*	2%IDR*

Fuente: Laboratorio LACONAL Realizado por: MONTERO, Lourdes. 2018

3.2.11. Proceso de producción

La elaboración de compota de orito que se ha diseñado, será utilizada en la implementación en la Asociación de Producción Agropecuaria Tablas de la Florida, teniendo en cuenta que actualmente no existe las instalaciones ni equipos.

El proceso de producción que funcionará al implementarse la planta para obtener compota de orito será tipo batch, como resultado de la obtención de la materia prima, esta se debe transformar hasta producto final y cada lote será igual hasta alcanzar la capacidad máxima de la planta.

3.2.11.1 Materia prima, insumos y aditivos

Para la elaboración de Compota de orito a nivel industrial se necesitó la siguiente materia prima, insumos y aditivos, este proyecto no utilizó reactivos:

Tabla 57-3: Materia Prima

Materia Prima	Cantidad
Orito	1336.38 Kg

Fuente: Laboratorio de la Estación Experimental de Thunsi, ESPOCH

Tabla 58-3: Insumos

Insumos	Cantidad
Instrumentos de corte	15
Termómetro	1
Envases de vidrio con tapa twist off	8166.61

Fuente: Laboratorio de la Estación Experimental de Thunsi, ESPOCH

Tabla 59-3: Aditivos

Aditivos	Cantidad
Ácido Cítrico	3.87 Kg
Ácido Ascórbico	3.87 Kg
Pectina	4.035 kg
Sorbato de Potasio	0.48 Kg
Azúcar	80.7 Kg
Agua	306.68 Kg

Fuente: Laboratorio de la Estación Experimental de Thunsi, ESPOCH

Se detallan las operaciones unitarias que forman parte del proceso de obtención de compota, siendo las más importantes el licuado, escaldado y homogenización.

> Selección de materia prima

La selección de materia prima se ejecutará de forma manual con la asistencia de operadores que identifiquen las características organolépticas apropiadas de cada fruta, para lo cual se necesita una capacitación anterior acerca de la norma en la que se basa esta parte del proceso y a la clasificación según Mendoza para el grado de maduración. Los parámetros a considerarse para la producción son el olor, color y textura adecuada, además el orito deberá estar fresco sin presencia de magulladuras. Las piezas de fruta que no cumplan con estas características compensarán ser apartadas para obtener un puré de calidad.

> Lavado

Su ejecución nos ayuda a separar el exceso de suciedad y microorganismos contaminantes presentes en las frutas.

> Sistema de pelado

El sistema de pelado del orito que se manipulará en el proceso se hará de forma manual, pues la implementación del proyecto en la Asociación de Producción Agropecuaria Tablas de la Florida; favoreciendo la generación de nuevas plazas de empleo a personas de la comunidad. La mesa de selección como la mesa de pelado estará diseñada de manera rectilínea de acuerdo a los parámetros de ergonomía del operario en la planta, aprovechando los recursos de manera óptima.

Posteriormente se puede implementar varios equipos que puedan permitir el avance tecnológico de la planta, pues con éstos se puede generan mayor productividad con respecto al tiempo y la eficiencia, aunque en principio la idea de la implementación de este proyecto en el Recinto Tablas de la Florida es la generación de empleo, se puede automatizar esta parte del proceso con equipos especializados para el pelado automático del orito, ahorrando recursos económicos y tiempo.

> Sistema de Licuado

La materia prima pelada, tiene un gran tamaño por lo que es difícil lograr su manipulación y su conversión en papilla (puré), por lo cual es necesario que pase por una operación de reducción de tamaño, escogiendo un sistema de licuado, la consistencia del orito es blanda por lo que si se escoge otros sistemas de reducción de tamaño no se obtendrá una papilla sólida, el uso de aspas permitirá una reducción optima, ya que con la velocidad de giro a la cual funciona este equipo y la distribución de las cuchillas los oritos sufrirán un rompimiento de sus partículas y con esto una reducción del tamaño, consiguiendo una pasta de buena consistencia.

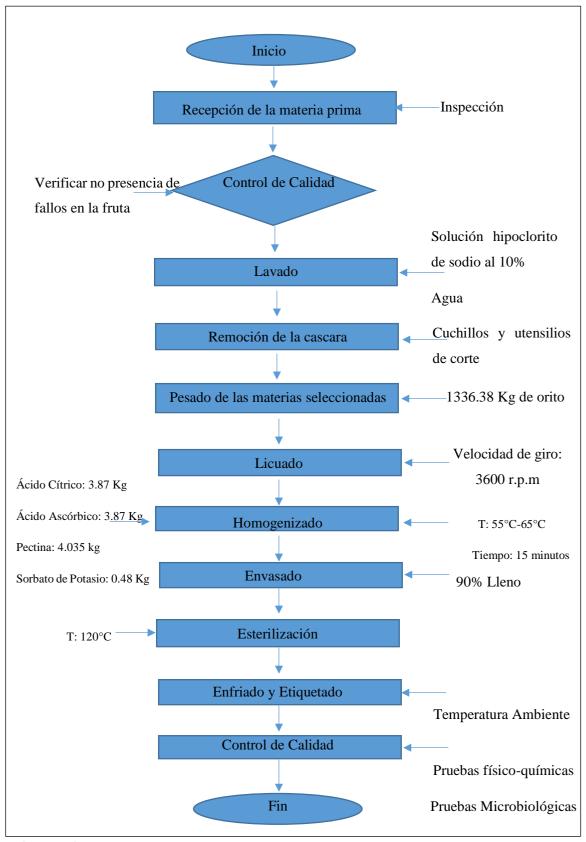
> Homogeneización

La homogeneización es la operación unitaria la cual ofrecerá una mezcla correcta del producto para evitar grumos en partes del puré, aquí se incorpora los aditivos alimenticios precisos para su conservación mediante la adición de calor de 55°C-65°C para lograr su homogeneización completa.

> Esterilización

Con la esterilización realizada a una temperatura de 120°C por medios físicos calor húmedo a vapor de agua se logró apartar microorganismos patógenos tales como bacterias y hongos que pudieron existir en los envases, lo cual ayudara a controlar la calidad microbiológica del alimento.

> Envasado


Se realiza de forma manual hasta el 90% de su contenido para asegurar la calidad microbiológica de las muestras eliminando los microorganismos, evitando así alteraciones sensoriales del producto y protegiendo la salud de quien lo consuma.

Cuarentena

Se dejó 15 días el producto almacenado en la bodega, después de esto del lote se recolectará aleatoriamente envases para efectuar los análisis físico-químicos y microbiológicos establecidos en la norma, verificando visualmente sus características; el envase no contenga ninguna alteración, no presente mohos y su coloración no haya cambiado, saliendo así al mercado para su venta.

3.2.11.3 Diagrama del Proceso

Una vez diseñado los equipos y controladas las variables de proceso que deben ser controladas para obtener el mejor rendimiento del proceso productivo, en la ilustración 11-3 se describe el diagrama de flujo para la producción de compota de orito en la Asociación de Producción Agropecuaria Tablas de la Florida.

Figura 7-3: Diagrama de flujo de la elaboración de compota de orito **Realizado por:** MONTERO, Lourdes. 2018

Evaluada la cantidad de oritos desechados obtenidos por la Asociación de Producción Agropecuaria Tablas de la Florida se planteó el obtener 1061.6 kg de compota mensual distribuido en 8166 envases con una capacidad de 130 gramos cada una, partiendo de 1336.38 kg de oritos, para lo que se necesita seguir en orden el procedimiento detallado a continuación con sus respectivas operaciones unitarias.

- Recepción de la materia: Una vez obtenidos los oritos de descarte en la asociación de producción, se llevarán al lugar de almacenamiento de la planta procesadora de compota y se almacenara en bodegas donde se tenga suficiente ventilación y se controle la temperatura y humedad ambiental, para evitar que se dé la fermentación de los oritos.
- Clasificación: Es la etapa que controlara la calidad de la compota obtenida, por lo que es importante asegurarse que los mejores oritos sean procesados, para la clasificación se hará una inspección visual de la materia prima, verificando que presenten un color amarillo que según la escala de calificación estudiada la fruta estará en un grado de maduración optimo y no tengan una apariencia anormal, ya que pudiera ser que la fruta está en estado de putrefacción.

Además, en la inspección visual se tomará en cuenta que las frutas no presenten rasguños, presencia de moho u otras características que puedan disminuir la calidad de la fruta, comprobado esto las frutas que no cumplan con los requisitos de calidad serán separadas y almacenadas para su disposición final.

- Lavado: Por efecto de los procesos de cultivo y transporte los oritos pueden presentar impurezas en su superficie, por lo cual se lavará las frutas con una solución de 0.3 ppm de hipoclorito de sodio (sustancia permitida en por los parámetros de la FAO) al 10% mezclada con abundante agua, la cual será desechada una vez que se observe que se han retirado todas las impurezas.
- Pelado: Dado que la cascara del orito no tiene nutrientes y puede alterar el sabor de la
 compota, se retira la cascara de manera manual utilizando cuchillos de corte y otros
 utensilios, evitando maltratar la pulpa ya que se puede producir daños en las
 características de la fruta.

- Pesado de las materias primas: Para verificar la dosificación de insumos y la adición de azúcar, es necesario pesar la fruta pelada y anotar el peso en los cardex de producción, asegurándose que la balanza este bien calibrada.
- Licuado: Se realizó la reducción del tamaño de las frutas para facilitar su manejo, además
 de lograr un máximo aprovechamiento del sabor de la fruta, esta operación se realizará
 en una licuadora industrial de aspas que girará a 3600 rpm hasta que se tenga una pasta
 de consistencia homogénea, conseguido eso se retira la pasta de la licuadora industrial.
- Homogenizado: En esta etapa se le da las características finales a la compota, logrando así el color, sabor, aroma adecuado; para esta operación se realiza la adición de 3.87 Kg Ácido Cítrico, 3.87 Kg Ácido Ascórbico que logran estabilizar el pH y evitar reacciones de oxidación tipo Maylard por la presencia de azucares, además se adiciona 0.48 Kg de Sorbato de Potasio que sirve como conservantes para aumentar la vida de anaquel de la compota, también se agregan 4.035 kg de Pectina para que se logre una estabilización y se consiga una consistencia uniforme de la compota.

En esta etapa se debe controlar la temperatura la cual debe estar entre los 55-65°C, ya que a esta temperatura se asegura que no se evapore el puré de orito y se mantengan las características nutricionales del alimento (contenido de proteínas, vitaminas).

- Envasado: El envasado en la planta se realizará de forma manual, en donde se utilizará envases tipo vidrio que son los que soportan el sellado hermético y además son de fácil adquisición, para el llenado de estos envases se debe realizar hasta el 90% de su capacidad según la norma ecuatoriana de producción, el tipo de tapa para el envase será de tipo twist off que logra un cierre hermético del envase.
- Esterilización: Con el fin de asegurar la calidad microbiológica del alimento y su estabilidad, se realizará la esterilización para lo cual se inyectará una corriente de vapor a la superficie del envase la cual estará a 120°C y durará 15 minutos esta operación, con esto se asegura que mohos y levaduras que hayan estado en la compota se eliminen y se aumente el tiempo de vida útil del producto.
- Control de Calidad: Para asegurase que la compota puede ser comercializada, se evalúa sus características fisco-químicas, sensoriales y microbiológicas por cada lote de producción se tomarán muestras y se verificaran que cumplen con los requisitos de la

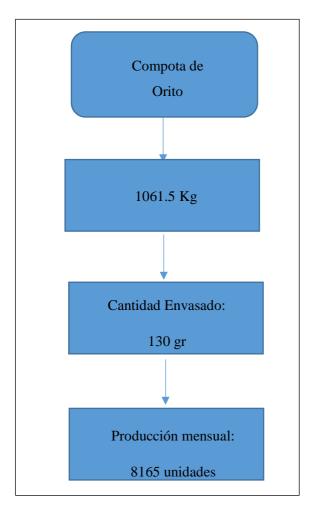
norma técnica, concluido eso se almacenará la compota en un lugar con condiciones controladas para su comercialización.

3.2.11.5. Distribución y diseño de la planta

Para lograr un máximo aprovechamiento de los recursos, la planta estará distribuida en 300 m², esta área se realizará la división en áreas para lograr evitar cuellos de botella y la contaminación cruzada, el tamaño y distribución de la planta, las áreas se describen a continuación.

3.2.11.5.1. Descripción de la planta

Área de recepción de materia prima: Estará ubicada continua en la entrada de la planta para lograr un fácil acceso de los vehículos que transporten la materia prima, esta constituirá de un galpón en donde se pueda almacenar la materia prima, además de que se tendrá un operador que controle el estado de la fruta y realice una inspección visual de la materia prima, seleccionando las frutas aptas para la producción.


Área de gerencia y oficinas: Se ubicará continuas a la recepción de materia prima, en estas oficinas se encontrarán el gerente y demás administradores de la planta, también se tendrá acceso a los clientes y proveedores para facilitar la administración de la planta.

Área de producción: Esta área será la más grande de la planta ya que se elaborará la transformación del orito en compota, primero en esta área se tendrá la zona de lavado en donde se colocarán las maquinas lavadoras con sus respectivas canaletas a continuación, se ubicarán las máquinas para el triturado, homogenizado, empaquetado y esterilización las cuales estarán en manera lineal y continua para reducir tiempo de producción.

Área de producto terminado: Aquí se ubicará la zona de etiquetado, también se contará de perchas donde se pueda almacenar el producto terminado, las cuales estarán ordenadas de acuerdo al lote de producción para poder realizar la trazabilidad del lote.

Bodega: Estará ubicada después de la zona de producción, en esta se almacenará los productos químicos (azúcar, sorbato de potasio, ácido cítrico), además que contará con un área extra la cual estará dotada de congeladores para poder almacenar los lotes de compota que no sean comercializados o que estén listos para comercializar.

3.2.11.6. Capacidad de producción

Figura 8-3: Capacidad de producción de compota de orito en la planta. **Realizado por:** MONTERO, Lourdes. 2018.

3.3. Requerimientos de equipos y tecnología

Dado que la planta que la planta es tipo piloto, se implementaran todos los equipos que se dimensionaron en el presente trabajo investigativo, por lo que a continuación se reportaran las necesidades de equipos para poder realizar el funcionamiento de la planta productora de compota partiendo de los residuos de orito.

Tabla 60-3: Tanque de lavado a implementar en la planta productora de compota de orito

TANQUE DE LAVADO		
Descripción	Características	
Es un equipo con aspas giratorias	Número de Equipos	1
para permitir el lavado de las frutas,	Material	Acero inoxidable AISIS
el cual tendrá que ser construido en	Volumen	0.64 m^3
acero inoxidable de tipo alimenticio	Altura	0,596 m
y el agua se alimentara a través de un	Diámetro	1,2 m
sistema de tuberías de PVC con el	Potencia de la bomba	0,0068 Hp
uso de una bomba	Material de las tuberías	PVC comercial

Realizado por: MONTERO, Lourdes. 2018

Tabla 61-3: Picadora a implementar en la planta productora de compota de orito

PICADORA		
Descripción	Características	
Es un equipo el cual se utilizará para	Número de Equipos	1
la reducción del tamaño de los	Material	Acero inoxidable AISIS
frutos, en el cual por medio de	Volumen	$0,235 \text{ m}^3$
cuchillas que giraran a gran	Longitud de las cuchillas	0,14 m
velocidad impulsadas por un motor	Velocidad	15,68 m/s
eléctrico.	Potencia de la bomba	1,35 Hp
	Área	1,12^-3 m ²

Realizado por: MONTERO, Lourdes. 2018

Tabla 62-3: Marmita con agitador a implementar en la planta productora de compota de orito

MARMITA CON AGITADOR		
Descripción	Características	
Este equipo se utilizaría para poder	Número de Equipos	1
homogenizar el puré y mezclar con	Material	Acero inoxidable AISIS
antioxidantes, conservantes y	Volumen	321,14 1
saborizantes, será construido con	Longitud de las paletas	0,45 m
acero de grado alimenticio, además	Altura	0,15 m
se introducirá vapor para alcanzar la	Potencia de la bomba	0,69 Hp
temperatura requerida por el proceso	Diámetro	0,64 m
y constara de 4 palas para la		
agitación del puré.		

Realizado por: MONTERO, Lourdes. 2018

Tabla 63-3: Caldera a implementar en la planta productora de compota de orito

CALDERA		
Descripción	Características	
Mediante este equipo se producirá el	Número de Equipos	1
vapor necesario para calentar el	Combustible	Diésel
puré, además para generar el calor	Material	Acero inoxidable AISIS
para esterilizar los envases del	Volumen de diésel	$2.3*10^{-3} \mathrm{m}^3/\mathrm{h}$
alimento, este se construyó en acero	Temperatura de Combustión	1914,63 °K
inoxidable y mediante un motor a	Diámetro Externo	0,0483 m
diésel generara vapor.	Numero de tubos	13 unidades
	Longitud de los tubos	0,40 m
	Potencia de la caldera	72,45 Kw
	Diámetro externo de la caldera	0,541 m
	Producción de vapor	1122,84

Realizado por: MONTERO, Lourdes. 2018

*Todos los equipos detallados anteriormente son necesarios que se implemente en la planta para producir la compota, además de que están diseñados en base a la capacidad máxima de producción de orito de descarte en la Asociación de Producción Agropecuaria Tablas de la Florida.

3.4. Análisis de costo beneficio del proyecto

El presupuesto en su totalidad será cubierto por la Asociación de Producción Agropecuaria Tablas de la Florida, ya que para ellos es necesarios dar un valor agregado a los desechos producidos en su labor agrícola, en esta sección se muestran los costos generados por efecto de la adquisición de los equipos, los costos de adquisición de sustancias y reactivos para la producción y los costos por efecto de mano de obra.

Para los equipos dimensionados, se realizó una proforma en el sitio web (ZHENGZHOU YUFENG HEAVY MACHINERY CO, 2018) que es donde más claramente se mostraban el valor de los equipos, ya que no se pudo realizar una cotización en el mercado nacional porque los equipos en esa vía son más costosos, además en el presente se muestran las ganancias que tendrá la planta en los próximos años sin tomar en cuenta el costo por adquisición de los equipos ya que esos quedaran para la operación de la planta.

Tabla 64-3: Presupuesto de los equipos necesarios para la producción de compota de orito

EQUIPO	FIGURA	COSTO PROFORMADO
Tanque de lavado		\$3000
Licuadora de alimentos		\$3500
Marmita con agitador		\$4500
Caldera	h	\$3500
Banda Transportadoras	T	2000
Mesas de Selección de materia prima y pelado	The state of the s	580
Bomba de transporte de agua	100	150
Envasadora Automática		2900
Balanza		800

Varios	-	1000	
Costos de Infraestructura de la planta			
Infraestructura	-	30000	
Costo de mano obra	-	5000	
Transporte de Agua (tuberías y accesorios)	-	400	
Total	-	\$57330	

Fuentes: (ZHENGZHOU YUFENG HEAVY MACHINERY CO, 2018, p.1)

Una vez proformados los equipos, se muestra el costo generado por materia prima, aditivos e insumos necesarios para producir 1061,5 kg de compota mensual distribuido en 8165 envases con una capacidad de 130 gramos cada una, sin tomar en cuenta el costo de los oritos ya que serán obtenidos como rechazo de la producción agrícola en la Asociación de Producción Agropecuaria Tablas de la Florida.

Tabla 65-3: Presupuesto para materia prima, insumos y aditivos necesarios para la producción de compota de orito

Materia Prima	Cantidad	Unidades	Costo Unitario (\$)	Costo Total (\$)		
Azúcar	106,15	Kg	1,13	119,78		
	Aditivos					
Ácido Cítrico	3,87	Kg	1,17	4,5279		
Ácido Ascórbico	3,87	Kg	15,00	58,05		
Pectina	4,035	Kg	20,00	80,7		
Sorbato de Potasio	0,48	Kg	20,00	9,6		
Insumos						
Envase con tapas	2123	Unidades	0,75	1592,25		
twist off						
Etiquetas	2123	Unidades	0,30	636,90		
TOTAL				2382,03		

Elaborado por: MONTERO, Lourdes. 2018.

Para la producción mensual de compota de orito, en la planta se deberán invertir \$2382,03, por rubros de materia prima, insumos y aditivos necesarios para la producción normal del alimento, por lo que si la producción se da de manera continua y se logra vender en el mercado por costos de dinero necesario para la producción la planta deberá invertir \$ 28584,3348.

Adicional a esto, en la planta se necesitará realizar análisis de laboratorio para comprobar la calidad de los lotes, los cuales se realizarán una vez cada tres meses aproximadamente o como se

vayan vendiendo el producto, estos análisis en la presente investigación se realizaron en el laboratorio LACONAL de la ciudad de Ambato, los costos de estos análisis se reportan a continuación.

Los gastos totales generados por los análisis de laboratorio de los lotes de producción serán igual a \$567,84, lo cual generará un costo anual de \$6814,08, rubro económico necesario para poder realizar los controles de calidad del alimento y asegurar que el consumidor ingiere un producto que cumple con las normas higiénicas y además que tiene un gran poder nutricional.

Tabla 66-3: Presupuesto para análisis de laboratorio y pruebas de calidad necesarios para la producción de compota de orito

ANALISIS	COSTO, \$
Sólidos Totales	8,00
Sólidos Solubles	6,00
Aerobios Totales	15,00
Recuento de Anaerobios	12,00
Mohos	12,00
Levaduras	12,00
Fibra Dietética Insoluble	30,00
Fibra Dietética Soluble	62,00
Proteína	17,00
Carbohidratos Totales	8,00
Cenizas	8,00
Azúcares Totales	40,00
Perfil lipídico	150,00
Colesterol	20,00
Hierro	12,00
Vitamina A	50,00
Vitamina C	35,00
Grasa	9,00
Cenizas	17,00
TOTAL	567,84

Fuente: LACONAL, (2018)

Realizado por: MONTERO, Lourdes. 2018

Para la producción además será necesario contratar operarios, técnicos y gente de gerencia para controlar las etapas de producción, para la compra de insumos y también la venta del producto final, por lo que se plantea contratar 3 operarios que serán los encargados de los procesos de producción, un técnico que se encargará del control de calidad del alimento, y además un

administrador que se encargará de las finanzas y de la gerencia de la planta, los costos generados por esto se muestran a continuación.

Tabla 67-3: Presupuesto para gastos administrativos necesarios para la producción de compota de orito

Concepto	Costo Unitario (\$)	Costo Total (\$)
Operarios	380	1140
Técnico	500	500
Administrador	450	450
TOTAL	-	2090

Realizado por: MONTERO, Lourdes. 2018

La planta invertirá \$2090 por concepto de contratación de mano de obra no calificada y calificada este concepto se ha calculado mensualmente, por lo que la inversión anual por concepto de gastos administrativos será igual a \$25080.

Obteniendo el concepto total por egresos generados para la producción de compota de orito, a continuación, se recoge el total de ingresos, egresos ganancias anuales que se proyecta conseguir por la implementación de una planta para la producción de compota de orito.

Tabla 68-3: Costos de producción de compota de orito

Cantidad de	Contenido	Cantidad de	Costo Unitario	Total de				
compota, Kg	neto, (Kg)	producción	de compota, \$	ingresos, (\$)				
1061,5	0,13	8166	0,90	7349,44				
		INGRESOS						
	Mensual		Anu	ıal				
	7349,8			7,55				
		EGRESOS						
	Mensual		Anu	ıal				
	5039,90		60478	8,44				
	TOTAL, DE GANANCIAS							
	Mensual Anual							
	2309,926	27719,11						

Realizado por: MONTERO, Lourdes. 2018

Logrando procesar la cantidad de desechos generados en la Asociación de Producción Agropecuaria Tablas de la Florida, mensualmente se obtendrá 1061,5 Kg de compota que vendiendo en envases de 130 g se obtendrán 8166,44 envases de compota de orito mensualmente,

desglosando los ingresos, egresos y otros gastos adicionales la planta tendrá una ganancia anual de \$27719,11.

Para determinar en cuanto tiempo se recuperará la inversión por efecto de equipos necesarios para la producción de compota de orito, a continuación, se evaluó la ganancia obtenida en 1, 2 y 3 años de funcionamiento de la planta, suponiendo que se va a producir y comercializar la misma cantidad de compota.

Logrando generar una ganancia en los tres años de \$25828,03, y se podrá recuperar la inversión de los equipos y la planta en 3 años de funcionamiento de la planta, haciendo que sea viable la producción de compota de orito y generando que la Asociación de Producción Agropecuaria Tablas de la Florida pueda implementar la planta y lograr obtener ganancias mayores a su actividad agrícola.

Tabla 69-3: Ganancias proyectadas para los tres primeros años de producción de compota de orito

Año	Ingresos, \$	Egresos, \$	Ganancias, \$
1	88197,55	117808.08	-29610.53
2	58587.02	60478,44	-1891.42
3	86306.13	60478,44	25828.03

Realizado por: MONTERO, Lourdes. 2018

3.4.1. Cronograma de actividades

				TIEMPO																				
ACTIVIDADES		1° 1	nes		2º mes			3º mes			4º mes					5° mes			6° mes					
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Revisión Bibliográfica																								
Elaboración anteproyecto																								
Presentación y aprobación del anteproyecto																								
Realizar la caracterización físico-química de la materia prima orito, en																								
diferentes grados de maduración.																								
Determinar la mejor formulación para la elaboración de Compota, a partir																								
del Orito																								
Identificar las variables de proceso, las operaciones y los parámetros																								
óptimos para la obtención de Compota a escala industrial.																								
Realizar los cálculos para el diseño de ingeniería del proceso de obtención																								
de compota de orito																								ı
Validar el proceso mediante una caracterización física-química y																								
microbiológica de la formulación de mayor aprobación, según la Norma																								ı
NTE INEN 3078:2015 Purés en Conserva. Requisitos.																								
Elaboración de la tesis																								
Defensa del trabajo																								

ANALISIS Y DISCUSIÓN DE LOS RESULTADOS

Para determinar el mejor proceso productivo se realizó tres diferentes formulaciones para obtener compota de orito las cuales fueron: formulación 1, utilizando: oritos, almidón modificado, agua y azúcar; para la formulación 2 se empleó pectina que remplazo al almidón modificado y para la formulación 3 se utilizó únicamente agua y azúcar, y escogiendo la mejor formulación de acuerdo a un análisis discriminatorio entre las 3 pruebas, en donde se evaluó las características organolépticas de las tres compotas.

Esta prueba discriminatoria se adaptó a las características del mercado donde será comercializada la compota, por lo que se realizó esta prueba en la Facultad de Ciencias de la Escuela Superior Politécnica de Chimborazo de la ciudad de Riobamba, escogiendo un número de 109 encuestados que actuaron como degustadores y panel de jueces no entrenados, las respuestas se procesaron en el programa estadístico SPSS y mediante un análisis de Krusskal Wallis y un análisis de componentes principales se obtuvo que la formulación 2 fue la mejor ya que fue la que mayor aceptación en cuanto a sabor, color y olor tuvo alcanzando el 34,39% de aceptabilidad.

La formulación 2 fue realizada a escala industrial para lograr dimensionar los equipos y seleccionar las variables de proceso, tomando como base de cálculo la cantidad de materia prima generada en la Asociación de Producción Agropecuaria Tablas de la Florida, obteniendo así que partiendo de 1336,38 kg de oritos se obtendrá 1061,5 kg de compota, en la etapa de producción de acuerdo a la norma NTE INEN 3078, se controló el pH el cual estuvo en un valor de 3,80 y se encontró dentro de la normativa demostrado un grado de frescura alto.

Obtenido la compota se realizaron las pruebas de calidad, primero se evaluó la calidad microbiológica del alimento, estos valores lograron cumplir con los requisitos establecidos por las normas reportando valores para el contenido de aerobios Totales iguales a <10 UFC/g, para el contenido de anaerobios ausencia, para el contenido de moho valores iguales a <10 UFC/g y para el contenido de levaduras valores iguales <10 UFC/g, con lo que se aseguró que el alimento fue producido bajo alto estándares de calidad y es segura la ingesta.

Para determinar el poder nutricional de la compota se realizó un análisis proximal del alimento, reportando valores iguales a 41,70% para el contenido de carbohidratos totales, 12% de azúcares totales y 0,70% de cenizas como los elementos más representativos, así como también reporto un contenido de vitamina A igual a 1,5% IDR*, un contenido de vitamina C igual a 45,0% IRD* y un contenido de hierro igual a 1,4% IRD*, y otras trazas de minerales como potasio, sodio, pero en

menor cantidad, con lo que el mayor aporte que generará la ingesta de este alimento será de vitaminas y de carbohidratos lo cual hace óptimo para la nutrición de niños con problemas de mal nutrición.

El aporte calórico por la ingesta de este alimento será elevado, por lo que personas que estén expuestas a trabajos que requieran actividad física elevada, podrán ingerir este alimento; para determinar si la compota resistiría a las condiciones de almacenamiento y a la vida de anaquel, se realizó una prueba de vida útil en una cámara acelerada, analizando su comportamiento en 1 hora y 15 días a una temperatura de 45°C que simulaban el comportamiento del alimento en percha de 6 meses, reportando que el pH y los grados Brix no variaron de forma significativa en el lapso de este período de tiempo, además de que no hubo presencia de mohos y levaduras durante toda la etapa de análisis de la muestra.

Los resultados fueron satisfactorios ya que indicaron que el alimento puede permanecer almacenado hasta 6 meses sin que se altere su calidad nutricional y microbiológica, con lo cual la planta si no puede realizar una comercialización rápida del alimento puede tener en stock el producto, sin generar pérdidas, indicando además que la cantidad y tipo de antioxidante y conservantes adicionados fueron los correctos para este alimento.

Obteniendo la dosificación adecuada de aditivos y la cantidad de materia prima a procesar, se realizó el dimensionamiento de los equipos necesarios para la producción de compota de orito, controlando sus variables de diseño y de operación resaltando además que será necesario que todos los equipos sean de acero inoxidable de grado alimenticio, fue necesario diseñar un tanque de lavado de volumen igual a 0,644 m³, un diámetro de 1,2 m y dotado de un motor para la recepción de agua con una potencia de 0,0068 Hp.

Para poder transportar la materia prima desde la zona de lavado a la zona de pelado se dimensionaron bandas de una longitud de 0,65 m, con un diámetro de rolillos iguales a 63,5 mm y dotados de un motor para poder realizar la transportación con una potencia igual a 0,184 Hp, en la zona de pelado serán necesarias mesas con una capacidad de procesamiento de 178,50 Kg que tendrán una longitud de 1,50 metros y un ancho de 0,70 m.

Para lograr reducir el tamaño del orito y generar el puré, se diseñó una licuadora de aspas que tendrá un volumen de 0,235 m³, la misma rodará a 376,99 rad/s y estará conectada a un motor de 1,35 Hp, a continuación para lograr la homogenización del puré y agregar los conservantes y saborizantes se diseñó una marmita con giro que operará entre los 45-55°C, esta tendrá un volumen de 321,14 litros, una altura de 0,77 m, las paletas serán tipo planas y constará de 4 paletas

de ancho igual a 0,18 para cada paleta, la marmita funcionará con un motor de potencia igual a 0,69 Hp.

Para lograr cubrir los requerimientos de calor necesarios para la producción de compota, se necesitará implementar una caldera la cual tendrá una alimentación de combustible diésel, con un volumen de alimentación igual a 2,3*10⁻³ m³, con diámetro externo de 0,048 metros y una potencia igual a 72,45 Kw, con el dimensionamiento de estos equipos se lograrán producir 8166,44 unidades de compota de contenido neto para cada una igual a 130 g, determinando una ganancia anual igual a \$ 27719 y se podrá recuperar la inversión en el tercer año de producción, haciendo que la producción de compota sea rentable y sea un proceso tecnológico viable para el aprovechamiento de los oritos si se tiene una planificación correcta para la venta de este producto con alto valor nutricional.

CONCLUSIONES

- La caracterización del orito producido por la Asociación de Producción Agropecuaria Tablas de la Florida (ASOPROTABF), para los tres lotes de muestreo en el que se dividido la elaboración de compota de orito a escala de laboratorio reportaron medias sobre el 34,4% de contenido de sólidos totales, un valor de pH medio igual a 4,91 y un valor de grados Brix igual a 24,8%, además una coloración amarilla que indicaron un grado de maduración 1 óptimo para la producción de compota.
- Realizadas las técnicas de obtención de compota de orito de acuerdo a las diferentes formulaciones, se logró establecer que se cumplió con los requerimientos nutricionales de fibra y de proteína, además en el análisis sensorial realizado por una prueba de discriminación con su análisis estadístico de Kruskall Wallis, se determinó que la formulación de puré de orito 51,5%, más azúcar 10%, más pectina 0,5% y agua 38% fue la más aceptada y preferida por los jueces no entrenados del panel de pruebas.
- Verificados los análisis de calidad de la compota de orito, para lograr la transformación se identificaron las siguientes operaciones unitarias: lavado, transporte, pelado, triturado, homogenizado, empaquetado y esterilizado, además las variables de proceso que se identificaron fueron: estado de maduración de la fruta, tiempo de operación, temperatura de operación, cantidad de sustancias químicas adicionadas y el peso neto del producto.
- Se realizaron los cálculos de ingeniería para el diseño del proceso industrial para la obtención de compota a partir del orito, en base a las pruebas simuladas en el Laboratorio de Investigación y que se escaló a nivel industrial en la Estación Experimental de Tunshi de la Escuela Superior Politécnica de Chimborazo, tomando como base una capacidad de producción de 5000g de puré, las operaciones realizadas permiten conocer que es necesario que en la planta se instalen: equipo de lavado, bandas transportadoras, licuadora, marmita de homogenización y caldera.
- Para validar la calidad del producto obtenido se realizaron las pruebas de calidad de acuerdo a la norma 3078:2015, obteniendo que todas las características cumplieron con la norma y aptos para el consumo, Análisis Físico Químico: pH 3,80 para el contenido de Aerobios Totales iguales a 10 UFC/g, para el contenido de anaerobios ausencia, para el contenido de moho valores iguales a <10 UFC/g y para el contenido de levaduras valores iguales <10 UFC/g,</p>

y en el análisis físico químico los elementos que mayormente se presentaron fueron el contenido de carbohidratos totales con valores iguales a 41,70%, 12% de azúcares totales y 0,70% de proteínas, así como también reporto un contenido de vitamina A igual a 1,5% IDR*, un contenido de vitamina C igual a 45,0% IRD* y un contenido de hierro igual a 1,4% IRD*.

RECOMENDACIONES

- Lograr mejorar los procesos productivos para la compota de orito y realizar diferentes formulaciones, con el fin de abaratar costos de producción y tener una mayor rentabilidad económica, generando así que la planta no tenga solo su producción para mercados locales, sino que a futuro se plantee la exportación de compota a mercados con mayor poder adquisitivo.
- Controlar cada una de las etapas de producción y verificar la calidad de la materia prima y de los aditivos para evitar pérdidas de calidad en los procesos de obtención de compota, con lo cual se disminuya sus características nutricionales y características sensoriales.
- Promover el aprovechamiento de residuos generados en la actividad agrícola, con el fin de que los consumidores prefieran consumir productos nacionales.

BIBLIOGRAFIA

Alarcón, R. Manual de practicas de Microbiología básica y Microbiología de alimentos . En R. Alarcón, *Manual de practicas de Microbiología básica y Microbiología de alimentos* (pág. 107). Juarez: UACJ. 2004.

Aditivos Alimentarios. *E-330 Ácido Cítrico*. [En línea] 2018 p.2 [Consulta: 13 - Mayo - 2018].

Disponible en: http://www.aditivos-alimentarios.com/2014/01/e330-acido-citrico.html.

Angulo, A. *UNIVERSIDAD ECOTEC*. Obtenido de UNIVERSIDAD ECOTEC: http://gye.ecomundo.edu.ec/Biblio/TesisProyectos/PRODUCCI%C3%93N%20Y%20VENTA %20DE%20COMPOTAS.PDF. 2018.

CARRILLO, María Luisa & REYES, Abigail. "Vida útil de los alimentos" *Revista Iberoamericana de las Ciencias Biológicas y Agropecuarias.* México: Universidad Autónoma de San Luis Potosí, 2013. pp.7-4

CODEX. 1981. Norma Del Codex Para Compotas (Conservas De Frutas) Y Jaleas Codex Stan 79-1981.

CORDERO-BUESO, Gustavo A. Aplicación del Análisis Sensorial de los Alimentos en la Cocina y en la Industria Alimentaria. Sevilla-España: Sede Universitaria Olavide en Carmona, 2013, pp.

Corpei. Banano Nuestro Principal Producto de Exportación. (En línea). Consultado el 3 de septiembre del 2018.

Cortés. Manzana deshidratada fortificada con vitamina e utilizando la ingeniería de matrices. Medellín, CO. Revista de la Facultad de Química Farmacéutica. p 17 – 26. 2007.

Dynamix, F. *Fluid Dynamix*. Obtenido de Fluid Dynamix: http://www.think-fluid-dynamix.com/mezclado/. 2018.

EcoAgricultura. Obtenido de EcoAgricultura: https://www.ecoagricultor.com/antioxidantes/. 2018.

Garófalo, W. ASOPROTABF. (L. Montero, Entrevistador).

GEANKOPLIS, J. 1991. Procesos de transporte y Operaciones Unitarias. México: Editorial Continental S.A., 1991. p.321

INEC, Quito. Páginas irregulares. 2002.

McCABEE, Warren L., SMITH, Julian C. & HARRIOT, Peter. Operaciones Unitarias en Ingeniería Química. México: McGraw-Hill/Interamericana, 7ma Ed, 2007. p.276-278

Marín, Z. Elementos de Nutrición Humana. En Z. Marín, *Elementos de Nutrición Humana* (pág. 397). México: EUNED. 2018.

Manzano. Manzana Comercializados en Supermercados de la Ciudad Capital. Tesis. Ing. Química Farmacéutica. Universidad De San Carlos de Guatemala. p 54. 2010.

Navas. 2009. Diseño de la Línea de Producción de Compotas de Banano. Tesis. Ing. Alimentos. ESPOL. Guayaquil, EC. p 100.

Musculo, Blog. *Mas Músculo Blog*. Obtenido de Mas Músculo Blog: https://www.masmusculo.com/blog/los-reguladores-de-acidez-y-el-ph-de-los-alimentos/. 2010.

NTE INEN 3078 Purés en Conserva. Requisitos.

NTE INEN 382 Conservas Vegetales. Determinación De Materia Seca (Sólidos Totales).

Ortiz. Evaluación de la actividad de los lixiviados de raquis de banano (musa AAA), plátano (musa AAB), y banano orito AA sobre el agente causal de la sigatoka negra (mycosphaerella fijiensis morelet) en condiciones in vitro. Consultado el 3 de septiembre del 2018. Disponible en: http://www.dspace.espol.edu.ec/xmlui/handle/123456789/31773

OMS. *La alimentación del LACTANTE Y DEL NIÑO PEQUEÑO*. Obtenido de La alimentación del LACTANTE Y DEL NIÑO PEQUEÑO: http://www1.paho.org/hq/dmdocuments/2010/La-alimentacion-del-lactante--capitulo-modelo-para-libros-de-texto.pdf. 2018.

PEDROZA, Dr. Henry & DICOVSKYI, Ing. Msc. Luis. Sistema de Análisis Estadístico con SPSS. *Instituto Nicaraguense de Tecnología Agropecuaria*. [En línea] 2006 pp.14-16 [Consulta: 29 - Junio - 2018].

Disponible en:

https://books.google.com.ec/books?id=sE0qAAAAYAAJ&pg=PA28&lpg=PA28&dq=Sistema+de+Analisis+Estadistico+con+SPSS+pedroza&source=bl&ots=EqfaBN_Fjw&sig=fAqbGEE3RYSp6vRZdRJaYlyDTbM&hl=es419&sa=X&ved=0ahUKEwiwzvrj_IzVAhXEQCYKHXbmCiIQ6AEILzAC#v=onepage&q=Sistem. 978-92-9039-790-8.

Robinson, J. Banana and Plantains. CAB International, Cambridge, UK. 2002.

Roldán. La cadena de Banano en Colombia (en línea). Santa Fe de Colombia. 2002.

RTE INEN 022 (2R) Rotulado de Productos Alimenticios Procesados, Envasados y Empaquetados.

SÁNCHEZ PINEDA DE LAS INFANTAS, M Teresa. Procesos de elaboración de alimentos y bebidas. 1era ed. Madrid-España: Mundi-Prensa. 2003. pp.156,161

SICA (Servicio De Información Y Censo Agropecuario, Ec). III Censo Nacional Agropecuario. 2005

Seipel. Características fisicoquímicas de los frutos de tres variedades de manzanas cultivadas en la región centro-este de la provincia de Santa Fe. Revista FAVE - Ciencias Agrarias. p 28 – 36. 2009.

UNICEF. *UNICEF ECUADOR*. Obtenido de UNICEF ECUADOR: https://www.unicef.org/ecuador/children_17993.html. 2018.

Velasco, W. ASOPROTABF. (L. Montero, Entrevistador). 2018.

ANEXOS

Anexo A. Lista de Aditivos Alimenticios permitidos por la FAO

ADITIVO	OTRAS NOMENCLATURAS	FUNCIÓN	SEGURO
E-100	Curcumina, CI 75300	Colorante	SEGURO
E-101	Lactoflavina, riboflavina, Vitamina B2	Colorante	SEGURO
E-102	Tartracina, CI 19140	Colorante	EVITAR
E-103	Crisoína S	Colorante	EVITAR
E-104	Amarillo de quinoleína, CI 47005	Colorante	EVITAR
E-105	Amarillo sólido	Colorante	EVITAR
E-106	Fosfato de lactoflavina	Colorante	SEGURO
E-107	Amarillo 2G	Colorante	EVITAR
E-110	Amarillo ocaso FCF, CI 15985	Colorante	EVITAR
E-111	Naranja GN	Colorante	EVITAR
E-120	Cochinilla, ácido carmínico, carmín CI 75470	Colorante	EVITAR
E-121	Orcilla	Colorante	EVITAR
E-122	Azorrubina, carmoisina, CI 14720	Colorante	EVITAR
E-123	Amaranto, CI 16185	Colorante	EVITAR
E-124	Ponceau 4R, rojo cochinilla A, CI 16255	Colorante	EVITAR
E-125	Escarlata GN	Colorante	EVITAR
E-126	Ponceau 6R	Colorante	EVITAR
E-127	Eritrosina, CI 45430	Colorante	EVITAR
E-128	Rojo 2G, CI 18050	Colorante	EVITAR
E-129	Rojo allura AC	Colorante	EVITAR
E-130	Azul de antraquinona	Colorante	EVITAR
E-131	Azul patente V, CI 42051	Colorante	EVITAR
E-132	Indigotina, carmín índigo, CI 73015	Colorante	EVITAR
E-133	Azul brillante FCF, CI 42090	Colorante	EVITAR
E-140	Clorofila A y B	Colorante	SEGURO
E-141	Complejos cúpricos de clorofilas, CI 75810	Colorante	PRECAUCIÓN
E-142	Verde S, CI 44090	Colorante	EVITAR
E-150	Caramelo, 150a, 150b, 150c, 150d	Colorante	EVITAR
E-151	Negro brillante BN, CI 28440	Colorante	EVITAR
E-152	Negro 7984	Colorante	EVITAR
E-153	Carbón vegetal medicinal	Colorante	PRECAUCIÓN
E-154	Marrón FK	Colorante	EVITAR
E-155	Marrón chocolate HT	Colorante	EVITAR
E-160 ^a	Carotenoides	Colorante	SEGURO
E-160b	Annatto, bixina, norbixina, Bija	Colorante	SEGURO
E-160c	Extracto de pimiento, paprika, capsorrubina	Colorante	SEGURO
E-160d	Licopeno	Colorante	PRECAUCIÓN
E-160e	Beta-apo8carotenal C30	Colorante	SEGURO
E-160f	Ester etílico ácido beta-apo8carotenoico C30	Colorante	SEGURO
E-161	Xantofilas	Colorante	SEGURO
E-161 ^a	Flavoxantina	Colorante	PRECAUCIÓN
E-161b	Luteína, ci 75135	Colorante	PRECAUCIÓN

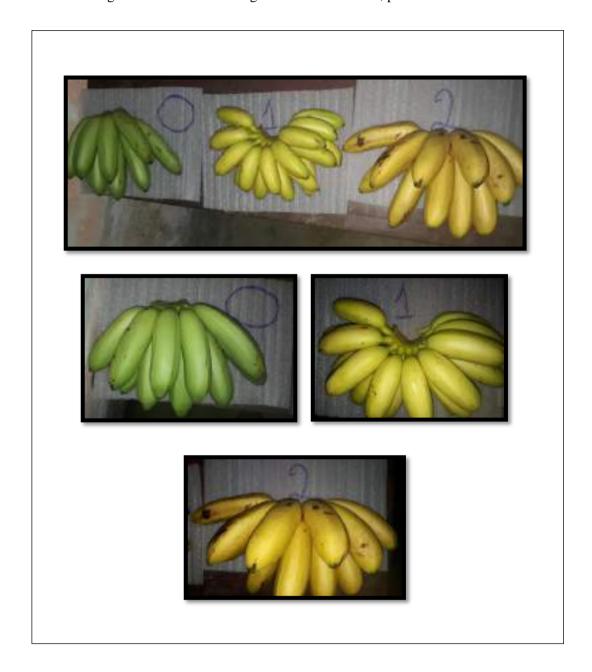
ADITIVO	OTRAS NOMENCLATURAS	FUNCIÓN	SEGURIDAD
E-100	Curcumina, CI 75300	Colorante	SEGURO
E-101	Lactoflavina, riboflavina, Vitamina B2	Colorante	SEGURO
E-102	Tartracina, CI 19140	Colorante	EVITAR
E-103	Crisoína S	Colorante	EVITAR
E-104	Amarillo de quinoleína, CI 47005	Colorante	EVITAR
E-105	Amarillo sólido	Colorante	EVITAR
E-106	Fosfato de lactoflavina	Colorante	SEGURO
E-107	Amarillo 2G	Colorante	EVITAR
E-110	Amarillo ocaso FCF, CI 15985	Colorante	EVITAR
E-111	Naranja GN	Colorante	EVITAR
E-120	Cochinilla, ácido carmínico, carmín CI 75470	Colorante	EVITAR
E-121	Orcilla	Colorante	EVITAR
E-122	Azorrubina, carmoisina, CI 14720	Colorante	EVITAR
E-123	Amaranto, CI 16185	Colorante	EVITAR
E-124	Ponceau 4R, rojo cochinilla A, CI 16255	Colorante	EVITAR
E-125	Escarlata GN	Colorante	EVITAR
E-126	Ponceau 6R	Colorante	EVITAR
E-127	Eritrosina, CI 45430	Colorante	EVITAR
E-128	Rojo 2G, CI 18050	Colorante	EVITAR
E-129	Rojo allura AC	Colorante	EVITAR
E-130	Azul de antraquinona	Colorante	EVITAR
E-131	Azul patente V, CI 42051	Colorante	EVITAR
E-132	Indigotina, carmín índigo, CI 73015	Colorante	EVITAR
E-133	Azul brillante FCF, CI 42090	Colorante	EVITAR
E-140	Clorofila A y B	Colorante	SEGURO
E-141	Complejos cúpricos de clorofilas, CI 75810	Colorante	PRECAUCIÓN
E-142	Verde S, CI 44090	Colorante	EVITAR
E-150	Caramelo, 150a, 150b, 150c, 150d	Colorante	EVITAR
E-151	Negro brillante BN, CI 28440	Colorante	EVITAR
E-152	Negro 7984	Colorante	EVITAR
E-153	Carbón vegetal medicinal	Colorante	PRECAUCIÓN
E-154	Marrón FK	Colorante	EVITAR
E-155	Marrón chocolate HT	Colorante	EVITAR
E-160 ^a	Carotenoides	Colorante	SEGURO
E-160b	Annatto, bixina, norbixina, Bija	Colorante	SEGURO
E-160c	Extracto de pimiento, paprika, capsorrubina	Colorante	SEGURO
E-160d	Licopeno	Colorante	PRECAUCIÓN
E-160e	Beta-apo8carotenal C30	Colorante	SEGURO
E-160f	Ester etílico ácido beta-apo8carotenoico C30	Colorante	SEGURO
E-161	Xantofilas	Colorante	SEGURO
E-161 ^a	Flavoxantina	Colorante	PRECAUCIÓN
E-161b	Luteína, ci 75135	Colorante	PRECAUCIÓN
	· ·		1

E-161c	Criptoxantina	Colorante	PRECAUCIÓN
E-161g	Cantaxantina, CI 75135	Colorante	EVITAR
E-162	Rojo remolacha, betanina	Colorante	SEGURO
E-163	Antocianinas	Colorante	SEGURO
E-170	Carbonato de calico	Colorante	SEGURO
E-171	Bióxido y dióxido de titanio	Colorante	EVITAR
E-172	Óxidos e hidróxidos de hierro, CI77492, 91, 99	Colorante	SEGURO
E-173	Aluminio, CI 77000	Colorante	EVITAR
E-174	Plata CI 77820	Colorante	EVITAR
E-175	Oro CI 77480	Colorante	EVITAR
E-180	Pigmento rubí, Litolrubina BK	Colorante	EVITAR
E-181	Tierra sombra quemada	Colorante	EVITAR
E-200	Ácido Ascórbico	Conservante	EVITAR
E-201	Sorbato de sodio	Conservante	EVITAR
E-202	Sorbato de Potasio	Conservante	EVITAR
E-203	Sorbato de calico	Conservante	EVITAR
E-210	Ácido benzoico	Conservante	EVITAR
E-211	Benzoato sódico	Conservante	EVITAR
E-212	Benzoato de Potasio	Conservante	EVITAR
E-213	Benzoato de calico	Conservante	EVITAR
E-214	Etil P-hidroxibenzoato	Conservante	EVITAR
E-215	Etil P-hidroxibenzoato de sodio	Conservante	EVITAR
E-216	Propil P-hidroxibenzoato	Conservante	EVITAR
E-217	Propil P-hidroxibenzoato de sodio	Conservante	EVITAR
E-218	Metil P-hidroxibenzoato	Conservante	EVITAR
E-219	Metil P-hidroxibenzoato de sodio	Conservante	EVITAR
E-220	Dióxido de azufre	Conservante	EVITAR
E-221	Sulfito sódico	Conservante	EVITAR
E-222	Sulfito ácido de sodio	Conservante	EVITAR
E-223	Metabisulfito sódico	Conservante	EVITAR
E-224	Metabisulfito potásico	Conservante	EVITAR
E-225	Sulfito potásico	Conservante	EVITAR
E-226	Sulfito cálcico	Conservante	EVITAR
E-227	Sulfito ácido de calico	Conservante	EVITAR
E-228	Sulfito ácido de Potasio	Conservante	EVITAR
E-230	Difenilo, bifenilo	Conservante	EVITAR
E-231	Ortofenil fenol	Conservante	EVITAR
E-232	Ortofenil fenolato sódico	Conservante	EVITAR
E-233	Tiabendazol	Conservante	EVITAR
E-234	Nisina	Antibiótico	PRECAUCIÓN
E-235	Pimaricina, natamicina	Antibiótico	EVITAR
E-236	Ácido fórmico	Conservante	EVITAR
E-237	Formiato de sodio	Conservante	EVITAR
E-238	Formiato de calcio	Conservante	EVITAR
E-239	Hexametilentetramina	Conservante	EVITAR
E-240	Ácido bórico	Conservante	EVITAR
E-241	Tetraborato de sodio	Conservante	EVITAR
E-242	Dimetil dicarbonato	Conservante	EVITAR

E-249	Nitrito de Potasio	Conservante	EVITAR
E-250	Nitrito de sodio	Conservante	EVITAR
E-251	Nitrato de sodio	Conservante	EVITAR
E-252	Nitrato de Potasio	Conservante	EVITAR
E-260	Ácido acético	Conservante	PRECAUCIÓN
E-261	Acetato de potasio	Conservante	PRECAUCIÓN
E-262	Acetato de sodio	Conservante	PRECAUCIÓN
E-263	Acetato de calico	Conservante	SEGURO
E-264	Acetato de amonio	Conservante	EVITAR
E-270	Ácido láctico	Conservante	PRECAUCIÓN
E-280	Ácido propiónico	Conservante	PRECAUCIÓN
E-281	Propionato de sodio	Conservante	PRECAUCIÓN
E-282	Propionato de calico	Conservante	PRECAUCIÓN
E-283	Propionato de potasio	Conservante	PRECAUCIÓN
E-284	Ácido bórico	Conservante	EVITAR
E-285	Tetraborato de sodio, borax	Conservante	EVITAR
E-290	Anhídrido carbónico	Acidulante	PRECAUCIÓN
E-296	Ácido málico	Acidulante	PRECAUCIÓN
E-297	Ácido fumárico	Acidulante	SEGURO
E-300	Ácido ascórbico	Antioxidante	SEGURO
E-301	Ascorbato de sodio	Antioxidante	SEGURO
E-302	Ascorbato de calico	Antioxidante	SEGURO
E-303	Diacetato de ascorbilo	Antioxidante	SEGURO
E-304	Palmitato de ascorbilo	Antioxidante	SEGURO
E-306	Extracto rico en tocoferol	Antioxidante	SEGURO
E-307	Alfa-tocoferol	Antioxidante	SEGURO
E-308	Gama-tocoferol	Antioxidante	SEGURO
E-309	Delta-tocoferol	Antioxidante	SEGURO
E-310	Galato de propilo	Antioxidante	EVITAR
E-311	Galato de octilo	Antioxidante	EVITAR
E-312	Galato de dodecilo	Antioxidante	EVITAR
E-315	Ácido eritórbico	Antioxidante	PRECAUCIÓN
E-316	Eritorbato sódico	Antioxidante	PRECAUCIÓN
E-320	Butilhidroxianisol BHA	Antioxidante	EVITAR
E-321	Butilhidroxitolueno BHT	Antioxidante	EVITAR
E-322	Lecitina	Emulsionante	SEGURO
E-325	Lactato sódico	Antioxidante	SEGURO
E-326	Lactato potásico	Antioxidante	SEGURO
E-327	Lactato cálcico	Antioxidante	SEGURO
E-330	Ácido cítrico	Acidulante	SEGURO
E-331	Citratos de sodio	Acidulante	SEGURO
E-332	Citratos de potasio	Acidulante	PRECAUCIÓN
E-333	Citratos de calcio	Acidulante	PRECAUCIÓN
E-334	Ácido tartárico	Acidulante	SEGURO
E-335	Tartrato de sodio	Acidulante	SEGURO
E-336	Tartrato de potasio	Acidulante	SEGURO
E-337	Tartrato doble de sodio y potasio	Acidulante	SEGURO
E-338	Ácido ortofosfórico	Acidulante	PRECAUCIÓN

E-339	Ortofosfatos de sodio	Acidulante	PRECAUCIÓN
E-340	Ortofosfatos de potasio	Acidulante	PRECAUCIÓN
E-341	Ortofosfatos de calcio	Acidulante	PRECAUCION
E-342	Ortofosfatos de amonio	Acidulante	PRECAUCIÓN
E-343	Ortofosfatos de magnesio	Acidulante	PRECAUCIÓN
E-350	Malatos de sodio	Acidulante	SEGURO
E-350	Malatos de socio	Acidulante	SEGURO
E-351 E-352	Malatos de calcio	Acidulante	SEGURO
E-352 E-353	Ácido metatartárico	Acidulante	SEGURO
E-353 E-354	Tartrato cálcico	Acidulante	SEGURO
E-354 E-356	Adipato sódico	Acidulante	SEGURO
			SEGURO
E-357	Adipato potásico	Acidulante	PRECAUCION
E-363	Ácido succínico	Acidulante	EVITAR
E-370	Heptonolactona Ácido nicotínico	Acidulante	= , 111111
E-375		Acidulante	EVITAR
E-380	Citrato triamónico	Acidulante	EVITAR
E-385	Etilenodiamino tetracetato cálcico disódico	Antioxidante	EVITAR
E-400	Ácido algínico	Espesante	SEGURO
E-401	Alginato sódico	Espesante	SEGURO
E-402	Alginato potásico	Espesante	SEGURO
E-403	Alginato amónico	Espesante	SEGURO
E-404	Alginato cálcico	Espesante	SEGURO
E-405	Alginato de propilenglicol	Espesante	PRECAUCIÓN
E-406	Agar-agar	Espesante	SEGURO
E-407	Carragenanos	Espesante	EVITAR
E-407 ^a	Algas euchema procesadas	Espesante	EVITAR
E-410	Goma garrofín o algarrobo	Espesante	PRECAUCIÓN
E-412	Goma guar	Espesante	PRECAUCIÓN
E-413	Goma tragacanto o aldragante	Espesante	PRECAUCIÓN
E-414	Goma arábiga	Espesante	PRECAUCIÓN
E-415	Goma xantana	Espesante	PRECAUCIÓN
E-416	Goma karaya	Espesante	PRECAUCIÓN
E-417	Goma tara	Espesante	SEGURO
E-418	Goma gellan	Espesante	PRECAUCION
E-420	Sorbitol	Edulcorante	PRECAUCION
E-421	Manitol, azúcar de maná	Edulcorante	EVITAR
E-422	Glicerina o glycerol	Humectante	PRECAUCIÓN
E-425	Goma de konjac	Espesante	EVITAR
E-430	Estearato polioxietileno 8	Estabilizador	EVITAR
E-431	Estearato polioxietileno 40	Estabilizador	EVITAR
E-432	Monolaurato de sorbitán polioxietilenado. Polisorbato 20	Estabilizador	EVITAR
E-433	Monooleato de sorbitán polioxietilenado. Polisorbato 80	Estabilizador	EVITAR
E-434	Monopalmitato de sorbitán polioxietilenado. Polisorbato 40	Estabilizador	EVITAR
E-435	Monoestearato de sorbitán polioxietilenado. Polisorbato 60	Estabilizador	EVITAR
E-436	Triestearato de sorbitán polioxietilenado. Polisorbato 65	Estabilizador	EVITAR
E-440 ^a	Pectinas	Espesante	SEGURO

E-440b	Pectinas amidadas	Espesante	SEGURO
E-441	Gelatina	Espesante	EVITAR
E-442	Fosfátidos de amonio	Emulsionante	PRECAUCIÓN
E-444	Acetato isobutirato de sacarosa	Emulsionante	PRECAUCIÓN
E-445	Ésteres glicéridos de colofonia de madera	Estabilizador	SEGURO
E-450 ^a	Difosfatos disódicos pirofosfatos	Estabilizador	EVITAR
E-450b	Difosfato trisódico tetrasódico tetrapotásico dicálcico	Estabilizador	EVITAR
E-451	Trifosfato de pentasodio o de pentapotasio	Estabilizador	EVITAR
E-452	Polifosfato de sodio o de potasio	Estabilizador	EVITAR
E-459	Beta-ciclodextrina	Estabilizador	PRECAUCIÓN
E-460	Celulosa microcristalina	Espesante	EVITAR
E-461	Metilcelulosa	Espesante	EVITAR
E-463	Hidroxipropilcelulosa	Emulsionante	EVITAR
E-464	Hidroxipropilmetilcelulosa	Emulsionante	EVITAR
E-465	Etilmetilcelulosa	Emulsionante	EVITAR
E-466	Carboximetilcelulosa de sodio	Emulsionante	EVITAR
E-468	Carboximetilcelulosa de sodio reticulada	Emulsionante	EVITAR
E-469	Carboximetilcelulosa de sodio hidrolizada enzimáticamente	Emulsionante	EVITAR
E-470 ^a	Sales de sodio, potasio y calcio de ácidos grasos	Emulsionante	SEGURO
E-470b	Sales de magnesio de ácidos grasos	Emulsionante	SEGURO
E-471	Mono y diglicéridos de ácidos grasos	Emulsionante	EVITAR
E-472 ^a	Ésteres acéticos de los mono y diglicéridos de ácidos grasos	Emulsionante	EVITAR
E-472b	Ésteres lácticos de los mono y diglicéridos de ácidos grasos	Emulsionante	EVITAR
E-472c	Ésteres cítricos de los mono y diglicéridos de ácidos grasos	Emulsionante	EVITAR
E-472d	Ésteres tartáricos de los mono y diglicéridos de ácidos grasos	Emulsionante	EVITAR
E-472e	Ésteres monoacetiltartárico y diacetiltartárico de los mono y diglicéridos de ácidos grasos	Emulsionante	EVITAR
E-472f	Ésteres mixtos acéticos y tartáricos de los mono y diglicéridos de ácidos grasos	Emulsionante	EVITAR
E-473	Sucroésteres de ácidos grasos	Emulsionante	EVITAR
E-474	Sucroglicéridos	Emulsionante	EVITAR
E-475	Ésteres poliglicéridos de los ácidos grasos	Emulsionante	PRECAUCIÓN
E-476	Polirricinoleato de poliglicerol	Emulsionante	PRECAUCIÓN
E-477	Ésteres de propilenglicol de los ácidos grasos	Emulsionante	EVITAR
E-479b	Aceite de soja oxidado	Emulsionante	EVITAR
E-481	Estearoil-2-lactilato sódico	Emulsionante	SEGURO
E-482	Estearoil-2-lactilato cálcico	Emulsionante	SEGURO
E-483	Tartrato de estearilo	Emulsionante	SEGURO
E-491	Monoestearato de sorbitán	Emulsionante	EVITAR
E-492	Triestearato de sorbitán	Emulsionante	EVITAR
E-494	Monooleato de sorbitán	Emulsionante	EVITAR
E-495	Monopalmitato de sorbitán	Emulsionante	EVITAR
E-496	Polietilenglicol 6000	Disolvente	EVITAR
E-500	Carbonato de sodio	Antiaglomerante	SEGURO
E-501	Carbonato de potasio	Antiaglomerante	SEGURO
	Carbonato de amonio		SEGURO


E-504	Carbonato de magnesio	Antiaglomerante	SEGURO
E-507	Ácido clorhídrico	Acidulante	EVITAR
E-508	Cloruro de potasio	Potenciador	EVITAR
E-509	Cloruro de calcio	Estabilizador	EVITAR
E-510	Cloruro de amonio	Emulsionante	EVITAR

	Cloruro de magnesio	Estabilizador	PRECAUCIÓN
E-511 E-512	Cloruro de estaño	Estabilizador	EVITAR
	Ácido sulfúrico	Acidulante	EVITAR
E-513		Estabilizador Estabilizador	EVITAR
E-514 E-516	Sulfato de sodio Sulfato de calcio	Estabilizador Estabilizador	PRECAUCIÓN
E-517	Sulfato de amonio	Estabilizador	EVITAR
E-518	Sulfato de magnesio	Estabilizador	EVITAR
E-520	Sulfato de aluminio	Estabilizador	EVITAR
E-521	Sulfato sódico de aluminio	Estabilizador	EVITAR
E-522	Sulfato potásico de aluminio	Estabilizador	EVITAR
E-523	Sulfato amónico de aluminio	Estabilizador	EVITAR
E-524	Hidróxido de sodio	Estabilizador	PRECAUCIÓN
E-525	Hidróxido de potasio	Estabilizador	EVITAR
E-526	Hidróxido de calcio	Estabilizador	PRECAUCIÓN
E-527	Hidróxido de amonio	Estabilizador	EVITAR
E-528	Hidróxido de magnesio	Estabilizador	SEGURO
E-529	Óxido de calcio	Estabilizador	PRECAUCIÓN
E-530	Óxido de magnesio	Estabilizador	PRECAUCIÓN
E-535	Ferrocianuro de sodio	Estabilizador	PRECAUCIÓN
E-536	Ferrocianuro de potasio	Estabilizador	PRECAUCIÓN
E-538	Ferrocianuro de calcio	Estabilizador	PRECAUCION
E-541	Fosfato ácido de sodio y aluminio	Emulsionante	EVITAR
E-542	Fosfato de huesos	Emulsionante	EVITAR
E-544	Polifosfatos de calcio	Emulsionante	EVITAR
E-545	Polifosfatos de amonio	Emulsionante	EVITAR
E-551	Óxido de silicio	Antiaglomerante	SEGURO
E-552	Silicato de calcio	Antiaglomerante	EVITAR
E-553 ^a	Silicato de magnesio	Antiaglomerante	EVITAR
E-553b	Talco	Antiaglomerante	EVITAR
E-554	Silicato de sodio y aluminio	Antiaglomerante	EVITAR
E-555	Silicato de potasio y aluminio	Antiaglomerante	EVITAR
E-556	Silicato de calcio y aluminio	Antiaglomerante	EVITAR
E-558	Bentonita	Antiaglomerante	SEGURO
E-559	Silicato de aluminio, Caolín	Antiaglomerante	PRECAUCIÓN
E-570	Ácidos grasos	Antiaglomerante	SEGURO
E-570	Estearato de magnesio	Antiaglomerante	PRECAUCION
E-574	Ácido glucónico	Estabilizador	SEGURO
E-575	Glucono delta lactona	Estabilizador	SEGURO
	Glucono delta lactona Gluconato sódico		SEGURO
E-576		Estabilizador	SEGURO
E-577	Gluconato potásico	Estabilizador	SEGURO
E-578	Gluconato cálcico	Estabilizador	SEGUKU

E-579	Gluconato ferrosol	Estabilizador	SEGURO
E-585	Lactato ferrosol	Estabilizador	SEGURO
E-620	Ácido L-glutámico	Potenciador	EVITAR
E-621	Glutamato monosódico	Potenciador	EVITAR
E-621	Glutamato monopotásico	Potenciador	EVITAR
E-623	Glutamato cálcico	Potenciador	EVITAR
E-623 E-624	Glutamato amónico	Potenciador	EVITAR
E-625	Glutamato magnésico	Potenciador	EVITAR
E-625 E-626	Ácido guanílico	Potenciador	PRECAUCION
E-626 E-627	Guanilato sódico	Potenciador	EVITAR
E-627 E-628	Guanilato dipotásico	Potenciador	EVITAR
E-629	Guanilato dipotasico Guanilato cálcico	Potenciador	EVITAR
			EVITAR
E-630	Ácido inosínico	Potenciador	EVITAR
E-631	Inosinato sódico	Potenciador	EVITAR
E-632	Inosinato dipotásico	Potenciador	EVITAR
E-633	Inosinato cálcico	Potenciador	
E-634	Ribonucleótidos cálcicos	Potenciador	EVITAR
E-635	Ribonucleótidos disódicos	Potenciador	EVITAR
E-636	Maltol	Potenciador	EVITAR
E-637	Etilmaltol	Potenciador	EVITAR
E-640	Glicina y glicinato sódico	Potenciador	EVITAR
E-650	Acetato de zinc	Potenciador	PRECAUCIÓN
E-900	Dimetilpolisiloxano	Antiespumante	EVITAR
E-901	Cera de abejas	Antiaglomerante	SEGURO
E-902	Cera candelilla	Antiaglomerante	SEGURO
E-903	Cera carnauba	Antiaglomerante	SEGURO
E-904	Goma laca	Antiaglomerante	PRECAUCIÓN
E-905	Cera microcristalina	Revestimiento	EVITAR
E-907	Poli-L-deceno hidrogenado	Revestimiento	EVITAR
E-912	Ésteres del ácido montánico	Revestimiento	PRECAUCION
E-913	Lanolina	Revestimiento	PRECAUCIÓN
E-914	Cera polietileno oxidada	Revestimiento	EVITAR
E-920	L-Cisteína	Estabilizante	SEGURO
E-927 ^a	Azodicarbonamida	Oxidante	EVITAR
E-927b	Carbamida	Estabilizante	SEGURO
E-938	Argón	Gas	SEGURO
E-939	Helio	Gas	SEGURO
E-941	Nitrógeno	Gas	SEGURO
E-942	Óxido nitroso	Gas	SEGURO
E-943 ^a	Butano	Gas	PRECAUCION
E-943b	Isobutano	Gas	PRECAUCIÓN
E-944	Propano	Gas	PRECAUCIÓN
E-948	Oxígeno	Gas	SEGURO
E-949	Hidrógeno	Gas	SEGURO
E-950	Acesulfamo K	Edulcorante	EVITAR
E-951	Aspartamo	Edulcorante	EVITAR
E-931	*		
	Ciclamato	Edulcorante	EVITAR
E-951 E-952 E-953	Ciclamato Isomaltosa	Edulcorante Edulcorante	EVITAR PRECAUCIÓN

E-955	Sucralosa	Edulcorante	EVITAR
E-957	Taumatina	Edulcorante	PRECAUCIÓN
E-959	Neohesperidina DC	Edulcorante	SEGURO
E-962	Sal de aspartamo y de acesulfamo	Edulcorante	EVITAR
E-965	Maltitol, jarabe de maltitol	Edulcorante	PRECAUCIÓN
E-966	Lactitol	Edulcorante	PRECAUCIÓN
E-967	Xilitol	Edulcorante	EVITAR
E-999	Extracto de Quilaya	Estabilizante	PRECAUCIÓN
E-1100	Amilasa	Enzima	PRECAUCIÓN
E-1103	Invertasa	Enzima	SEGURO
E-1105	Lisozima	Conservante	PRECAUCIÓN
E-1200	Polidextrosa	Espesante	PRECAUCIÓN
E-1201	Polivinilpirrolidona	Clarificante	EVITAR
E-1202	Polivinilpolipirrolidona	Clarificante	EVITAR
E-1404	Almidón oxidado	Espesante	PRECAUCIÓN
E-1410	Fosfato de monoalmidón	Espesante	PRECAUCIÓN
E-1412	Fosfato de dialmidón	Espesante	PRECAUCIÓN
E-1413	Fosfato dialmidón fosfatado	Espesante	PRECAUCIÓN
E-1414	Fosfato dialmidón acetilado	Espesante	PRECAUCIÓN
E-1420	Almidón acetilado	Espesante	PRECAUCIÓN
E-1422	Adipato dialmidón acetilado	Espesante	PRECAUCIÓN
E-1440	Hidroxipropil almidón	Espesante	PRECAUCIÓN
E-1442	Fosfato dialmidón hidroxipropilado	Espesante	PRECAUCIÓN
E-1450	Octenil succinato sódico	Espesante	PRECAUCIÓN
E-1451	Almidón oxidado acetilado	Espesante	PRECAUCIÓN
E-1505	Citrato de trietilo	Disolvente	PRECAUCIÓN
E-1517	Diacetato de glicerilo	Disolvente	PRECAUCIÓN
E-1518	Triacetato de glicerilo	Disolvente	PRECAUCIÓN
E-1519	Alcohol bencílico	Disolvente	PRECAUCIÓN
E-1520	Propilenglicol	Disolvente	EVITAR

Anexo B. Fotografías de los diferentes grados de maduración, para los análisis en LACONAL.

UNIVERSIDAD TECNICA DE AMBATO FACULTAD DE CIENCIA E INGENIERIA EN ALIMENTOS

LABORATORIO DE CONTROL Y ANALISIS DE ALIMENTOS

Dir: Av. Los Chasquis y Rio Payamino, Huachi, Telf.: 2 400987 ext. 5517, e-mail:laconal@uta.edu.ec Ambato-Ecuador

nayo 2018 celin Montero tras:	Vargas		Fecha de ejecución de ensayo C.L/RUC: 0202382743 Tif: Celular: 0986312698 E mail: monterolourdes17@gmail		Pag. 1 di ayo 2018				
elin Montero	Vargas	<i>a</i>	C.1/RUC: 0202382743 Tif: Celular: 0986312698		ayo 2018				
elin Montero	Vargas		Tlf: Celular: 0986312698						
	Vargas		Tlf: Celular: 0986312698						
	Vargas	T.	Celular: 0986312698						
tras:									
tras:			E mail: monterolourdes17@gmail						
tras:				l.com					
			Peso: 800 g aprox c/u						
			Tipo de envase: n/a						
	110		No de muestras: tres						
			F. Exp.: n/a						
	ición: Conge	lación:	Almac, en Lab: 7 días						
o: X Intact	tos: Rotos:		Muestreo por el cliente: 13 de mayo de 2018						
	RES	ULTADOS O	BTENIDOS	34					
digo del oratorio	Código cliente	Ensayos solicitados	Métodos utilizados	Unidades	Resultados				
		*Sölidos Totales	AOAC 920.151. Ed 20, 2016	%	33,9				
518274	Muestra 0	*pH	AOAC 942.15 Ed 20, 2016 / INEN 389	Unidades de pH	5,52				
	E - 6	*Sólidos solubles	AOAC 932.12 Ed 20, 2016 / INEN 380	"Brix	8,27				
		*Sólidos Totales	AOAC 920.151. Ed 20, 2016	%	34,4				
518275	Muestra 1	*plf	AOAC 942 T5 Ed 20, 2016 / INEN 389	Unidades de pH	4,91				
		*Sólidos solubles	AOAC 932.12 Ed 20, 2016 / INEN 380	*Brix	24,8				
		*Sólidos Totales	AOAC 920.151, Ed 20, 2016	%	30,1				
518276	Muestra 2	*pH	AOAC 942 15 EN 20, 2016 MAROL 389	time looks do pH	5,26				
		*Sólidos solubles	AOAC 932.12 E4 20 2017 INEN	Brid C	26,8				
			DIREC	TOR S					
	o: X Intac digo del oratorio 1518274 1518275 9°C: 57%HR	o: X Intactos: Rotos: RES digo del Código oratorio cliente 1518274 Muestra 0 518275 Muestra 1 518276 Muestra 2 9C: 57%HR		RESULTADOS OBTENIDOS RESULTADOS OBTENIDOS	Nuestra Paris Pa				

Note: Los reultados. To de mayo 2018

Note: Los reultados consignados se referen exclasivamente a la muestra recibida. El Laboración no es responsable por el uso incorrecto de este certificado

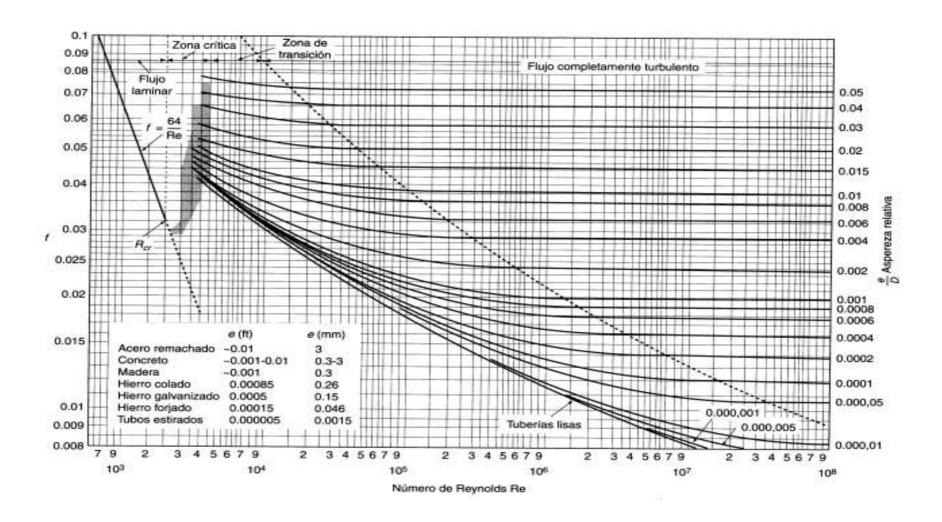
No es un documento negociable. Solo se primite su reproducción sin fines de lucro y luciendo referencia a la fuente

"La información que se está everándo es confidencial, exclastramiente para su destinatario, y no puede ser vinculante. Si noted no es el destinatario de esta información recomendamos eliminaria immediatamente. La distribución o copia del mismo está podubida y será sancionada según el pracesa legal perimente",

Anexo D. Prueba de aceptación (Encuesta)

	Prueba	de Aceptación		
Nombre:		Edad:	Fecha:	
Producto: Compota de orit	0			
Indicaciones.				
Por favor en el siguiento	e orden consumir la	s muestras propuestas	y marcar la muestr	a con e
código que más le gusto:				
1. Muestra: 1607 _				
2. Muestra : 1608				
3. Muestra: 1609				
De la muestra que usted sel-	ecciono de mayor sers	ido exprese su criterio en	la signiente tabla:	
the improvement day and account	execution as much on after			
Sensaciones	Me gusta	Ni me gusta, ni	No me gusta	1
Sensaciones	Me gusta	Ni me gusta, ni me disgusta	No me gusta	
Sensaciones Sabor	Me gusta	250	No me gusta	
	Me gusta	250	No me gusta	
Sabor	Me gusta	250	No me gusta	
Sabor Consistencia	Me gusta	250	No me gusta	
Sabor Consistencia Color	Me gusta	250	No me gusta	
Sabor Consistencia Color	Me gusta	250	No me gusta	
Sabor Consistencia Color Olor		me disgusta		
Sabor Consistencia Color Olor Comentario		me disgusta		
Sabor Consistencia Color Olor Comentario		me disgusta		
Sabor Consistencia Color Olor Comentario		me disgusta		
Sabor Consistencia Color Olor Comentario		me disgusta		

Anexo E. Fotos de Pruebas Afectivas Estudiantes Facultad de Ciencias ESPOCH


Anexo F. Registro mensual "ASOPROTABF"

										Ϋ́			co						1					J	UI	VI	0			
	14	15	16	19	18	19	20	_	-	-	-	25	26	27	28	29	33	93.	1	2	3	4	5 8					11	12	18
TOTAL CANTIBAD DE CAIAS PRODUCIDAS DE ORITO		1508							135.3							1503						١	4303						TROS	
TOTAL							Т							_		_	-	-	-	Ī				•	-	1			-	
TOTAL CANTIDAD DE RECHAZO		2144,230							2744, 335							1994, 175							MATERIAL PROPERTY.						1944, 484.	
TOTAL								-			-					1.00	-	-	144	-	-		134	-	1	-		-	110	-

Anexo G. Tablas de rugosidad relativa según material

RUGOSID	AD ABSO	LUTA DE MATERIALES	
Material	(mm)	Material	£ (mm)
Plastico (PE, PVC)	0,0015	Fundición asfaltada	0,06-0,18
Poliéster reforzado con fibra de vidrio	0,01	Fundición	0,12-0,60
Tubos estirados de acero	0,0024	Acero comercial y soldado	0,03-0,09
Tubos de latón o cobre	0,0015	Hierro forjado	0,03-0,09
Fundición revestida de cemento	0,0024	Hierro galvanizado	0,06-0,24
Fundición con revestimiento bituminoso	0,0024	Madera	0,18-0,90
Fundición centrifugada	0,003	Hormigón	0,3-3,0

Anexo H. Diagrama de Moddy

Anexo I. Coeficiente de fricción de accesorios

Tipo de singularidad	K
Válvula de compuerta totalmente abierta	0,2
Válvula de compuerta mitad abierta	5,6
Curva de 90º	1
Curva de 45º	0,4
Válvula de pie	2,5
Emboque (entrada en una tubería)	0,5
Salida de una tubería	1
Ensanchamiento brusco	(1-(D1/D2) ²) ²
Reducción brusca de sección (Contracción)	0,5(1-(D1/D2) ²) ²

Anexo J. Carta para el cálculo de la potencia consumida por impulsor de un agitador

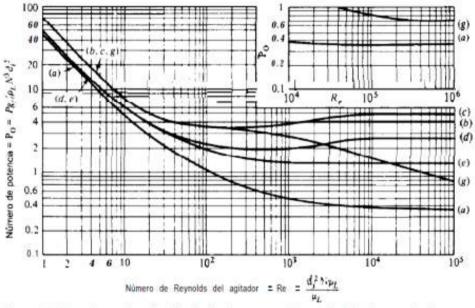


Figura 6.5. Potencia para la agitación de impulsores sumergidos en líquidos de una sola fase con una superficie gas/líquido [excepto curvas (c) y (g)]. Las curvas corresponden a los impulsores de la figura 6.3: (a) impulsores marinos, (b) turbinas de hoja plana, $w = d_i/5$, (c) turbinas de disco de hoja plana con y sin una superficie gas/líquido, (d) turbinas de hoja curva, (e) turbinas de hojas fijas, (g) turbinas de hojas planas, sin mamparas, sin interfase gas/líquido, sin vórtices.

Fuente: TREYBAL, Robert. Operaciones de Transferencia de Masa. 2a. ed.

España: McGraw - Hill Interamericana, 1994. p. 172

Anexo K. Análisis Físico-químico, microbiológico, Vitamina A y C, Información Nutricional del producto final

UNIVERSIDAD TECNICA DE AMBATO

LABORATORIO DE CONTROL Y ANALISIS DE ALIMENTOS

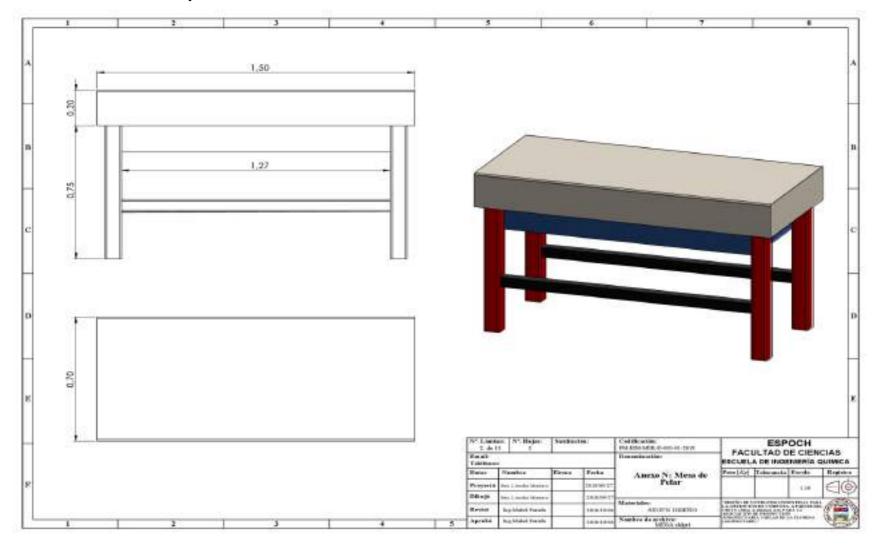
Dir: Av. Los Chasquis y Rio Payamino, Huachi, Telf.: 2 400987 ext. 114, e-mail:laconal@uta.edu.ec; laconal@hotmail.com

Ambato-Ecuador

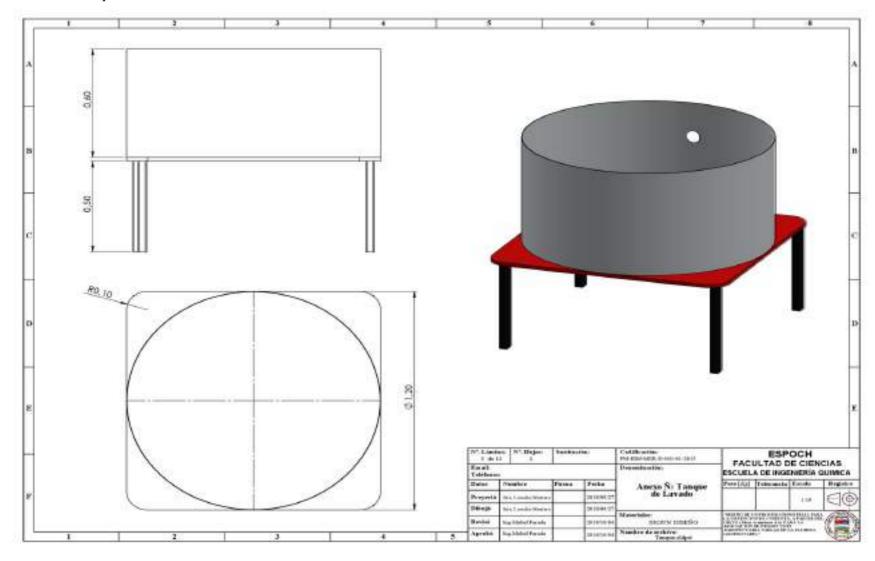
	Labor		아니아, 살아가 무슨 때문에 하는 아니라 하는데 내가 되었다.	E con acreditación №: OAE LE SIS DE LABORATORIO	0.10-000		
			Certificado No:18-1			R01-5.10 0	
Solicitud No:	18-199			1		Pág.: I de	
Fecha de rece	pción: 20 de ag	osto de 20	18	Fecha de ejecución de ensayos:	20 de agosto 2	018	
Información	del cliente:			300	25		
Empresa:				C.L/RUC: 0202382743			
Representante:	Lourdes Jackelin	Montero Va	irgas	TIE			
Dirección: Riol				Celular: 0986312698			
Ciudad: Rioban	nba			E mail: monterolourdes17@gmail.c	om		
Descripción	de las muest	ras:					
	ompota de Ori	to		Peso: 130 g			
Marca come	rcial: n/a			Tipo de envase: vidrio			
Lote: 1608				No de muestras: una			
The State of the Associated States	e agosto 2018			F. Exp.: 17 de febrero 2019			
			ción: Congelación:	Almac. en Lab: 30 dias			
Cierres segu	ridad: Ningun	o: Inta	ctos: x Rotos:	Muestreo por el cliente: 20 d	le agosto 2018	8	
			RESULTADOS	OBTENIDOS		Y	
Muestras	Código del laboratorio	Código cliente	Ensayos solicitados	Métodos utilizados	Unidades	Resultados	
		3,7,3,1,1	*Solidos totales	PE06-5.4-FQ. AOAC. Ed 20, 2016 927.05	%	18,0	
			*рН	AOAC 942.15. Ed 20, 2016	unidades de pH	3,80	
			*Sólidos solubles	AOAC 932.12 Ed 20, 2016 / INEN 380	%	27,00	
			Fibra dietética total	AOAC 985.29. Ed 20, 2016	%	0,50	
			Proteína	PE07-5.4-FQ. AOAC Ed 20, 2016 2001.11	% (N*6,25)	0,30	
			Carbohidratos Totales	Cateulo	%	41,70	
			*Cenizas	AOAC Ed 20, 2016 923.03	%	0,50	
Compota de Orito	19918366	ninguno	§*Azúcares Totales	AOAC 925.26	%	12,0	
			*Energia	Cálculo	Keal	90,0	
			§*Vitamina A (UI/100g) (β- Catoreno)	AOAC 992.06	%IDR*	1,5	
			§*Vitamina C	AOAC 967.21	%IDR*	45,0	
			§Perfil lipidico (trans saturada)	HPLC	g	0,0	
			§*Colesterol	Espectrofotometria	mg	0,0	
			§*Hierro	AOAC 944.02	%IDR*	1,4	
			*Aerobios Totales	erobios Totales Standard Methods: 9215 D. UF		<10	

0.0000000000000000000000000000000000000	18-199					Pág: 2 de
			§*Recuento de Anaerobios	Anserobic Brower	Presencia/aus encia	no presencia
Orito	19918366	ninguno	*Mohos	Standard Methods: 9610D	UFC/g	<10
			*Levaduras	Standard Methods: 9610D	UFC/g	<10
				LABOR	ATORIO DE CON	NTROL NTOS
				YANAI	ATORIO DE CON JSIS DE ALIME COLAL - UTA IRECTO	MIOS

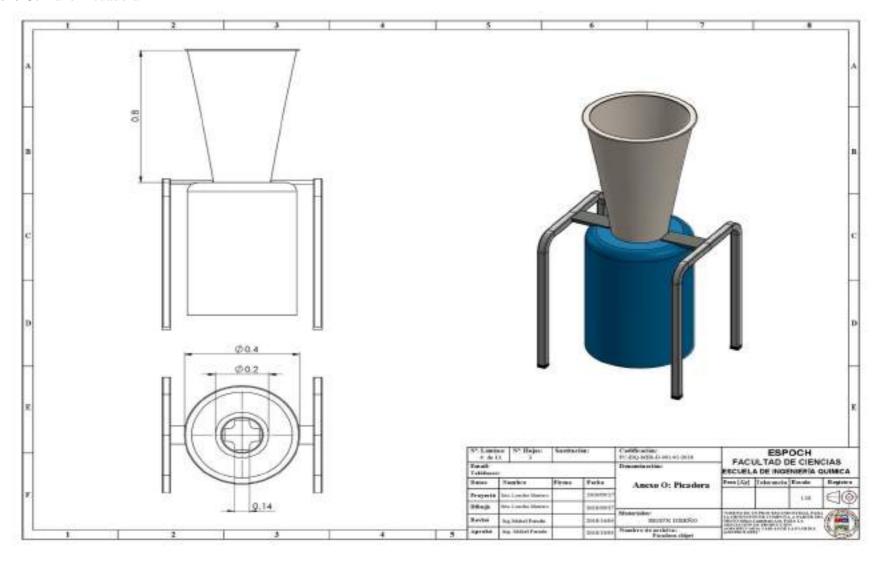
Anexo L. Tiempo de vida útil acelerada

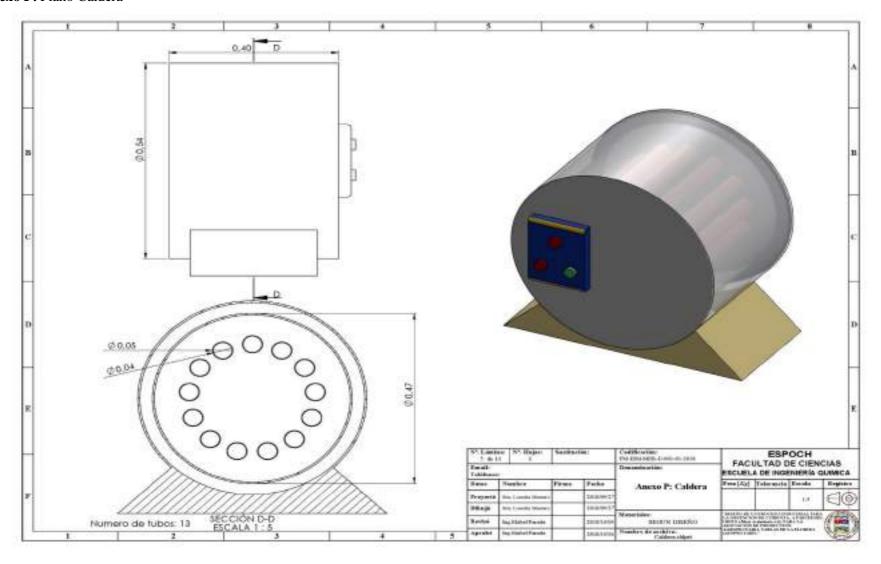


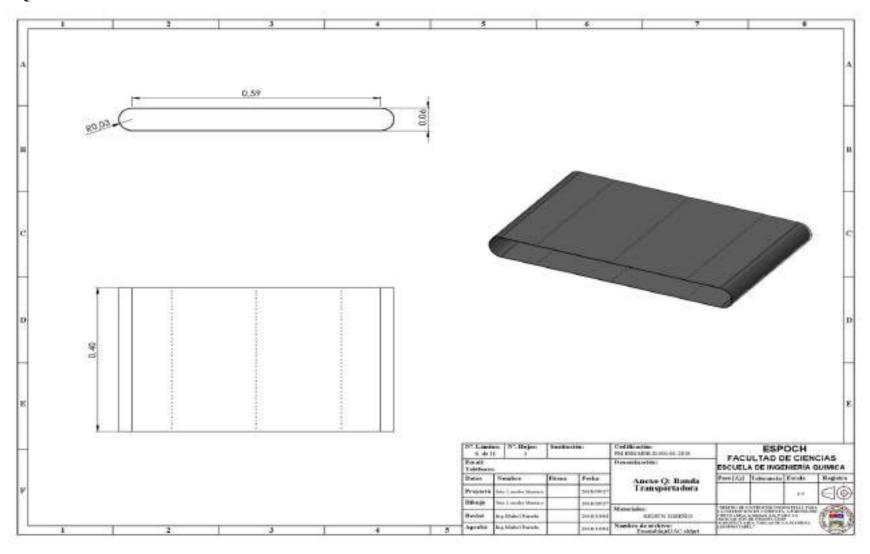
Anexo M. Etiqueta del producto final

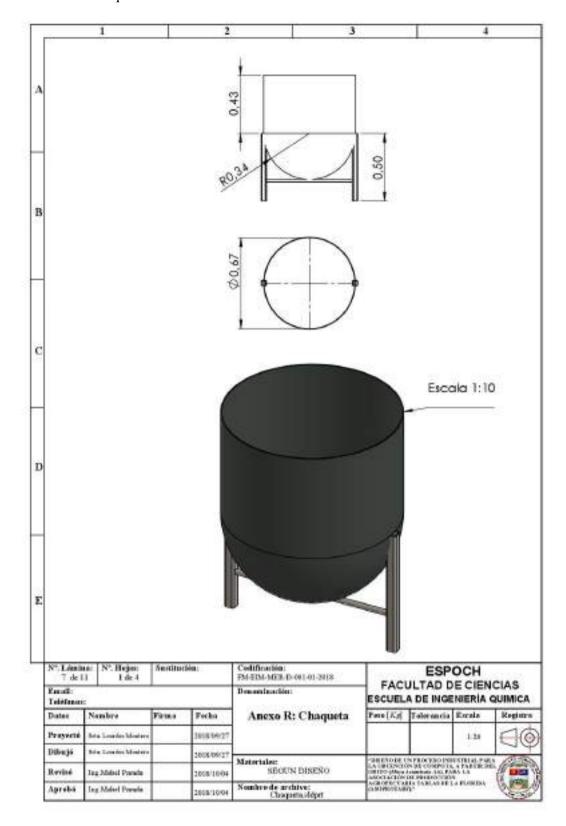


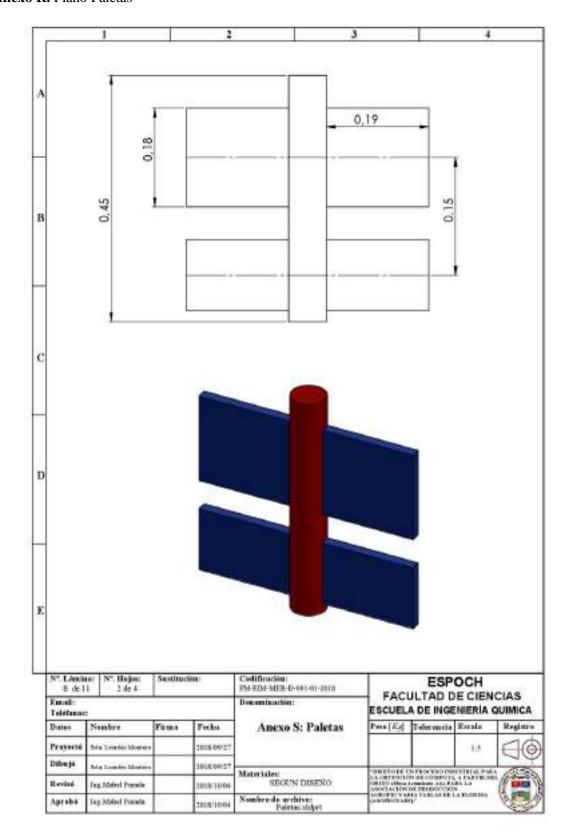
NOTAS:	CATEGORÍA D	EL DIAGRAMA	ESPOCH	00	MPOTA DE ORI	TO		
Etiquetado: Reglamento Técnico Ecuatoriano RTE	☐ Certificado	□Por Eliminar	FACULTAD DE CIENCIAS	COM GIA DE ORITO				
INEN 022 (2R) Rotulado de Productos Alimenticios	☐ Aprobado	□Por Aprobar	LAB. DE INVESTIGACIÓN	Lámina	Escala	Fecha		
Procesados, Envasados y Empaquetados.	□Por Calificar	□Para Información	MONTERO LOURDES	1	A4	01/10/18		

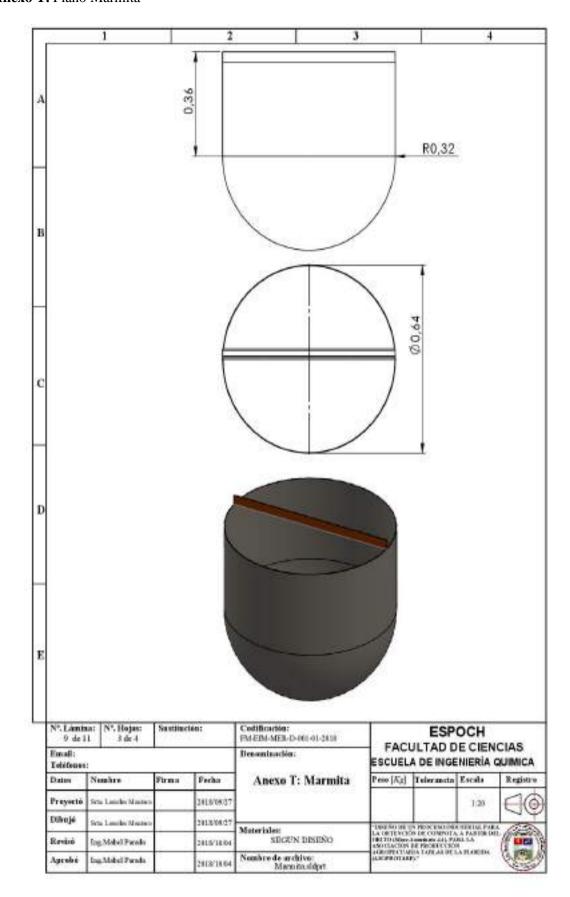

Anexo N. Plano Mesa de Selección y Pelado de Materia Prima

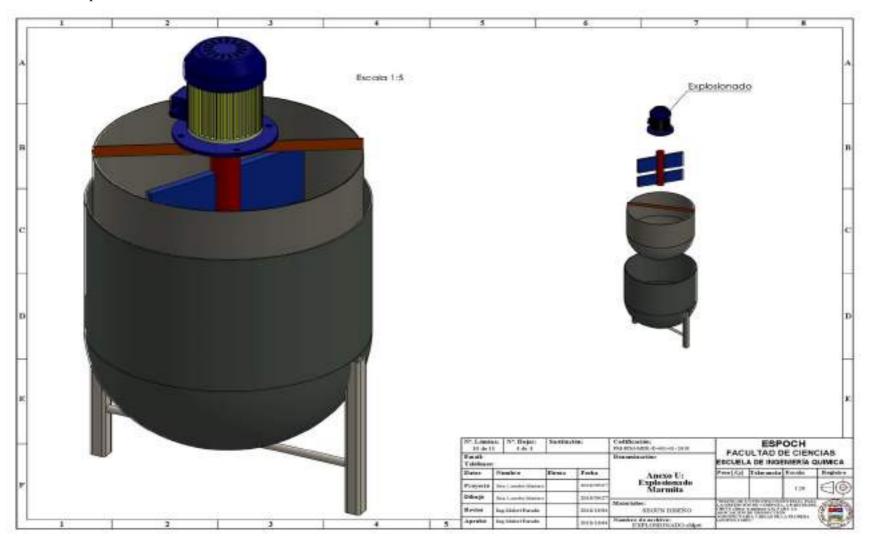

Anexo \tilde{\mathbf{N}}. Plano Tanque de Lavado

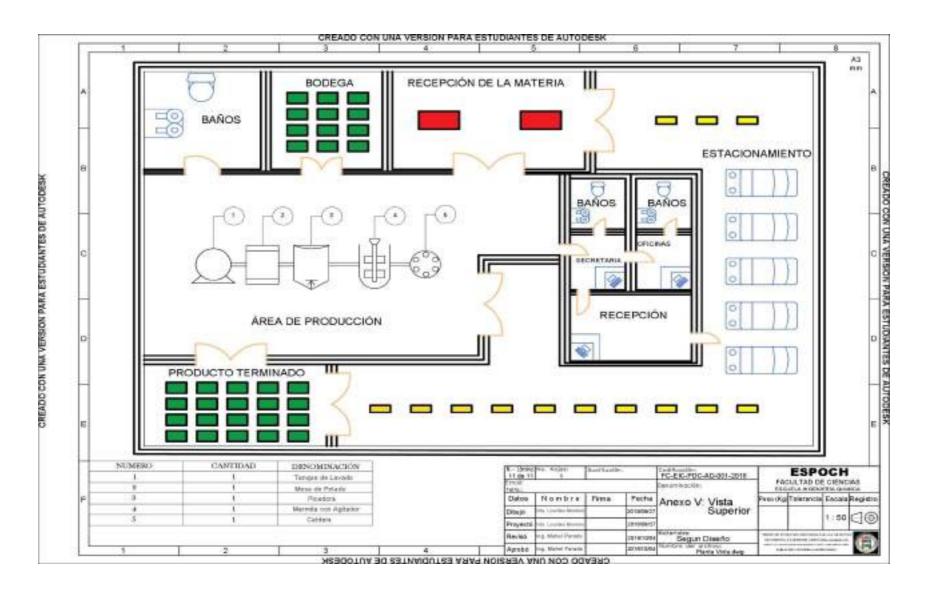

Anexo O. Plano Licuadora


Anexo P. Plano Caldera


Anexo Q. Plano Banda


Anexo R. Plano Chaqueta


Anexo R. Plano Paletas


Anexo T. Plano Marmita

Anexo U. Plano Explosionado

Anexo V. Plano de la Planta

